JPS60162970A - Image tracking device - Google Patents

Image tracking device

Info

Publication number
JPS60162970A
JPS60162970A JP1878284A JP1878284A JPS60162970A JP S60162970 A JPS60162970 A JP S60162970A JP 1878284 A JP1878284 A JP 1878284A JP 1878284 A JP1878284 A JP 1878284A JP S60162970 A JPS60162970 A JP S60162970A
Authority
JP
Japan
Prior art keywords
infrared
signal
vertical
gate
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1878284A
Other languages
Japanese (ja)
Inventor
Kazuo Imamura
和男 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1878284A priority Critical patent/JPS60162970A/en
Publication of JPS60162970A publication Critical patent/JPS60162970A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/78Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using electromagnetic waves other than radio waves
    • G01S3/782Systems for determining direction or deviation from predetermined direction
    • G01S3/785Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system
    • G01S3/786Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system the desired condition being maintained automatically
    • G01S3/7864T.V. type tracking systems

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Closed-Circuit Television Systems (AREA)

Abstract

PURPOSE:To eliminate the influence to be inflicted on an artificial light source and to improve the precision and reliability of an optical tracking device by picking up images of the same visual field in two wavelength ranges by utilizing the difference in spectrum distribution between infrared-ray radiations from a target and an artificial light beam, and performing signal processing. CONSTITUTION:A dichroic mirror 12 has transmissivity and reflectivity and near infrared light and far infrared light are demultiplexed to form infrared images in respective wavelength ranges on two infrared-ray solid-state image pickup elements 13a and 13b. Then, a comparator 15 compares picture element outputs which are amplified by amplifiers 14a and 14b and corresponds to the elements 13a and 13b and outputs a binary-coded picture element signal 16. Then, the signal 16 is inputted to a peak point detecting circuit 19 through a horizontal compressed value arithmetic circuit 17 to obtain a vertical tracking position signal 5 by the circuit 19. A gate position signal 21 from a gate setting circuit 20 is inputted to a vertical compressed value arithmetic circuit 22 together with the signal 16 and the vertical compressed value signal 23 outputted by it is processed by gravity center arithmetic 24 to obtain a horizontal tracking position signal 6. Consequently, the influence of the artificial light source is eliminated.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明け、擬似光源、背址ノイズ等に惑わされないで
、目標の1確な追尾が可能な、赤外画像追尾装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an infrared image tracking device that is capable of accurately tracking a target without being distracted by pseudo light sources, background noise, etc.

〔従来技術〕[Prior art]

従来の赤外画像追尾装置においては、目標の赤外画像を
赤外撮像装置で撮像し、得られる映像信号の重心点等を
算出することにより、目標の追尾点がめられていた。
In conventional infrared image tracking devices, the tracking point of a target is determined by capturing an infrared image of the target with an infrared imaging device and calculating the center of gravity of the obtained video signal.

第1図は、従来のとの柚装置の構成の1例を示す図であ
って、(1)は結像光学系、(21は赤外撮像装置、(
3)け映像信号、(4)は重心点演算回路、(5)は垂
直方向追尾位置信号、(6)は水平方向追尾位置信号で
ある。
FIG. 1 is a diagram showing an example of the configuration of a conventional Yuzu device, in which (1) is an imaging optical system, (21 is an infrared imaging device, and (21 is an infrared imaging device).
3) is a video signal, (4) is a center of gravity calculation circuit, (5) is a vertical tracking position signal, and (6) is a horizontal tracking position signal.

第1図において、赤外撮像装置(2)は、結像光学系f
ilにより結像される目標の赤外像を撮像し、映像イき
号(3)を重心点演算回路(4)に出力する。重心点演
初回路(41によって、目標の沖心臓位li1座標か算
出され、垂1m方向厘標の位置[比例した垂直方向追尾
位置イF号(5)、及び水平方向座標の位置に比例した
水平方向j!i+尾位捕1信号(6)か出力される。
In FIG. 1, the infrared imaging device (2) has an imaging optical system f
An infrared image of the target formed by il is captured, and an image signal (3) is output to the center of gravity calculation circuit (4). The center of gravity point calculation circuit (41) calculates the offshore heart position li1 coordinates of the target, and calculates the position of the target in the 1 m vertical direction [proportional to the vertical tracking position F (5), and the position proportional to the horizontal coordinate position. Horizontal direction j!i+tail position capture 1 signal (6) is output.

