JPS5821526A - Detecting device using infrared ray - Google Patents

Detecting device using infrared ray

Info

Publication number
JPS5821526A
JPS5821526A JP12021981A JP12021981A JPS5821526A JP S5821526 A JPS5821526 A JP S5821526A JP 12021981 A JP12021981 A JP 12021981A JP 12021981 A JP12021981 A JP 12021981A JP S5821526 A JPS5821526 A JP S5821526A
Authority
JP
Japan
Prior art keywords
light
photodetecting element
wavelength
photodetecting
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12021981A
Other languages
Japanese (ja)
Inventor
Hiroshi Asano
寛 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP12021981A priority Critical patent/JPS5821526A/en
Publication of JPS5821526A publication Critical patent/JPS5821526A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/78Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using electromagnetic waves other than radio waves
    • G01S3/781Details

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PURPOSE:To distinguish only the target having a heat source, by using two kinds of wavelength bands, and cancelling the effect of solar reflected light. CONSTITUTION:The wavelengths of incident light beams R1 and R2 are divided by a dichroic mirror M in an optical system 5. The light beam R1 having the wavelength of about 4mum is transmitted through the mirror M and inputted to a light detecting element 6. Meanwhile, the light beam having the wavelength of about 10mum is reflected and inputted to a light detecting element 7. The outputs of the light detecting elements 6 and 7 are amplified by a pre-amlifier 8, and the corresponding picture elements are subjected to subtraction in a differential amplifiers 9. At this time, each signal is adjusted to such a level that a body based on the solar reflected light disappears on a display monitor.

Description

【発明の詳細な説明】 この発明は熱源を有する物体を探知、撮像するための赤
外線探知装置の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in an infrared detection device for detecting and imaging an object having a heat source.

海上勢を低空で飛来する目標を探知するためには、電波
を用いたレーダがあるが、海面からの反射4!によ)、
探知が難かしい状況が多々ある。したがって目標が発生
する熱像な見ることができる波長3〜5jIIL  又
はS〜13μ荒帯の赤外線探知装置が利用される。しか
しこの赤外線を使用した探知の場合1日中の太陽光によ
る雲あるいは海面からの反射光が障害となり探知能力を
大きく妨けていゐ。
Radar uses radio waves to detect targets flying at low altitude over the sea, but reflections from the sea surface4! ),
There are many situations that are difficult to detect. Therefore, an infrared detection device with a wavelength range of 3 to 5JIIL or S to 13μ, which can see the thermal image generated by the target, is used. However, in the case of detection using infrared rays, sunlight reflected from clouds or the sea surface throughout the day becomes an obstacle and greatly impedes detection ability.

この発明は、上記太陽光の影蕃を低減し、熱源を有する
目標の探知能力を向上させたものを提供しようとするも
のである。
The present invention aims to reduce the influence of sunlight and improve the ability to detect targets having heat sources.

以下11によってこの発明の詳細について説明する。第
1図は従来のこの種装置の関連部分を示した構成図であ
る。
The details of this invention will be explained below in Section 11. FIG. 1 is a block diagram showing related parts of a conventional device of this type.

纂1図において(11はセンサ、(2)は旋回架台。In the first diagram (11 is a sensor, (2) is a rotating mount.

口)は信号鶏理装置、(4)は表示モニタである。(4) is a signal control device, and (4) is a display monitor.

センナ(11は基本的に入射光を集光、結像する光学系
と、−次元の光検知素子アレーで構成され。
The sensor (11) basically consists of an optical system that condenses and forms an image of incident light, and a -dimensional photodetecting element array.

光検知素子アレーを縦に配置することによシ。This is achieved by arranging the photodetector array vertically.

センサ(11の縦方向視野をカバーしている。旋回架台
(21はセンサ(11をとう載し、族1方向に回転。
It covers the vertical field of view of the sensor (11).The rotating mount (21) carries the sensor (11) and rotates in the group 1 direction.

又は往後運動を行う。従って旋回架台(2)の運動によ
りセンサ(11の横方向視野をカバーすることになる。
Or do back and forth exercise. The movement of the pivoting frame (2) therefore covers the lateral field of view of the sensor (11).

信号処理装置儲)はセンナ(11のいわゆるパラレル走
査屋信号を走査変換し、信号処理及び表示に適したシリ
アルビデオ信号に変換すると共に、探知目標の自動検出
を行う0表示モニタ(4)は人員に対し9画像の表示と
その他必要な情報の表示を行う。
The signal processing device (signal processing device) scans and converts the so-called parallel scanner signals of SENNA (11) into serial video signals suitable for signal processing and display, and the zero display monitor (4) that automatically detects detection targets is operated by personnel. 9 images and other necessary information are displayed.

