JPH03274971A - Infrared ray image pickup device - Google Patents

Infrared ray image pickup device

Info

Publication number
JPH03274971A
JPH03274971A JP2075911A JP7591190A JPH03274971A JP H03274971 A JPH03274971 A JP H03274971A JP 2075911 A JP2075911 A JP 2075911A JP 7591190 A JP7591190 A JP 7591190A JP H03274971 A JPH03274971 A JP H03274971A
Authority
JP
Japan
Prior art keywords
detection signal
infrared
sunlight
imaging device
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2075911A
Other languages
Japanese (ja)
Inventor
Tetsuo Miyoshi
哲夫 三好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2075911A priority Critical patent/JPH03274971A/en
Publication of JPH03274971A publication Critical patent/JPH03274971A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)
  • Closed-Circuit Television Systems (AREA)

Abstract

PURPOSE:To pick up dose of an infrared ray radiating from the surface of an object accurately by subtracting a sun-ray detection signal from an infrared ray detection signal at a subtractor circuit so as to eliminate the effect of the infrared ray in the sun-ray reflected in the surface of the object onto the pickup. CONSTITUTION:The quantity of an infrared ray radiating from the surface of an object 1 is detected by an infrared ray image pickup element 3 and the result is outputted as an infrared ray detection signal. A infrared ray image pickup element drive circuit 4 outputs the infrared ray detection signal for each minute picture element of a 2-dimension picture whose image is formed on the pickup element 3 sequentially. The infrared ray detection signal from the element 3 is outputted to a subtractor circuit 11 via an infrared ray detection signal amplifier circuit 5. On the other hand, a reflected sun-ray coming from the surface of the object 1 is formed on a sun-ray image pickup element 8 by a spectroscope 7 and a sun-ray detection signal is outputted. A sun-ray image pickup element drive circuit 9 outputs the sun-ray detection signal for each minute picture element on the pickup element 3 sequentially to the subtractor circuit 11, which subtracts the sun-ray detection signal from the infrared ray detection signal and the result is outputted from an output circuit 6.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、被写体より放射される赤外線を検出し、映
像化する赤外線撮像装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an infrared imaging device that detects infrared rays emitted from a subject and images the detected infrared rays.

〔従来の技術〕[Conventional technology]

第3図は、従来のこの種の赤外線撮像装置を示す図であ
る。第3図において、(1)は被写体、(2)は被写体
(1)の表面から放射される赤外線を撮像面に結像させ
る光学系、(3)は光学系(2)によって結像された被
写体f1+の赤外線受光量を電気信号に変換し赤外線検
出信号として出力する赤外線撮像素子。
FIG. 3 is a diagram showing a conventional infrared imaging device of this type. In Figure 3, (1) is the subject, (2) is the optical system that images the infrared rays emitted from the surface of the subject (1) on the imaging surface, and (3) is the image formed by the optical system (2). An infrared imaging element that converts the amount of infrared light received by the subject f1+ into an electrical signal and outputs it as an infrared detection signal.

(4)は赤外線撮像素子(3)を駆動するための駆動回
路。
(4) is a drive circuit for driving the infrared imaging device (3).

(5)は赤外線撮像素子(3)が出力する赤外線検出信
号を増幅する増幅回路、(6)は増幅回路(5)によっ
て増幅された赤外線検出信号を外部に出力する出力回路
である。
(5) is an amplifier circuit that amplifies the infrared detection signal output by the infrared imaging device (3), and (6) is an output circuit that outputs the infrared detection signal amplified by the amplifier circuit (5) to the outside.

次に動作について説明する。Next, the operation will be explained.