第2図は、赤外撮像装置によって撮像される赤外映像の
1例であって、(71げ画面、(81は目標、(9)は
近赤外域にスペクトル分布をもつ擬似光源、0切は遠及
び中赤外域にスペクトル分布をもつ人工擬似光源、0υ
は重心点である。
Figure 2 shows an example of an infrared image captured by an infrared imaging device, in which (71 is the screen, (81 is the target, (9) is a pseudo light source with a spectral distribution in the near-infrared region, and (9) is a pseudo light source with a spectral distribution in the near-infrared region. is an artificial light source with a spectral distribution in the far and mid-infrared regions, 0υ
is the center of gravity.

第2図において、第1図に示す従来の装置で目標(81
ヲ追尾した場合0画面(71に近赤外域にスペクトル分
布をもつ擬イJス光源(9)(例えば太陽光の海面反射
)や遠及び中赤外域にスペクトル分布ケもつ人工擬似光
源+In) (例えばテコイ等の人工擬似光源)が入る
と、一般にこれらの擬似光源は面輝度であるため、目標
と擬似光源との両者の■心Aflllが算出されてしま
い、その結果追尾位置が目標からずれてし寸9欠点かあ
った。特VL第2図の目標+81のような、水平方向1
c長く、垂直方向に短い目標の場合け1重心虞の垂1自
方向座碑のずれは、たとえわずかであっても、目TMを
逃かすことI/Cなり、このような場合追尾装置として
致酪的な欠点となる。
In Fig. 2, the target (81
0 screen (71 is a pseudo light source with a spectral distribution in the near-infrared region (9) (e.g. sunlight reflected on the sea surface) or an artificial pseudo light source with a spectral distribution in the far and mid-infrared regions) ( For example, when an artificial light source (such as a lever) enters, since these pseudo light sources generally have surface brightness, the center Aflll of both the target and the pseudo light source is calculated, and as a result, the tracking position deviates from the target. There were 9 flaws. Horizontal direction 1 like target +81 in special VL figure 2
c If the target is long and short in the vertical direction, even if the deviation of the vertical position of the center of gravity is small, it will cause the eye TM to miss, resulting in I/C. This is a devastating drawback.

〔発明の概要〕[Summary of the invention]

この発明は、目標と擬似!詠とが放つ赤外清々」のスペ
クトル分布の違いをオリ用し、2波長域で同一視野を撮
像し、信号処理することにより、近赤外域にスペクトル
分布をもつ擬似光源の影響を除去した映像信号を得た後
に、この映像信号を水平方向に加算圧縮した圧縮値が最
大価ケとる点を。
This invention aims and pseudo! By taking advantage of the difference in the spectral distribution of the infrared light emitted by Eido, the same field of view is captured in two wavelength regions, and signal processing is performed to remove the influence of a pseudo light source with a spectral distribution in the near-infrared region. After the signal is obtained, this video signal is added and compressed in the horizontal direction, and the compression value reaches its maximum value.

目標の追尾点の垂直方向の座標とし、これを中心に垂直
方向に微小画素幅ケ治し、水平方向VCは広域画素幅を
有するゲートを設け、このゲート内の映像信号を垂直方
向に加算圧縮した圧縮値の重心点を、目標の追尾点の水
平方向の座標とする・ことによって、遠及び中赤外域に
スペクトル分布をもつ擬似光源の影響を除去し、その結
果としてほとんどすべての擬似光砿の影曝tをなくし従
来技術の欠点を除去する手段全提供するものである。以
下。
The vertical coordinates of the target tracking point are taken as the center, and the minute pixel width is adjusted in the vertical direction around this point.The horizontal direction VC is provided with a gate having a wide range of pixel widths, and the video signal within this gate is added and compressed in the vertical direction. By setting the center of gravity of the compression value to the horizontal coordinates of the target tracking point, the influence of pseudo light sources with spectral distribution in the far and mid-infrared regions is removed, and as a result, almost all pseudo light sources can be removed. It provides a complete means of eliminating shadow exposure and eliminating the drawbacks of the prior art. below.

この発明を図を用いて詳aJll VC説明する。This invention will be explained in detail using figures.