以上のように赤外線探知装置は低空で飛来してくる1例
えば航空機を距離llllCm程度で探知し9人員に知
らせることを目的とするが1日中においては太陽光の反
射によ)第2図に示すようにト標!のみでなく、海面、
雲等が同時k。
As mentioned above, the purpose of infrared detection equipment is to detect, for example, an aircraft flying at a low altitude, at a distance of about llllCm, and notify the personnel. Mark as shown! Not only sea level,
Clouds etc. at the same time.

しかもかカリ強く映ることになシ、この種残置の自動探
知に対し、誤動作を与える原因となる。
Moreover, it will appear strongly and cause malfunctions to the automatic detection of this kind of leftovers.

また信号処理において0例えと目標と、それ以外の物と
041黴を考慮し1種々の対策を行ったとしても万全と
はなシえない。
Furthermore, even if various countermeasures are taken in consideration of the zero analogy, the target, other things, and 041 mold in signal processing, it will not be perfect.

この発明は上記従来のものの欠点を改善し。This invention improves the above-mentioned drawbacks of the conventional ones.

たとえ上記状況に6りても、2種の波長帯を用いること
により、太陽反射光の影響をキャンセルし、熱源を有す
る目標のみを明瞭に見分けることができるようkしよう
とするものである。
Even in the above situation, by using two types of wavelength bands, it is possible to cancel the influence of reflected sunlight and to clearly distinguish only the target having a heat source.

以下図面に従ってこの発明を説明する。第3図は太陽光
と熱源目標との分光輝度を定性的に示す図である。
The present invention will be explained below with reference to the drawings. FIG. 3 is a diagram qualitatively showing the spectral brightness of sunlight and a heat source target.

113図からもわかるように、太陽は温度600・Xの
黒体輻射に近いので赤外域では短波長はどその分光輝度
は高くなる。一方目標は通常3・O〜4001程度の温
度を有するので波長1〜Ijm程度で輝度が最大となり
、それより短波長側も。
As can be seen from Figure 113, the sun's temperature is close to black body radiation of 600 x, so in the infrared region, the spectral brightness is high for short wavelengths. On the other hand, since the target usually has a temperature of about 3.0 to 4001, the brightness is maximum at wavelengths of about 1 to Ijm, and also at shorter wavelengths.

長波長側も輝度は低下する。The brightness also decreases on the long wavelength side.

従って光検知素子として例えd4μ飢付近と10711
1付近に感度を有するものを用意し、その出力差信号を
と砂、かつ雲尋の太陽反射光によりて映っている物体が
表示モニタ14)上で消えるように2波長帯の感度を合
わせた場合、太陽光輝度は4μ諷 付近の方が10μ翼
付近k〈らべて約10倍高−ので、4#累側の万が感度
が1710種度で良い。なか上記波長帯は#いずれも大
気の透過率が高いために利用される。
Therefore, as a photodetecting element, for example, d4μ starvation and 10711
A device with sensitivity near 1 was prepared, and the sensitivity of the two wavelength bands was adjusted so that the output difference signal would disappear on the display monitor 14), and the object reflected by the sunlight reflected from the sand and clouds would disappear. In this case, the sunlight brightness near 4μ is about 10 times higher than near 10μ, so the sensitivity on the 4# side should be 1710 degrees. Among the above wavelength bands, # is used because the transmittance of the atmosphere is high.

一方目標にりいては、短波長側は輝度が1710〜1/
2011度低いため差信号をとってもほとんど10μ議
付近の光検知素子出力単独の値と大差なく出力されるこ
とができる。
On the other hand, regarding the target, the brightness on the short wavelength side is 1710~1/
Since the temperature is 2011 degrees lower, the difference signal can be output without much difference from the value of the output of the photodetecting element alone, which is around 10 μm.

第4図はこの発明の一実施例の関連部分のみを示すもの
で、センサ(11の内部構成を示すブロック図である。
FIG. 4 shows only relevant parts of an embodiment of the present invention, and is a block diagram showing the internal configuration of the sensor (11).

なお同図で図示しない旋回架台(21,信号処理装置(
3)0表示モニタ(4)は従来のものと同一である。
Note that there is a rotating mount (21, signal processing device (not shown) in the same figure).
3) The 0 display monitor (4) is the same as the conventional one.

