JPH0295223A - Overheating detector - Google Patents

Overheating detector

Info

Publication number
JPH0295223A
JPH0295223A JP24806488A JP24806488A JPH0295223A JP H0295223 A JPH0295223 A JP H0295223A JP 24806488 A JP24806488 A JP 24806488A JP 24806488 A JP24806488 A JP 24806488A JP H0295223 A JPH0295223 A JP H0295223A
Authority
JP
Japan
Prior art keywords
ccd
optical system
sunlight
influence
sunshine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24806488A
Other languages
Japanese (ja)
Other versions
JP2758612B2 (en
Inventor
Sho Yasuda
升 安田
Toshiyuki Mochizuki
俊幸 望月
Takahiro Yamashita
隆弘 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Tokyo Electric Power Co Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, NEC Corp filed Critical Tokyo Electric Power Co Inc
Priority to JP63248064A priority Critical patent/JP2758612B2/en
Publication of JPH0295223A publication Critical patent/JPH0295223A/en
Application granted granted Critical
Publication of JP2758612B2 publication Critical patent/JP2758612B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To detect temperature while reducing the influence of the sunshine by using two IRs (Infra Red) CCD, and picking up images in two different wavelength ranges. CONSTITUTION:An image pickup device consists of a convergence optical system 3, a split optical system 4 composed of a dichroic mirror 4-a and a band-pass filter 4-b, 1st and 2nd IR CCDs 5 and 6, a CCD driving circuit 7, an amplifier 8, a gain adjusting amplifier 9, and a differential amplifier 10. Radiation from a body 1 to be measured is converted by the convergence optical system 3 to form images on the IR CCDs 5 and 6. The radiation consists of heat radiation due to the temperature of the body 1 to be measured itself and the reflection of the sunshine 2. Then a signal from which the influence of the sunshine 2 is removed is obtained by subtracting the signal obtained by multiplying the output of the IR CCD 6 by a constant rate from the output of the IR CCD 5.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、赤外線撮像により物体の温度を遠隔測定する
術に関し、特に太陽光の影響を除去して温度測定を行い
被測定体の過熱を検出する過熱検出装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a technique for remotely measuring the temperature of an object using infrared imaging, and in particular, a technique for measuring temperature while removing the influence of sunlight to prevent overheating of the object to be measured. The present invention relates to an overheat detection device for detecting overheating.

〔従来の技術〕[Conventional technology]

従来、この種の赤外線撮像においては大気の窓と言われ
る3〜5μm帯か8〜12μm帯のいずれかを用いてい
る。前者の3〜5μm帯では太陽光の影響が大きく、昼
間晴天時には無視できない誤差を生じる。現在8〜12
μm帯が主流となりつつある要因の一つでもある。
Conventionally, in this type of infrared imaging, either the 3-5 μm band or the 8-12 μm band, which is called the atmospheric window, is used. In the former 3 to 5 μm band, the influence of sunlight is large, causing a non-negligible error during daytime clear weather. Currently 8-12
This is also one of the reasons why the μm band is becoming mainstream.

しかし近年IR(Infra  Red)CCDとして
、3〜4μm帯に感度のあるTV並の解像度、フレーム
数を有する撮像デバイスが開発され、この波長域でのリ
アルタイム撮像が容易になりつつある。
However, in recent years, an imaging device has been developed as an IR (Infra Red) CCD that is sensitive in the 3 to 4 μm band and has a resolution and frame number comparable to that of a TV, and real-time imaging in this wavelength range is becoming easier.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

赤外線撮像による物体の温度測定、特に送配電機材の過
熱検出を目的とする場合、昼間の測定に限られる為、太
陽光の影響の低減が実用上非常に重要である。一方現在
実用化されつつあるPt1S i IRCCD (白金
・シリサイド型IRCCD)は、短波長側に強い感度を
有する事から、その影響を受けやすい。このため太陽光
を除去する為にできる限り短波長側を光学的にカットす
る事が必要となっているが、このような対策では信号光
自体も低下していまうし、太陽光の影響の完全な除去は
困難である。
When measuring the temperature of an object using infrared imaging, especially for detecting overheating of power transmission and distribution equipment, the measurement is limited to daytime, so reducing the influence of sunlight is of great practical importance. On the other hand, Pt1S i IRCCDs (platinum-silicide type IRCCDs), which are currently being put into practical use, have strong sensitivity on the short wavelength side and are therefore susceptible to this effect. For this reason, it is necessary to optically cut off the short wavelength side as much as possible in order to remove sunlight, but such measures also reduce the signal light itself and completely eliminate the influence of sunlight. Removal is difficult.