従来の赤外線撮像装置では、まず被写体fl)の表面か
ら放射された赤外線は光学系(2)によって撮像面に結
像され9次に結像された被写体+11の赤外線受光量は
赤外線撮像素子(3)によって電気信号に変換され赤外
線検出信号として出力される。駆動回路(4)は赤外線
撮像素子(3)上に結像された二次元画像を微少画素の
集合体とみなし、微少画素毎の赤外線検出信号を所定の
順序で出力させるための回路である。赤外線撮像素子(
3)が出力する赤外線検出信号は増幅回路(5)によっ
て増幅され、さらに出力回路(6)によって外部に出力
される。通常、出力回路(6)の出力はTVモニタ等の
表示装置に接続されて使用される。赤外線撮像素子とし
て、従来よシ撮像管を使用したものや、単素子あるいは
一次元配列素子を走査して検出するもの等が実用化され
てきているが、近年、二次元配列の固体撮像素子を使用
したものも実用化され始めている。微少画素毎の赤外線
検出信号を所定の順序で出力させるための駆動回路とし
ては赤外線撮像素子が撮偉管あるいは二次元配列素子の
場合には純電子的に構成することが可能であるが、単素
子あるいは一次元配列素子の場合は走査機能の一部ある
いは全部を機械的に行う場合が多い。
In a conventional infrared imaging device, first, the infrared rays emitted from the surface of the subject fl) are imaged on the imaging surface by the optical system (2), and the amount of infrared light received by the nine-dimensionally imaged subject +11 is transferred to the infrared imaging element (3). ) is converted into an electrical signal and output as an infrared detection signal. The drive circuit (4) is a circuit that regards the two-dimensional image formed on the infrared imaging device (3) as a collection of minute pixels and outputs infrared detection signals for each minute pixel in a predetermined order. Infrared imaging device (
The infrared detection signal outputted by 3) is amplified by an amplifier circuit (5) and further output to the outside by an output circuit (6). Usually, the output of the output circuit (6) is used by being connected to a display device such as a TV monitor. Conventionally, infrared imaging devices that use image pickup tubes and devices that scan and detect single elements or one-dimensional arrays have been put into practical use, but in recent years, solid-state imaging devices with two-dimensional arrays have been put into practical use. The ones used are also beginning to be put into practical use. A drive circuit for outputting infrared detection signals for each minute pixel in a predetermined order can be constructed purely electronically if the infrared imaging device is a tube or a two-dimensional array element, but it can be constructed purely electronically. In the case of elements or one-dimensional array elements, part or all of the scanning function is often performed mechanically.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

以上のように構成されている赤外線撮像装置には2次の
ような課題があった。すなわち、晴天時の屋外風景を撮
像した時に太陽光の反射光の影響をうけ、被写体の表面
から放射される赤外線量を正確に撮像できないという課
題がある。特に可視領域に近い近赤外領域では太陽光に
含まれる赤外線の量が入きく1反面、被写体の放射する
赤外線量が小さいため、被写体表面にて反射される太陽
光に含まれる赤外線の量のほうが被写体の放射する赤外
線量よシもはるかに大きく、被写体の放射する赤外線量
のみを撮像したい場合には大きな問題となる。
The infrared imaging device configured as described above has the following secondary problems. That is, when capturing an image of an outdoor scene on a clear day, there is a problem in that the amount of infrared rays emitted from the surface of the subject cannot be accurately captured due to the influence of reflected sunlight. Particularly in the near-infrared region, which is close to the visible region, the amount of infrared rays contained in sunlight enters, but on the other hand, the amount of infrared rays emitted by the subject is small, so the amount of infrared rays contained in sunlight reflected from the surface of the subject is small. However, the amount of infrared rays emitted by the subject is much larger, which poses a big problem if you want to capture only the amount of infrared rays emitted by the subject.

この発明は上記のような課題を解決するためKなされた
もので、太陽光に含まれる赤外線反射光の影響を除去し
、被写体の表面から放射される赤外線量を正確に撮像で
きる赤外線撮像装置を提供することを目的としたもので
ある。
This invention was made to solve the above problems, and provides an infrared imaging device that can remove the influence of reflected infrared light contained in sunlight and accurately capture the amount of infrared rays emitted from the surface of an object. It is intended to provide.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係わる赤外線撮像装置は、被写体表面にて反
射される太陽光に含まれる赤外線の影響を除去する目的
で、被写体表面にて反射される太陽光量を検出する太陽
光撮像素子、太陽光撮像素子が出力する太陽光検出信号
を増幅する増幅回路。
The infrared imaging device according to the present invention includes a sunlight imaging device that detects the amount of sunlight reflected on the surface of a subject, and a sunlight imaging device for the purpose of removing the influence of infrared rays contained in sunlight reflected on the surface of the subject. An amplifier circuit that amplifies the sunlight detection signal output by the element.