第4図で(がは光学系、(6)は−次元アレ−0党検知
票子1で3〜5μ、IIC感度を有する。())は同じ
くアレー状の光検知素子2で・〜IS#m帯に感度を有
する。俤)はそれぞれの光検知素子(6)。
In Fig. 4, (6) is a -dimensional array 0 party detection element 1 and has an IIC sensitivity of 3 to 5μ. ()) is also an array-shaped photodetector element 2. Sensitive to m band.忤) are the respective photodetecting elements (6).

(7)の各出力信号を増幅するプリアンプ*、 (9)
は2りの光検知素子(61,(71の対応する画素信号
間の差をとる差増幅器である。
(7) A preamplifier that amplifies each output signal*, (9)
is a difference amplifier that takes the difference between corresponding pixel signals of two photodetecting elements (61, (71).

入射光#R11R2は光学系(6)円のグイクロイック
建う−Mも波長分離され、4μ電 付近の光R1はその
まま透過し【光検知素子461 K入射する。一方1G
#諺付近の光は反射され、光検知素子())に入射する
。それぞれの光検知孝子(61,(7)の各出力はプリ
アンプ(81で増幅され、対応する画素どうしが差増幅
器(9)で減算される。なおこのとき前記説明のように
、太陽反射光による物体が表示峰二り(41上で消える
ようなレベルに各信号が調整される。また前記説明のよ
うにこの目的のためには4μ雪 付近側の感度は低くて
良いため光学系優)等の透過率は10/JILを主体に
製作したもので良い。
The incident light #R11R2 is also wavelength-separated by the optical system (6), which is located in the circle GIC, and the light R1 in the vicinity of 4 μm is transmitted as it is and enters the photodetector element 461K. On the other hand, 1G
#The light near the proverb is reflected and enters the photodetecting element ()). Each output of each photodetector (61, (7)) is amplified by a preamplifier (81), and the corresponding pixels are subtracted by a difference amplifier (9). Each signal is adjusted to a level such that the object disappears on the display peak (41).Also, as explained above, for this purpose, the optical system is excellent because the sensitivity on the near side of 4μ snow is good because it is low), etc. The transmittance of 10/JIL may be used as the main material.

以上説明したようにこの発明によれば、熱源を有する低
空飛来物体を探知する場合に障害となる雲、海面等から
の太陽反射光の影響を除去することがモきる装置を提供
することができる。
As explained above, according to the present invention, it is possible to provide a device that can eliminate the influence of sunlight reflected from clouds, sea surfaces, etc., which are obstacles when detecting low-altitude flying objects with heat sources. .

なお、実施例では光学系俤)を共用としたが。In addition, in the embodiment, the optical system (2) was shared.

それぞれ独立したセンナ(!1としても良く、さらkは
走査手段として旋回架台(21のような方法でなく、鏡
等を使用して実現しても良い。
Each sensor may be an independent sensor (!1), and k may be realized by using a mirror or the like instead of a rotating mount (21) as a scanning means.

またこのJA甲の適用は前記説明で述べた旋回方向36
00  をカバーする探知#置のみKとどまらず、一定
の視野角で前゛方監視に使用する赤外線を利用した撮像
装NIIKも適用できる。
In addition, this JA A is applied in the turning direction 36 mentioned in the above explanation.
In addition to the detection device K that covers 0.00, it is also possible to apply an imaging device NIIK that uses infrared rays and is used for forward monitoring at a fixed viewing angle.

【図面の簡単な説明】[Brief explanation of the drawing]

ν1図は従来の赤外線探知装置の構成図、第2図はその
作用を説tg’する図、第3図はこの発明の詳細な説明
する図、第4図はこの発IIKよる装置の要部を示すブ
ロック図である。 図において111はセンサ、 121は旋回架台、(3
)は信号処理装置、(4)は表示モニタ、(51は光学
系。 (61は光検知素子1.(71は光検知素子2,181
はプリアンプ、(9)は差増幅器でTo本。 なお図中同一あるいは相当部分には同一符号を付して示
しである。 片罹人 首 社 湯 11  m 第2図 13tjA ag
ν1 is a block diagram of a conventional infrared detection device, FIG. 2 is a diagram explaining its operation, FIG. 3 is a diagram explaining the present invention in detail, and FIG. 4 is a main part of the device according to this invention IIK. FIG. In the figure, 111 is a sensor, 121 is a rotating frame, (3
) is a signal processing device, (4) is a display monitor, (51 is an optical system. (61 is photodetection element 1. (71 is photodetection element 2, 181)
is a preamplifier, and (9) is a difference amplifier. In the drawings, the same or corresponding parts are designated by the same reference numerals. Single affected person 11 m Figure 2 13tjA ag