〔課題を解決するための手段〕[Means to solve the problem]

本発明によれば、2個のIRCCDを用い、2つの異な
る波長域の撮像を行い、太陽光の除去を実現する手段を
提供するものである。つまり、太陽光2信号光の放射ス
ペクトルを仮定して、2つの波長域のIRCCDからの
撮像結果より、太陽光の強度を推定して、それを除去す
るものである。
According to the present invention, two IRCCDs are used to capture images in two different wavelength ranges, thereby providing means for realizing sunlight removal. That is, the intensity of sunlight is estimated and removed based on the imaging results from the IRCCD in two wavelength ranges, assuming the radiation spectrum of two signal lights of sunlight.

〔実施例〕〔Example〕

次に、本発明の一実施例を第1図にもとすいて説明する
Next, one embodiment of the present invention will be described with reference to FIG.

第1図で1は被測定体、2は太陽光、3は赤外線撮像装
置の集光光学系、4は2つの波長域に光束を分割する光
学系で4− aグイクロイックミラー、4−bバンドパ
スフィルターより成る。5゜6は2つ17)IRCCD
、7はCCD駆動回路、8は増幅器、9は利得調整増幅
器、10は差動増幅器である。
In Fig. 1, 1 is the object to be measured, 2 is the sunlight, 3 is the condensing optical system of the infrared imaging device, 4 is the optical system that splits the luminous flux into two wavelength ranges, 4-a gicchroic mirror, 4- It consists of a b-band pass filter. 5゜6 is two 17) IRCCD
, 7 is a CCD driving circuit, 8 is an amplifier, 9 is a gain adjustment amplifier, and 10 is a differential amplifier.

撮像デバイスであるIRCCDは第2図(a)に示す分
光感度特性を有する。一方太陽光のスペクトルは、59
00 Kの黒体放射に大気の透過特性を加えた形で表わ
せるが、代表的なスペクトル例を第2図(b)に実線で
示す。第2図(b)には同時に破線で常温物体の放射ス
ペクトルを示す。
The IRCCD, which is an imaging device, has the spectral sensitivity characteristics shown in FIG. 2(a). On the other hand, the spectrum of sunlight is 59
It can be expressed by adding the atmospheric transmission characteristics to the blackbody radiation at 00 K, and a typical example of the spectrum is shown by the solid line in FIG. 2(b). At the same time, the dashed line in FIG. 2(b) shows the radiation spectrum of a room-temperature object.

被測定体1からの放射は、3の集光光学系で集光され、
IRCCD上に結像される。その放射は、被測定体自身
の温度による熱放射と、太陽光の反射より成る。4の波
長分割光学系で第2図(c)の破線を第1のCCD5の
利用波長域、実線を第2のCCD6の利用波長域とする
ように分割したとする。
Radiation from the object to be measured 1 is focused by a focusing optical system 3,
The image is formed on the IRCCD. The radiation consists of thermal radiation due to the temperature of the object itself and reflection of sunlight. It is assumed that the wavelength division optical system of FIG. 2 (c) is divided so that the broken line in FIG.

単純化して第1のCODの利用波長をλ2〜λ2、第2
のCODの利用波長をλ1〜λ2とする。第1、第2の
CODの出力信号をそれぞれV、、V2とすれば あるが、 と表わせる。ただし R1はIRC,CDの分光感度特性(V/W、 p m
)Bλは太陽光スペクトル(W/μm) S、は熱放射スペクトル(W/μm) である。ここで第2図の(a)がRλ、(b)の実線が
Bλ、(b)の破線がSAに相当している。ここでより
求められる。ここで太陽光の除去を誤差少なく実行する
ためには〆はできるだけ大きく、bはできるだけ小さい
方が望ましい。つまりa>b            
    ・・・・・・(6)従って(6)式が中間波長
λ2の決定要求となる。
To simplify, the wavelength used for the first COD is λ2~λ2, and the wavelength used for the second COD is
The wavelengths used for COD are assumed to be λ1 to λ2. If the output signals of the first and second CODs are respectively V and V2, it can be expressed as follows. However, R1 is the spectral sensitivity characteristic (V/W, p m
) Bλ is the sunlight spectrum (W/μm) S is the thermal radiation spectrum (W/μm). Here, (a) in FIG. 2 corresponds to Rλ, a solid line in (b) corresponds to Bλ, and a broken line in (b) corresponds to SA. More required here. Here, in order to remove sunlight with less error, it is desirable that 〆 be as large as possible and b as small as possible. That is, a>b
(6) Therefore, equation (6) becomes a determination requirement for the intermediate wavelength λ2.