〔発明の実施例〕[Embodiments of the invention]

第3図は、この発明の1実施例の構成を示すものであっ
て、 Q2+triタイクロイックミラー、(+3a)
は第1の赤外固体撮像素子、(+3b)は第2の赤外同
体N(’N索子、(14a)、 (+4b)は各々増巾
器、 (151け比較器、 Qlilは2価化画素信号
、fI力は水平方向IEIE紬佃演算回路、 +181
は水平方向圧縮値信号、a!1けビーク点検出回路、(
加)はゲート設定回路、 C7+lij:ゲート位置信
号、いは垂直方向圧縮値l#算回路、い)は垂直方向圧
縮値信号、C41は重心涜演算回路である。
FIG. 3 shows the configuration of one embodiment of the present invention, which includes a Q2+tri tychroic mirror, (+3a)
is the first infrared solid-state image sensor, (+3b) is the second infrared solid-state image sensor, (14a) and (+4b) are each an amplifier, (151 comparator, Qlil is a bivalent pixel signal, fI force is horizontal direction IEIE Tsumugi calculation circuit, +181
is the horizontal compression value signal, a! 1-digit peak point detection circuit, (
(a) is a gate setting circuit; C7+lij is a gate position signal or vertical compression value l# calculating circuit; (i) is a vertical compression value signal; C41 is a center of gravity calculation circuit.

第4図は、目標および擬似光源のスペクトル分布の1例
全示す図であって、051は太陽光、(支))は人工擬
似光源、07Jけ目標の各々スペクトルである。
FIG. 4 is a diagram showing an example of the spectral distribution of the target and the pseudo light source, in which 051 is the spectrum of sunlight, 051 is the spectrum of the artificial pseudo light source, and 07J is the spectrum of the target.

第5図は、ダイクロイックミラーaりの分光透過・反射
率の1例を示″fし1であって、(2)Vi透過率。
FIG. 5 shows an example of the spectral transmittance and reflectance of a dichroic mirror (a) and (2) Vi transmittance.

(2)は反射率を示す。(2) indicates reflectance.

第6図は、第2図に示す映像を第3図に示す装置に入力
したときに比較器01より得られる2値化画素信号(I
li)で、この発明におけるケート設定の1例を示すも
のであり、C1)は水平方向追尾位置決定用ゲート、C
(11は追尾小である。
FIG. 6 shows a binarized pixel signal (I) obtained from comparator 01 when the video shown in FIG.
li) shows an example of the gate setting in the present invention, and C1) shows the gate for determining the horizontal tracking position;
(11 is the tracking small.

第3図において、ダイクロイックミラー04は。In FIG. 3, the dichroic mirror 04 is.

第5図に示す透過・反射率ケ有するので、第1の赤外固
体撮像素子(13a)および第2の赤外固体撮像素子(
131))には、各々波長的1〜2.5μmの近赤外光
、および波長的9〜10.5μmの遠赤外光が分岐され
、各々の波長域の赤外像が結像されることになる。
Since the transmittance and reflectance shown in FIG. 5 are obtained, the first infrared solid-state image sensor (13a) and the second infrared solid-state image sensor (
131)), near-infrared light with a wavelength of 1 to 2.5 μm and far-infrared light with a wavelength of 9 to 10.5 μm are branched, and an infrared image in each wavelength range is formed. It turns out.

ところで、一般に赤外固体撮像素子の分光感度は一定で
ないので、これを補正するために増巾器(14a)およ
び(14に+)のオI」得は、上で述べた近赤外光入射
に対する増巾器(14a )の出力と、同一強度の上で
述べた遠赤外光入射に対する増巾器(14b)の出力と
が、はぼ等しくなるように調整されているものとする。
By the way, in general, the spectral sensitivity of an infrared solid-state image sensor is not constant, so in order to correct this, the amplifier (14a) and (+) are used. It is assumed that the output of the amplifier (14a) for the same intensity and the output of the amplifier (14b) for the incidence of far-infrared light of the same intensity are adjusted to be approximately equal.