及び赤外線検出信号から太陽光検出信号を減算するため
の減算回路を設けたものである。
and a subtraction circuit for subtracting the sunlight detection signal from the infrared detection signal.

〔作用〕[Effect]

この発明においては、減算回路は赤外線検出信号から太
陽光検出信号を減算することによシ被写体表面にて反射
される太陽光に含まれる赤外線の影響を除去するように
なっているため、被写体の表面から放射される赤外線量
を正確に撮像することが可能である。
In this invention, the subtraction circuit subtracts the sunlight detection signal from the infrared detection signal to remove the influence of infrared rays contained in sunlight reflected on the surface of the subject. It is possible to accurately image the amount of infrared radiation emitted from the surface.

〔実施例〕〔Example〕

第1図はこの発明の一実施例を示す図であシ。 FIG. 1 is a diagram showing an embodiment of the present invention.

(1)は被写体、(2)は被写体(1)の表面から放射
される赤外線を撮像面に結像させる光学系、(3)は光
学系(2)によって結像された被写体(11の赤外線受
光量を電気信号に変換し赤外線検出信号として出力する
赤外線撮像素子、(4)は赤外線撮像素子(3)を駆動
するための赤外線撮像素子駆動回路、(5)は赤外線撮
像素子(3)が出力する赤外線検出信号を増幅する赤外
線検出信号増幅回路、(7)は光学系(2)がつくる光
路の途中に設けられ、被写体(1)の表面から反射され
る太陽光の一部または全部を別の撮像面に結像させる分
光器、(8)は分光器(7)によって結像された被写体
(1)の太陽光受光量を電気信号に変換し太陽光検出信
号として出力する太陽光撮像素子、(9)は太陽光撮像
素子(8)を駆動するための太陽光撮像素子駆動回路、
α・は太陽光撮像素子(8)が出力する太陽光検出信号
を増幅する太陽光検出信号増幅回路。
(1) is the subject, (2) is an optical system that images the infrared rays emitted from the surface of the subject (1) on the imaging surface, and (3) is the subject (11 infrared rays) imaged by the optical system (2). An infrared image sensor that converts the amount of received light into an electrical signal and outputs it as an infrared detection signal, (4) an infrared image sensor drive circuit for driving the infrared image sensor (3), and (5) an infrared image sensor that drives the infrared image sensor (3). An infrared detection signal amplification circuit (7) for amplifying the output infrared detection signal is provided in the middle of the optical path created by the optical system (2), and is used to amplify part or all of the sunlight reflected from the surface of the subject (1). A spectrometer (8) forms an image on another imaging surface, and a solar imaging device (8) converts the amount of sunlight received by the subject (1) imaged by the spectrometer (7) into an electrical signal and outputs it as a sunlight detection signal. (9) is a solar image sensor driving circuit for driving the solar image sensor (8);
α・ is a sunlight detection signal amplification circuit that amplifies the sunlight detection signal output by the sunlight image sensor (8).

aDは赤外線検出信号増幅回路(5)によって増幅され
た赤外線検出信号から太陽光検出信号増幅回路a1によ
って増幅された太陽光検出信号を減算する減算回路、(
6)は減算回路αυの減算結果信号を外部に出力する出
力回路である。(1)〜(6)は前記従来装置とほぼ同
一のものである。
aD is a subtraction circuit that subtracts the sunlight detection signal amplified by the sunlight detection signal amplification circuit a1 from the infrared detection signal amplified by the infrared detection signal amplification circuit (5);
6) is an output circuit that outputs the subtraction result signal of the subtraction circuit αυ to the outside. (1) to (6) are almost the same as the conventional device.

動作について説明する。The operation will be explained.