当然(6)式のaを大きくするためにはλ2が長波長で
あるほどよく、bを小さくするためには逆に短波長であ
るほどよい。
Naturally, in order to increase a in equation (6), the longer the wavelength of λ2 is, the better, and conversely, in order to decrease b, the shorter the wavelength, the better.

測定精度を上げる為、できる限りSN比の良い測定が必
要である。従がって(5)式の直接測定されめる。これ
は(5)式より とする。
In order to improve measurement accuracy, it is necessary to perform measurements with as good a signal-to-noise ratio as possible. Therefore, equation (5) can be directly measured. This is based on equation (5).

真の信号成分は(1)式の第2項に比例するはずでを最
大にする事と等価である。1例として、第2図に示した
スペクトルを用いると、最適なλ2は、32μmである
事が計算できる。
The true signal component is equivalent to maximizing the value that should be proportional to the second term of equation (1). As an example, using the spectrum shown in FIG. 2, it can be calculated that the optimum λ2 is 32 μm.

つまり、太陽光の影響を除去した信号は、第1のCCD
5出力から(第2のCCD6出力×−)を差し引いたも
のから得られる。
In other words, the signal from which the influence of sunlight has been removed is transmitted to the first CCD.
It is obtained by subtracting (second CCD 6 output x -) from 5 output.

以上説明したように本発明では従来の、1つのIRCC
Dを用い、極力短波長側を光学フィルターでカットする
方法での、太陽光の除去と、信号光の低下と言う相反す
る事項を適切に解決する技術を提供するものである。
As explained above, in the present invention, one IRCC
The present invention provides a technique for appropriately solving the conflicting issues of removing sunlight and reducing signal light by cutting off the short wavelength side as much as possible using an optical filter.

なお、この方式では、第2のIRCCDの出力に一定の
比率を乗じるが、その比率の決定が重要である。この比
率は、スペクトルを仮定して計算より求められる。最も
被測定体に近いと考えられる表面状態を持つ、反射板を
用い、太陽に直射した場合と、太陽に直接光らない場合
での指示目盛より実験的に比率を微調整する事により、
実際のスペクトルの変動にも対応できるものと考えられ
る。
Note that in this method, the output of the second IRCCD is multiplied by a certain ratio, and determining the ratio is important. This ratio is obtained by calculation assuming a spectrum. By using a reflector with a surface condition that is considered to be closest to that of the object to be measured, and by experimentally fine-tuning the ratio based on the indication scale when it is directly exposed to the sun and when it is not directly exposed to the sun,
It is considered that this method can also deal with actual spectral fluctuations.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば2つの工RCCD
を用い、2つの波長域で撮像する事に声 よって太陽光の影響を相当軽減して温度検印することが
可能となる。
As explained above, according to the present invention, there are two
By using the , it is possible to significantly reduce the influence of sunlight and check the temperature by capturing images in two wavelength ranges.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す図である。 l・・・・・・被測定体、2・・・・・・太陽光、3・
・・・・・集光光学系、4・・・・・・分割光学系、5
・・・・・・第1のIRCCD、6・・・・・・第2の
IRCCD、7・・・・・・CCD駆動回路、8・・・
・・・増幅器、9・・・・・・利得調整増幅器、10・
・・・・・差動増幅器、 第2図は各部の分光特性を示す図であり(a)はIRC
GfDの分光高感度特性、(b)は放射スペクトル、(
C)は分割スペクトルを示す。 代理人 弁理士  内 原   晋
FIG. 1 is a diagram showing an embodiment of the present invention. l...Object to be measured, 2...Sunlight, 3.
...Condensing optical system, 4...Dividing optical system, 5
...First IRCCD, 6... Second IRCCD, 7... CCD drive circuit, 8...
...Amplifier, 9...Gain adjustment amplifier, 10.
...Differential amplifier, Figure 2 shows the spectral characteristics of each part, and (a) shows the IRC.
Spectral high sensitivity characteristics of GfD, (b) emission spectrum, (
C) shows the split spectrum. Agent Patent Attorney Susumu Uchihara