このとき、第4図のスペクトル分布から明らかなように
、スペクトルC271をもつ目標+81の画素及びスペ
クトル@をもつ人工擬似光m、翰の画素においては、常
に増巾器(14a)の出力は増巾器(14b)の出力よ
り小さく、またスペクトル3+1をもつ擬似光源(9)
の画素においては、この逆であることがわかる。
At this time, as is clear from the spectral distribution in FIG. 4, the output of the amplifier (14a) is always increased for the target +81 pixel with spectrum C271 and the artificial pseudo light m and sky pixel with spectrum @. A pseudo light source (9) that is smaller than the output of the width filter (14b) and has a spectrum of 3+1.
It can be seen that the opposite is true for the pixel.

第3図におりる比較器(1句は、増巾器(14b)の出
力か、前もって設定されたしきい値より大きく。
The comparator shown in FIG. 3 is the output of the amplifier (14b), which is greater than the preset threshold.

かつ増幅器(14a)の出力が増巾器(141))の出
力よりも小さい場合のみ′1″を出力し、そうでない場
合には′OIを出力するように構成されている。このよ
うにして(1すられた21直化画素信号06)において
は、第6図に示すように、太陽光の海面反射等の近赤外
域にスペクトル分布をもつ擬似光源(9)の影響は除去
されている。
It is configured to output '1' only when the output of the amplifier (14a) is smaller than the output of the amplifier (141), and to output 'OI' otherwise. In (1 smoothed 21 normalized pixel signal 06), as shown in Figure 6, the influence of a pseudo light source (9) with a spectral distribution in the near-infrared region, such as sunlight reflected on the sea surface, is removed. .

第3図におけるこの2値化画素信号(161′f:P 
(1゜j)(ここで1は水平方向座標、jは垂直方向座
標であり、1<iくM、1くjくN、Mは映像の水平方
向の幅、Nげ映像の垂直方向の幅である。)水平方向圧
縮値演算回路01によって得られた水平方向圧縮値信号
(11をh (j)とすれは、(1)式の関係が成立す
る。
This binarized pixel signal (161'f: P
(1゜j) (where 1 is the horizontal coordinate, j is the vertical coordinate, 1<i×M, 1×j×N, M is the horizontal width of the image, and the vertical width of the image is If h (j) is the horizontal compression value signal (11) obtained by the horizontal compression value calculation circuit 01, then the relationship of equation (1) holds true.

h(jン= Σ P(’+ j) ・・・(11に1 一方第6図に示す2値化画素信号061においては。h(jn = Σ P('+ j) ...(1 in 11 On the other hand, in the binarized pixel signal 061 shown in FIG.

遠及び中赤外域にスペクトル分布をもつ人工擬似光源O
Qは除去されていない。この人工擬似光源OIは、一般
に第6図に示すような、水平方向に長く垂直方向に短い
目標+8+(例えば船)に比べて、水平方向の幅が極め
て小さく、従ってb (jJけ目標(8)の位置で非常
に顕著なピークを示す。このピーク価は1通常人工擬似
光源00によるh (j)のイ11よりもはるかに大き
いので、第3図におけるピーク点検出回路(IIによっ
て、h(j)がピーク値をとるときのjの値を検出すれ
ば、非常に正確な垂面方向追尾位置信号(5)がイiI
られる。即ち、追尾点の垂直方向座標における人工擬似
光maIの影響は、はとんど完全に排除される。
Artificial pseudo light source O with spectral distribution in the far and mid-infrared regions
Q is not removed. This artificial artificial light source OI generally has an extremely small width in the horizontal direction compared to a target +8+ (for example, a ship) that is long in the horizontal direction and short in the vertical direction, as shown in FIG. ).This peak value is much larger than 11 of h (j) due to the normal artificial artificial light source 00. If the value of j when (j) takes the peak value is detected, a very accurate vertical tracking position signal (5) can be obtained.
It will be done. That is, the influence of the artificial artificial light maI on the vertical coordinates of the tracking point is almost completely eliminated.