まず、被写体(1)の表面から放射された赤外線は光学
系(2)によって撮像面に結像され2次に結像された被
写体(1)の赤外線受光量は赤外線撮像素子(3)によ
って電気信号に変換され赤外線検出信号として出力され
る。赤外線撮像素子駆動回路(4)は赤外線撮像素子(
3)上に結像された二次元画像を微少画素の集合体とみ
なし、微少画素毎の赤外線検出信号を所定の順序で出力
させるための回路である。
First, the infrared rays emitted from the surface of the object (1) are imaged on the imaging surface by the optical system (2). It is converted into a signal and output as an infrared detection signal. The infrared image sensor driving circuit (4) is an infrared image sensor (
3) A circuit that regards the two-dimensional image formed above as a collection of minute pixels and outputs infrared detection signals for each minute pixel in a predetermined order.

赤外線撮像素子(3)が出力する赤外線検出信号は赤外
線検出信号増幅回路(5)によって増幅され、減算回路
α力に入力される。一方、光学系(2)がつくる光路の
途中に設けられた分光器(7)によって被写体Tl)の
表面から反射された太陽光の一部または全部は。
The infrared detection signal output from the infrared imaging device (3) is amplified by the infrared detection signal amplification circuit (5) and input to the subtraction circuit α. On the other hand, part or all of the sunlight reflected from the surface of the subject Tl) by the spectrometer (7) provided in the middle of the optical path created by the optical system (2).

太陽光撮像素子(8)上に結像され、太陽光撮像素子(
8)は結像された被写体(1)の太陽光受光量を電気信
号に変換し太陽光検出信号として出力する。太陽光撮像
素子駆動回路(9)は赤外線撮像素子駆動回路(4)と
同様に、太陽光撮像素子(8)上に結像された二次元画
像を微少画素の集合体とみなし、微少画素毎の太陽光検
出信号を所定の順序で出力させるための回路である。太
陽光撮像素子(8)が出力する太陽光検出信号は太陽光
検出信号増幅回路α〔によって増幅され、減算回路αυ
に入力される。赤外線検出信号は減算回路fil)によ
って太陽光検出信号を減算され、さらに出力回路(6)
によって外部に出力される。赤外線検出信号増幅回路(
5)および太陽光検出信号増幅回路Qlの増幅率はそれ
ぞれの撮像素子の感度およびそれぞれの撮像素子が検出
する波長領域の赤外線および太陽光の強さにあわせて最
適となるように調節されている。本実施例では、光学系
(2)として2〜5μmの波長帯域を通過帯域として構
成し、赤外線撮像素子(3)としては3〜5μ虞の波長
帯域を、太陽光撮像素子(8)としては2〜3μmの波
長帯域をそれぞれ検出するように構成した。被写体表面
にて反射される太陽光に含まれる有害な赤外線の波長帯
域は、この場合3〜5μmであるが近接する波長帯域で
ある2〜3μmの波長の太陽光成分を3〜5μ肩の波長
の太陽光成分と同一量であるとみなしても実用的にはほ
とんど問題ない。従って減算回路αυによって2〜3μ
mの波長の太陽光成分信号を3〜5μmの波長帯域の赤
外線検出信号から減算することによって、被写体の表面
から放射される赤外線量を正確に撮像することが可能と
なる。ところで原理的には2〜3μmの波長帯域の中に
も被写体の表面から放射される赤外線成分が含まれてい
るため減算回路(υにて2〜3μmの波長の太陽光成分
を減算した時に被写体の表面から放射される赤外線成分
も減算してしまうことが懸念されるが、一般に短波長に
なればなるほど、太陽光の成分が大きく、かつ被写体の
表面から放射される赤外線成分が小さくなるため実用的
にはほとんど問題ない。太陽光撮像素子(8)の検出波
長帯域として2〜3μmではなく。
The image is formed on the sunlight image sensor (8), and the image is formed on the sunlight image sensor (8).
8) converts the amount of sunlight received by the imaged subject (1) into an electrical signal and outputs it as a sunlight detection signal. Like the infrared image sensor drive circuit (4), the sunlight image sensor drive circuit (9) regards the two-dimensional image formed on the sunlight image sensor (8) as a collection of minute pixels, and separates each minute pixel. This is a circuit for outputting sunlight detection signals in a predetermined order. The sunlight detection signal output by the sunlight image sensor (8) is amplified by the sunlight detection signal amplification circuit α, and the sunlight detection signal is amplified by the sunlight detection signal amplification circuit α.
is input. The infrared detection signal is subtracted from the sunlight detection signal by a subtraction circuit (fil), and further output by an output circuit (6).
is output to the outside by Infrared detection signal amplification circuit (
5) and the amplification factor of the sunlight detection signal amplification circuit Ql are adjusted to be optimal according to the sensitivity of each image sensor and the intensity of infrared rays and sunlight in the wavelength range detected by each image sensor. . In this embodiment, the optical system (2) is configured to have a wavelength band of 2 to 5 μm as a passband, the infrared imaging device (3) is configured to have a wavelength band of 3 to 5 μm, and the sunlight imaging device (8) is configured to have a wavelength band of 3 to 5 μm. It was configured to detect a wavelength band of 2 to 3 μm. In this case, the wavelength band of harmful infrared rays contained in sunlight reflected on the surface of the subject is 3 to 5 μm, but the wavelength of the sunlight component with a wavelength of 2 to 3 μm, which is an adjacent wavelength band, is 3 to 5 μm in wavelength. There is almost no practical problem even if it is assumed that the amount is the same as the sunlight component. Therefore, depending on the subtraction circuit αυ, 2~3μ
By subtracting the sunlight component signal with a wavelength of m from the infrared detection signal with a wavelength band of 3 to 5 μm, it becomes possible to accurately image the amount of infrared rays emitted from the surface of the subject. By the way, in principle, the wavelength band of 2 to 3 μm also includes infrared components emitted from the surface of the subject, so when the sunlight component of the wavelength of 2 to 3 μm is subtracted using the subtraction circuit (υ), There is a concern that the infrared component emitted from the surface of the subject will also be subtracted, but generally speaking, the shorter the wavelength, the larger the component of sunlight, and the smaller the infrared component emitted from the surface of the subject, so it is not practical. There is almost no problem.The detection wavelength band of the solar image sensor (8) is not 2 to 3 μm.