Claims (1)

【特許請求の範囲】[Claims] 入射光を集光し結像するための光学系と、結像した光の
像を光電変換するための光検知素子と1画像として電気
信号で取シ出すための走査手段とで基本的に構成される
赤外線探知装置において、上記光検知素子として波長5
μ冨 以下の短波長帯のいずれかの波長に感度有する第
1の光検知素子と、波長10μ翼付近に感度を有する第
2の光検知素子と、上記2種の光検知素子が空間的又は
時間的に同一の画面を構成するようkする手段と、上記
2@の光検知素子出力電気信号の差を3@!シ出す手段
とを備え、上記差出力な増り出す際#IC,上記第2の
光検知素子側の方を上記I!1の光検知素子側にくらべ
て感度を高くするようkしたことを特徴とする赤外線探
知装置。
It basically consists of an optical system for condensing incident light and forming an image, a photodetecting element for photoelectrically converting the image of the formed light, and a scanning means for extracting an electrical signal as one image. In the infrared detection device, the light detection element has a wavelength of 5.
A first photodetecting element that is sensitive to any of the wavelengths in the short wavelength band below the μ value, a second photodetecting element that is sensitive to wavelengths around 10μ, and the above two types of photodetecting elements are spatially or The difference between the means for configuring the temporally identical screen and the electrical signal output from the photodetecting element of 2@ above is 3@! When the differential output increases, #IC, the side of the second photodetecting element is connected to the I! An infrared detection device characterized in that the sensitivity is made higher than that of the photodetecting element in Item 1.
JP12021981A 1981-07-31 1981-07-31 Detecting device using infrared ray Pending JPS5821526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12021981A JPS5821526A (en) 1981-07-31 1981-07-31 Detecting device using infrared ray

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12021981A JPS5821526A (en) 1981-07-31 1981-07-31 Detecting device using infrared ray

Publications (1)

Publication Number Publication Date
JPS5821526A true JPS5821526A (en) 1983-02-08

Family

ID=14780826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12021981A Pending JPS5821526A (en) 1981-07-31 1981-07-31 Detecting device using infrared ray

Country Status (1)

Country Link
JP (1) JPS5821526A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4599001A (en) * 1984-05-02 1986-07-08 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Multispectral linear array multiband selection device
JPH0295223A (en) * 1988-09-30 1990-04-06 Nec Corp Overheating detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4599001A (en) * 1984-05-02 1986-07-08 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Multispectral linear array multiband selection device
JPH0295223A (en) * 1988-09-30 1990-04-06 Nec Corp Overheating detector

Similar Documents

Publication Publication Date Title
US7495220B2 (en) Uncooled infrared sensor
US5661817A (en) Single charge-coupled-device camera for detection and differentiation of desired objects from undesired objects
US5444236A (en) Multicolor radiation detector method and apparatus
US4515443A (en) Passive optical system for background suppression in starring imagers
GB2353424A (en) Passive infrared sensor system
US11960008B2 (en) Method and system for pseudo 3D mapping in robotic applications
GB1377633A (en) Telescope including an imaging system for visible radiation
Perić et al. Analysis of SWIR imagers application in electro-optical systems
JPS5821526A (en) Detecting device using infrared ray
JPH09130678A (en) Solid-state image pickup device
US6410930B1 (en) Method and apparatus for aligning a color scannerless range imaging system
CA1121903A (en) Infrared pick-up device comprising an infrared- sensitive television pick-up tube
EP0305132B1 (en) Thermal imaging apparatus
JPH03274971A (en) Infrared ray image pickup device
CN113056903B (en) Apparatus and method for observing a scene including an object
US8153978B1 (en) Dual color/dual function focal plane
JPS6176970A (en) Infrared ray detecting device
JPH11167687A (en) Fire detector
GB2165121A (en) Photoelectric receiver having local brightness adaptation
JPH0278906A (en) Electrooptic equipment
RU2820168C1 (en) Four-spectrum video surveillance system
RU2786356C1 (en) Dual-spectrum video surveillance system
RU2808963C1 (en) Three-spectrum video surveillance system
Müller et al. Real-time image processing and fusion for a new high-speed dual-band infrared camera
Huang et al. Two-waveband (3-5um and 8-12um) thermal imaging system