第3図におけるケート設定回路(イ)は、このようにし
て得られた追尾点の垂I頁方向の座標を中心に垂直方向
の幅が微小画素、水平方向の幅が広域画素のケートヲ設
定する。その1例を第6図の水平方向追尾位置決定用ゲ
ートcnに示す。第3図におけるケート設定回路−によ
って設定されたゲート位置信号CI++は、2値化画素
信号(10とともに垂直方向圧縮値演算回路aZに入力
される。その出力である垂面方向IE縮値信号Q7) 
e v (t)とすると、(21式の関係が成立する。
The cell setting circuit (a) in FIG. 3 sets a cell whose vertical width is minute pixels and horizontal width is a wide range of pixels, centering on the vertical coordinates of the tracking point obtained in this way. . An example of this is shown in the horizontal direction tracking position determining gate cn in FIG. The gate position signal CI++ set by the gate setting circuit in FIG. )
When e v (t), the relationship of Equation 21 holds true.

ただし L : h (、H)がピーク価をとるときの
jの値 2n+1 :垂直方向ゲート幅 ■(1)の重心点座標Gは1重心点演算回路Qイ(によ
って、(3)式のように引算される。
However, the value of j when L: h (, H) takes the peak value 2n+1: Vertical gate width ■The coordinate G of the center of gravity in (1) is calculated by the center of gravity calculation circuit Qi (1), as shown in equation (3). is subtracted from

Gを追尾点の水平方向座標とすることにより、水平方向
追尾位置信号(6)が得られる。追地点の水平方向座標
における人工擬似光源00)やその他の背景ノイズの影
響は、nを十分小さくした水平方向追尾位置信号用り一
−トの設定により、最小限に抑制される。
By letting G be the horizontal coordinate of the tracking point, a horizontal tracking position signal (6) is obtained. The influence of the artificial pseudo light source 00) and other background noise on the horizontal coordinates of the tracking point can be minimized by setting the horizontal tracking position signal chart with n sufficiently small.

〔発明の効果〕〔Effect of the invention〕

このように、この発明によれは、擬似光源や背景ノイズ
の影響を大幅に削減し、比較的簡単な画像信号処理によ
り、目標の追尾点を正確にめることができるので、光学
追尾装置の精度、信頼度の向上に太きく寄与することが
できる。
As described above, the present invention greatly reduces the effects of pseudo light sources and background noise, and allows the target tracking point to be accurately determined through relatively simple image signal processing, making it possible to use optical tracking devices. This can greatly contribute to improving accuracy and reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の画像追尾装置の1例を示す図。 第2図は、赤外撮像装置によって憚像される赤外映像の
1例を示す図、第3図は、この発明の一実施例の構成ケ
示す図、第4図は、目標及び擬似光臨のスペクトル分布
の一例を示す図、第5図は。 ダイクロイックミラーの分光透過・反射率の一例を示す
図、第6図はこの発ψ1におけるゲート設定の一例を示
す図であって、(11は結像光学系、(8jけ目標、0
りけダイクロイックミラー、09け比較器。 aηは水平方向圧縮値演算回路、 C2fjけゲート設
定回路、働は水平方向追尾位置信号用ゲートである。 なお9図中同一あるいは相当85分には、同一符号を付
して示しである。 代理人 大 岩 増 却 第1図 第2図 第4図 @5図 12Δ45678910 II汲 第6図
FIG. 1 is a diagram showing an example of a conventional image tracking device. FIG. 2 is a diagram showing an example of an infrared image imaged by an infrared imaging device, FIG. 3 is a diagram showing the configuration of an embodiment of the present invention, and FIG. 4 is a diagram showing a target and a pseudo optical vision. FIG. 5 is a diagram showing an example of the spectral distribution of . FIG. 6 is a diagram showing an example of the spectral transmittance and reflectance of a dichroic mirror, and FIG.
Rike dichroic mirror, 09 comparator. aη is a horizontal compression value calculation circuit, a C2fj gate setting circuit, and a gate for a horizontal tracking position signal. Note that in FIG. 9, the same or equivalent 85 minutes are indicated by the same reference numerals. Agent Masu Oiwa Figure 1 Figure 2 Figure 4 @ 5 Figure 12Δ45678910 II Figure 6

Claims (1)