よシ短波長側の波長帯域とすれば被写体の表面から放射
される赤外線量をさらに正確に撮像することが可能とな
ることはいうまでもない。また夜間あるいは曇天時に減
算回路αυをバイパスする機能を追加することも可能で
あるが、この場合でもこの発明の主旨をいささかでも損
なうものではな−。
It goes without saying that by using a wavelength band on the shorter wavelength side, it becomes possible to more accurately image the amount of infrared rays emitted from the surface of the object. It is also possible to add a function to bypass the subtraction circuit αυ at night or on cloudy days; however, even in this case, the gist of the invention is not impaired in the slightest.

さて、第2図はこの発明の別の実施例を示す図である。Now, FIG. 2 is a diagram showing another embodiment of the present invention.

図において、(1)は被写体、(2)は被写体(1)の
表面から放射される赤外線を撮像面に結像させる光学系
、(3)は光学系(2)によって結像された被写体(1
1の赤外線受光量および被写体filの表面から反射さ
れる太陽光受光量を電気信号に変換し赤外線検出信号お
よび太陽光検出信号として出力する複合赤外線撮像素子
、(4)は複合赤外線撮像素子(3)を駆動するための
駆動回路、(5)は複合赤外線撮像素子(3)が出力す
る赤外線検出信号を増幅する赤外線検出信号増幅回路、
α値は複合赤外線撮像素子(3)が出力する太陽光検出
信号を増幅する太陽光検出信号増幅回路、αυは赤外線
検出信号増幅回路(5)によって増幅された赤外線検出
信号から太陽光検出信号増幅回路αlによって増幅され
た太陽光検出信号を減算する減算回路、(6)は減算回
路住υの減算結果信号を外部に出力する出力回路である
。(1)〜(6)は前記従来装置および第1図に示す実
施例とほぼ同一のものである。
In the figure, (1) is the subject, (2) is the optical system that images the infrared rays emitted from the surface of the subject (1) on the imaging surface, and (3) is the subject ( 1
(4) is a composite infrared image sensor that converts the amount of infrared light received by 1 and the amount of sunlight received reflected from the surface of the subject fil into electrical signals and outputs it as an infrared detection signal and a sunlight detection signal; ); (5) is an infrared detection signal amplification circuit that amplifies the infrared detection signal output by the composite infrared imaging device (3);
The α value is the sunlight detection signal amplification circuit that amplifies the sunlight detection signal output by the composite infrared image sensor (3), and αυ is the sunlight detection signal amplification from the infrared detection signal amplified by the infrared detection signal amplification circuit (5). A subtraction circuit that subtracts the sunlight detection signal amplified by the circuit αl, and (6) an output circuit that outputs the subtraction result signal of the subtraction circuit υ to the outside. Items (1) to (6) are substantially the same as the conventional device and the embodiment shown in FIG.