Claims (1)

【特許請求の範囲】[Claims]  赤外線撮像によって物体の表面温度を計測し、その過
熱部分を検出する過熱検出装置において、利用波長の異
なる2つの撮像素子で同時に物体を撮像し、第1の撮像
素子からの赤外画像からその物体の温度パターンを求め
るに際し、第2の撮像素子からのより短波長側の赤外画
像結果に一定比率を乗じたものを第一の撮像素子からの
赤外画像より差し引いて、太陽光の影響を低減させる事
を特徴とする過熱検出装置。
In an overheating detection device that measures the surface temperature of an object using infrared imaging and detects overheated parts, two imaging devices using different wavelengths are used to simultaneously image the object, and the infrared image from the first imaging device is used to detect the object. When determining the temperature pattern, the infrared image result from the second image sensor on the shorter wavelength side is multiplied by a certain ratio and subtracted from the infrared image from the first image sensor to eliminate the influence of sunlight. An overheat detection device characterized by reducing overheating.
JP63248064A 1988-09-30 1988-09-30 Overheat detector Expired - Lifetime JP2758612B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63248064A JP2758612B2 (en) 1988-09-30 1988-09-30 Overheat detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63248064A JP2758612B2 (en) 1988-09-30 1988-09-30 Overheat detector

Publications (2)

Publication Number Publication Date
JPH0295223A true JPH0295223A (en) 1990-04-06
JP2758612B2 JP2758612B2 (en) 1998-05-28

Family

ID=17172669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63248064A Expired - Lifetime JP2758612B2 (en) 1988-09-30 1988-09-30 Overheat detector

Country Status (1)

Country Link
JP (1) JP2758612B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008241563A (en) * 2007-03-28 2008-10-09 Mitsubishi Heavy Ind Ltd Dual-wavelength infrared image processing apparatus
CN113758595A (en) * 2020-12-02 2021-12-07 长春理工大学 Resistance-type temperature pulsation appearance with solar irradiation and atmospheric pressure temperature compensation function

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5821526A (en) * 1981-07-31 1983-02-08 Mitsubishi Electric Corp Detecting device using infrared ray
JPS6191531A (en) * 1984-10-12 1986-05-09 Matsushita Electric Ind Co Ltd Infrared camera unit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5821526A (en) * 1981-07-31 1983-02-08 Mitsubishi Electric Corp Detecting device using infrared ray
JPS6191531A (en) * 1984-10-12 1986-05-09 Matsushita Electric Ind Co Ltd Infrared camera unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008241563A (en) * 2007-03-28 2008-10-09 Mitsubishi Heavy Ind Ltd Dual-wavelength infrared image processing apparatus
CN113758595A (en) * 2020-12-02 2021-12-07 长春理工大学 Resistance-type temperature pulsation appearance with solar irradiation and atmospheric pressure temperature compensation function

Also Published As

Publication number Publication date
JP2758612B2 (en) 1998-05-28

Similar Documents

Publication Publication Date Title
EP0342202A1 (en) Radiation thermometer
JPS6394125A (en) Color sensor
JP4073831B2 (en) Measuring method of incident light and sensor having spectroscopic mechanism using the same
JP3471342B2 (en) Flame detector
JPH0295223A (en) Overheating detector
JP2004146738A (en) Endpoint detecting method for plasma treatment and its apparatus
FI79641B (en) FOERFARANDE OCH ANORDNING FOER PRODUCERING AV EN FELFAERGSBILD.
JPH11297973A (en) Infrared imaging device
US4600830A (en) Focus detecting device
JPS63136680A (en) Semiconductor laser device
JPS6218010B2 (en)
JP3063347B2 (en) Shape measuring device
JPH03134524A (en) Radiation-temperature measuring apparatus
JPH08184495A (en) Spectrophotometer
JPS59174084A (en) Color video camera
JP2823594B2 (en) Camera color photometer
JP2003166880A (en) Imaging device having temperature measuring means
JP2003227751A (en) Flame detector
JPS61292527A (en) Color discriminating instrument
JPS58112164A (en) Discriminating and detecting device of specimen
JPH1038696A (en) Infrared detector
JPS62133432A (en) Method and circuit for automatically determining exposure value
JPH09166498A (en) Infrared image-pickup apparatus
JPS6176922A (en) Flame detecting device
JPH02228890A (en) Infrared image pickup device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080313

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090313

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090313

Year of fee payment: 11