【特許請求の範囲】 結像光学系と、赤外域に感度を有する赤外り体撮像素子
と、映像信号処理手段とを備えた画像追尾装置において
、結像光路中におかれ、入船光を近赤外域光と遠赤外域
光とに分離する分波手段と。 分波された」二層近赤外域光結像面に設置される第1の
赤外固体撮像素子と1分波された上記遠赤外域光結像面
に設置される第2の赤外固体撮像素子と、第1および第
2の赤外周体撮像素子に対応する画素出力全比較し、前
者の出力が後者の出力より小さい場合に対応する画素全
不意とすることにより、2値化I[i11素信号音得る
手段と、前記2値化画紫信号を水平方向に加算8E組し
た圧縮値か最大となる点の垂面方向座標を検出する手段
と、との垂面方向座標を中心に、垂直方向に微小1ij
i素幅を有し、水平方向には広域画素幅を有するゲート
を設ける手段と、このゲート内の画素信号を垂面方向に
訓話圧縮した圧縮値の重心点を演q−する手段とを備え
たことを%帝とする。仙1像追尾装置。
[Claims] An image tracking device including an imaging optical system, an infrared body image sensor having sensitivity in the infrared region, and a video signal processing means, which is placed in an imaging optical path and captures incoming light. and a demultiplexing means for separating light into near-infrared light and far-infrared light. A first infrared solid-state image sensor installed on a two-layer near-infrared light imaging surface that has been demultiplexed, and a second infrared solid-state image sensor that is installed on the far-infrared light imaging surface that has been demultiplexed. Binarization I[ i11 element signal tone obtaining means, and means for detecting the vertical coordinates of the point at which the compressed value obtained by adding 8E sets of the binarized image purple signals in the horizontal direction is the maximum. , minute 1ij in the vertical direction
means for providing a gate having a pixel width i and a wide pixel width in the horizontal direction; and means for calculating the center of gravity of the compressed value obtained by compressing the pixel signal in the gate in the vertical direction. That is the % emperor. Sen 1 image tracking device.
JP1878284A 1984-02-03 1984-02-03 Image tracking device Pending JPS60162970A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1878284A JPS60162970A (en) 1984-02-03 1984-02-03 Image tracking device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1878284A JPS60162970A (en) 1984-02-03 1984-02-03 Image tracking device

Publications (1)

Publication Number Publication Date
JPS60162970A true JPS60162970A (en) 1985-08-24

Family

ID=11981193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1878284A Pending JPS60162970A (en) 1984-02-03 1984-02-03 Image tracking device

Country Status (1)

Country Link
JP (1) JPS60162970A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004162942A (en) * 2002-11-11 2004-06-10 Mitsubishi Electric Corp Infrared ray search tracking device
JP2011179857A (en) * 2010-02-26 2011-09-15 Mitsubishi Electric Corp Infrared target detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004162942A (en) * 2002-11-11 2004-06-10 Mitsubishi Electric Corp Infrared ray search tracking device
JP2011179857A (en) * 2010-02-26 2011-09-15 Mitsubishi Electric Corp Infrared target detector

Similar Documents

Publication Publication Date Title
US10271746B2 (en) Method and system for carrying out photoplethysmography
JP2005127989A (en) Flaw detector and flaw detecting program
US20190058837A1 (en) System for capturing scene and nir relighting effects in movie postproduction transmission
EP0408224A3 (en) Computational methods and electronic camera apparatus for determining distance of objects, rapid autofocusing and obtaining improved focus images
EP0855678B1 (en) Method and apparatus for sensing an image
JP2002207156A (en) Range-finding device for camera
JPS60162970A (en) Image tracking device
CN109459405B (en) Spectral index measuring method for removing soil background interference based on narrow-band image processing
JPS62232504A (en) Position detector
JPS60179639A (en) Detection for surface defect of hot metallic material
JPH06273506A (en) Target detector
JPH03274971A (en) Infrared ray image pickup device
JPS6088374A (en) Image tracking apparatus
JPS59174084A (en) Color video camera
US11290663B2 (en) Thermal image sensing system and thermal image sensing method
JPH0962839A (en) Inspection device for appearance of farm and merine products
JP3007086B1 (en) Automatic exposure adjustment method for electronic line sensor camera
KR970048403A (en) Moisture measurement device of powder
JPS58132872A (en) Correlation processor
JPS60250269A (en) Image tracking apparatus
JPS60144677A (en) Image tracking device
JPS62133432A (en) Method and circuit for automatically determining exposure value
JP2593045B2 (en) Optical one-axis receiving system
JPS6095372A (en) Picture tracking device
KR100323388B1 (en) device for measuring a distance and brightness of an object in digital still camera