次に動作について説明する。Next, the operation will be explained.

この実施例か第1図に示す実施例と異なる点は。This embodiment differs from the embodiment shown in FIG.

赤外線撮像素子として赤外線受光量と太陽光受光量とを
同一の素子から赤外線検出信号と太陽光検出信号として
出力できるように構成した点である。
The infrared imaging element is configured so that the amount of infrared light received and the amount of sunlight received can be output from the same element as an infrared detection signal and a sunlight detection signal.

本実施例では、二次元固体撮像素子上に3〜5μ肩の波
長帯域の赤外線を検出する素子列と2〜3μmの波長帯
域の赤外線を検出する素子列とを交互に配置し、前者か
ら赤外線検出信号、後者から太陽光検出信号を出力する
ように構成した。このように二つの異なる波長帯域の赤
外線を同一の撮像素子によって検出できるようにしたこ
とによって。
In this example, an element array that detects infrared rays in a wavelength band of 3 to 5 μm and an element array that detects infrared rays in a wavelength band of 2 to 3 μm are arranged alternately on a two-dimensional solid-state image sensor, and the former The detection signal was configured to output a sunlight detection signal from the latter. By making it possible to detect infrared rays in two different wavelength bands with the same imaging device.

撮像素子の駆動回路を兼用することができるだけでなく
、光学系が簡略化でき、また光軸調整などの手間を省く
ことができるという効果が得られる。
Not only can the drive circuit of the image sensor be used also, but the optical system can be simplified, and the effort of adjusting the optical axis can be saved.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、太陽光に含まれる赤
外線反射光の影響を除去し、被写体の表面から放射され
る赤外線量を正確に撮像できる赤外線撮像装置を提供す
ることが可能である。
As described above, according to the present invention, it is possible to provide an infrared imaging device that can remove the influence of reflected infrared light contained in sunlight and accurately image the amount of infrared rays emitted from the surface of a subject. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す赤外線撮像装置の構
成図、第2図はこの発明の他の実施例を示す図、第3図
は従来の赤外線撮像装置を示す図である。 図において、(1)は被写体、(2)は光学系、(3)
は赤外線撮像素子、(4)は赤外線撮像素子駆動回路、
(5)は赤外線検出信号増幅回路、(6)は出力回路、
(7)は分光器、(8)は太陽光撮像素子、(9)は太
陽光撮像素子駆動回路、α〔は太陽光検出信号増幅回路
、αυは減算回路である。 なお、各図中同一符号は、同−又は相当部分を示すもの
とする。
FIG. 1 is a block diagram of an infrared imaging device showing one embodiment of the present invention, FIG. 2 is a diagram showing another embodiment of the invention, and FIG. 3 is a diagram showing a conventional infrared imaging device. In the figure, (1) is the subject, (2) is the optical system, and (3)
is an infrared image sensor, (4) is an infrared image sensor drive circuit,
(5) is an infrared detection signal amplification circuit, (6) is an output circuit,
(7) is a spectrometer, (8) is a sunlight imaging device, (9) is a sunlight imaging device drive circuit, α[ is a sunlight detection signal amplification circuit, and αυ is a subtraction circuit. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (2)

【特許請求の範囲】[Claims] (1)被写体の表面から放射される赤外線を撮像面に結
像させる光学系と、前記光学系によつて結像された前記
被写体の表面から放射される赤外線受光量を電気信号に
変換し赤外線検出信号として出力する赤外線撮像素子と
、前記赤外線撮像素子を駆動するための赤外線撮像素子
駆動回路と、前記赤外線撮像素子が出力する前記赤外線
検出信号を増幅する赤外線検出信号増幅回路と、前記光
学系がつくる光路の途中に設けられ、前記被写体の表面
から反射される太陽光の一部または全部を別の撮像面に
結像させる分光器と、前記分光器によつて結像された前
記被写体の太陽光受光量を電気信号に変換し、太陽光検
出信号として出力する太陽光撮像素子と、前記太陽光撮
像素子を駆動するための太陽光撮像素子駆動回路と、前
記太陽光撮像素子が出力する前記太陽光検出信号を増幅
する太陽光検出信号増幅回路と、前記赤外線検出信号増
幅回路によつて増幅された前記赤外線検出信号から前記
太陽光検出信号増幅回路によつて増幅された前記太陽光
検出信号を減算する減算回路と、前記減算回路の減算結
果信号を外部に出力する出力回路とを備えた赤外線撮像
装置。
(1) An optical system that images infrared rays emitted from the surface of a subject onto an imaging surface, and an infrared ray that converts the amount of infrared light received from the surface of the subject imaged by the optical system into an electrical signal. an infrared imaging device that outputs a detection signal; an infrared imaging device drive circuit that drives the infrared imaging device; an infrared detection signal amplification circuit that amplifies the infrared detection signal that the infrared imaging device outputs; and the optical system. a spectroscope that is installed in the middle of the optical path created by the subject and focuses part or all of the sunlight reflected from the surface of the subject onto another imaging plane; A sunlight imaging device that converts the amount of sunlight received into an electrical signal and outputs it as a sunlight detection signal, a sunlight imaging device drive circuit for driving the sunlight imaging device, and an electrical signal that the sunlight imaging device outputs. a sunlight detection signal amplification circuit that amplifies the sunlight detection signal; and a sunlight detection signal that is amplified by the sunlight detection signal amplification circuit from the infrared detection signal amplified by the infrared detection signal amplification circuit. An infrared imaging device comprising: a subtraction circuit that subtracts a signal; and an output circuit that outputs a subtraction result signal of the subtraction circuit to the outside.
(2)被写体の表面から放射される赤外線および前記被
写体の表面から反射される太陽光を撮像面に結像させる
光学系と、前記光学系によつて結像された前記被写体の
表面から放射される赤外線受光量を電気信号に変換し、
赤外線検出信号として出力するとともに前記被写体の表
面から反射される太陽光受光量を電気信号に変換し太陽
光検出信号として出力する複合赤外線撮像素子と、前記
複合赤外線撮像素子を駆動するための駆動回路と、前記
複合赤外線撮像素子が出力する前記赤外線検出信号を増
幅する赤外線検出信号増幅回路と、前記複合赤外線撮像
素子が出力する前記太陽光検出信号を増幅する太陽光検
出信号増幅回路と、前記赤外線検出信号増幅回路によつ
て増幅された前記赤外線検出信号から前記太陽光検出信
号増幅回路によつて増幅された前記太陽光検出信号を減
算する減算回路と、前記減算回路の減算結果信号を外部
に出力する出力回路とを備えた赤外線撮像装置。
(2) an optical system that images infrared rays emitted from the surface of a subject and sunlight reflected from the surface of the subject on an imaging surface; converts the amount of infrared light received into an electrical signal,
A composite infrared imaging device that outputs an infrared detection signal and also converts the amount of sunlight received reflected from the surface of the subject into an electrical signal and outputs it as a sunlight detection signal, and a drive circuit for driving the composite infrared imaging device. an infrared detection signal amplification circuit that amplifies the infrared detection signal outputted by the composite infrared imaging device; a sunlight detection signal amplification circuit that amplifies the sunlight detection signal outputted by the composite infrared imaging device; a subtraction circuit that subtracts the sunlight detection signal amplified by the sunlight detection signal amplification circuit from the infrared detection signal amplified by the detection signal amplification circuit; and a subtraction circuit that outputs a subtraction result signal of the subtraction circuit to the outside. An infrared imaging device comprising an output circuit for outputting.
JP2075911A 1990-03-26 1990-03-26 Infrared ray image pickup device Pending JPH03274971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2075911A JPH03274971A (en) 1990-03-26 1990-03-26 Infrared ray image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2075911A JPH03274971A (en) 1990-03-26 1990-03-26 Infrared ray image pickup device

Publications (1)

Publication Number Publication Date
JPH03274971A true JPH03274971A (en) 1991-12-05

Family

ID=13589991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2075911A Pending JPH03274971A (en) 1990-03-26 1990-03-26 Infrared ray image pickup device

Country Status (1)

Country Link
JP (1) JPH03274971A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5309239A (en) * 1991-07-11 1994-05-03 U.S. Philips Corporation Image pick-up device
WO2000048033A1 (en) * 1999-02-10 2000-08-17 Matsushita Electric Industrial Co., Ltd. Reflection optical device, reflection solid-state optical device, imaging device comprising this, multiwavelength imaging device, video camera, and monitoring device mounted on vehicle
US6929373B2 (en) 2001-04-11 2005-08-16 Matsushita Electric Industrial Co., Ltd. Reflection optical device and imaging apparatus comprising it, multi-wavelength imaging apparatus, and vehicle mounted monitor
US7484885B1 (en) * 2004-06-30 2009-02-03 Raytek Corporation Thermal imager having sunlight exposure protection mechanism
JP2010219810A (en) * 2009-03-16 2010-09-30 Ricoh Co Ltd Imaging device, imaging method, program and recording medium

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5309239A (en) * 1991-07-11 1994-05-03 U.S. Philips Corporation Image pick-up device
WO2000048033A1 (en) * 1999-02-10 2000-08-17 Matsushita Electric Industrial Co., Ltd. Reflection optical device, reflection solid-state optical device, imaging device comprising this, multiwavelength imaging device, video camera, and monitoring device mounted on vehicle
US6896382B2 (en) 1999-02-10 2005-05-24 Matsushita Electric Industrial Co., Ltd. Reflective optical device, and reflective solid-state optical device, and imaging device, multi-wavelength imaging device, video camera device, and vehicle-mounted monitor utilizing the same
US6908200B1 (en) 1999-02-10 2005-06-21 Matsushita Electric Industrial Co., Ltd. Reflection optical device, and reflection solid-state optical device, imaging device comprising this, multiwavelength imaging device, video camera, and monitoring device mounted on vehicle
US6929373B2 (en) 2001-04-11 2005-08-16 Matsushita Electric Industrial Co., Ltd. Reflection optical device and imaging apparatus comprising it, multi-wavelength imaging apparatus, and vehicle mounted monitor
US7484885B1 (en) * 2004-06-30 2009-02-03 Raytek Corporation Thermal imager having sunlight exposure protection mechanism
JP2010219810A (en) * 2009-03-16 2010-09-30 Ricoh Co Ltd Imaging device, imaging method, program and recording medium

Similar Documents

Publication Publication Date Title
US6750437B2 (en) Image pickup apparatus that suitably adjusts a focus
JP2007158626A5 (en)
EP0898419A3 (en) Solid-state image sensor and method of driving same
JP2008539658A (en) Lighting flicker detection
US11960008B2 (en) Method and system for pseudo 3D mapping in robotic applications
US4338627A (en) LED/CCD Multiplexer and infrared image converter
US11067673B2 (en) Sensor, apparatus for lidar application and method of background cancellation
JP3211388B2 (en) Stray light detection system
JPH03274971A (en) Infrared ray image pickup device
JPH11297973A (en) Infrared imaging device
US4694333A (en) Photoelectric receiver with local brightness adaptation
KR20200143920A (en) Lens module and camera device including the same
JPS5821526A (en) Detecting device using infrared ray
GB2475077A (en) Laser spot location detector
EP1096288A3 (en) Solid state image intensifier for viewing device
KR100255729B1 (en) Apparatus for infrared image
JPS6176970A (en) Infrared ray detecting device
JPH05236352A (en) Sensitivity correcting method for infrared image pickup device
JPS598492A (en) Color television camera
JPS54161228A (en) Infrared-ray pickup unit
JPS62175683A (en) Laser spot detector
JPS6139783B2 (en)
JPS60165563A (en) Background level detection system of star sensor using two-dimensional solid-state image pickup element
JPH0217990B2 (en)
JPH10332488A (en) Infrared image pickup apparatus