JPS6016074A - Solid-state image pickup device - Google Patents

Solid-state image pickup device

Info

Publication number
JPS6016074A
JPS6016074A JP58122802A JP12280283A JPS6016074A JP S6016074 A JPS6016074 A JP S6016074A JP 58122802 A JP58122802 A JP 58122802A JP 12280283 A JP12280283 A JP 12280283A JP S6016074 A JPS6016074 A JP S6016074A
Authority
JP
Japan
Prior art keywords
period
charge
voltage
region
image pickup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58122802A
Other languages
Japanese (ja)
Other versions
JPH0444470B2 (en
Inventor
Yoshio Oota
太田 善夫
Takao Chikamura
隆夫 近村
Yutaka Miyata
豊 宮田
Kosaku Yano
矢野 航作
Shinji Fujiwara
慎司 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58122802A priority Critical patent/JPS6016074A/en
Priority to US06/626,730 priority patent/US4661830A/en
Publication of JPS6016074A publication Critical patent/JPS6016074A/en
Publication of JPH0444470B2 publication Critical patent/JPH0444470B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer
    • H01L27/14672Blooming suppression

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To attain elimination of high light afterimage and blooming by impressing a voltage having different magnitude depending on the 1st period and the 2nd period to a transparent electrode during the presence of a high frequency transfer pulse in a laminated solid-state image pickup device. CONSTITUTION:The laminated type solid-stage image pickup element providing a transparent electrode 53 onto a photoelectric converting film 35 is used and a voltage phiITO having a different magnitude depending on the 1st period and the 2nd period is impressed to a transparent electrode terminal 43 corresponding to the period where high frequency transfer pulses S1, S2 exist in the vertical blanking V, BLK. Thus, high light afterimage and blooming are eliminated completely even if a voltage within a range of a dielectric strength of the image pickup element is used to a strong light in this way.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は固体撮像装置、その中でも光電変換膜をLSI
走査面上に積層したいわゆる積層型固体撮像装置に関す
るものである0 従来例の構成とその問題点 フォトダイオードのような感光素子と、MOS2置 トランジスタ或いはCODのような電荷転送素子とを組
み合せて成る固体撮像素子(以後Si 単独型と呼ぶ)
を走査面に用いて、この走査面上に、感度の向上を主た
る目的として光導電膜を三次元的に積層して成る積層型
固体撮像素子(以後、積層型と呼ぶ)が従来より提案さ
れている。この積層型は、被写体光が強大な時に残像成
分が強調されるいわゆるハイライト残像の大問題の他に
、後述するプルーミング現象が生じる等の問題があった
。以下、これらの問題の原因、及び従来より提案されて
きた対応策を述べる。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a solid-state imaging device, in particular a photoelectric conversion film in an LSI
This relates to a so-called stacked solid-state imaging device in which layers are stacked on a scanning surface.Conventional structure and its problemsComposed of a combination of a photosensitive element such as a photodiode and a charge transfer element such as a MOS two-place transistor or COD. Solid-state image sensor (hereinafter referred to as Si single type)
A stacked solid-state image sensor (hereinafter referred to as a stacked type) has been proposed in which a photoconductive film is three-dimensionally stacked on the scanning plane with the main purpose of improving sensitivity. ing. In addition to the major problem of so-called highlight afterimage, in which afterimage components are emphasized when the subject light is strong, this laminated type also has problems such as the occurrence of a pluming phenomenon, which will be described later. The causes of these problems and countermeasures that have been proposed so far will be described below.

Si単独型として、周知のものにはインターラインWC
CD、フレームトランスファ型CCD。
A well-known Si single type is interline WC.
CD, frame transfer type CCD.

MOS x−yアドレス型或いは撮像面領域にMO8i
用い水平ラインにCODを用いたCPD型等がある。こ
こでは説明の明白化のだめ、積層型の走査面として上記
のうちインターライン型CODを用いた場合について説
明する。
MOS x-y address type or MO8i in the imaging surface area
There is a CPD type that uses COD for the horizontal line. Here, for clarity of explanation, a case will be described in which an interline type COD among the above-mentioned types is used as a stacked type scanning surface.

第1図にインターライン型CODの平面図を示す。11
は撮像面相当領域、12はSi単独素子3 : : 時にはフォトダイオードとして機能するソース端電極で
あり、この電極で得られた信号電荷がゲート13を介し
て垂直ライン14に移送され、同図中の矢印15の方向
に更に移送されて、水平出力ライン16に読み込1れ又
更に矢印17の方向に信号電荷が移送されて出力○ut
 を得ることは周知のとうりである。
FIG. 1 shows a plan view of an interline type COD. 11
12 is a region corresponding to the imaging surface, 12 is a Si single element 3 : : This is a source end electrode that sometimes functions as a photodiode, and the signal charge obtained at this electrode is transferred to a vertical line 14 via a gate 13, as shown in the figure. The signal charge is further transferred in the direction of arrow 15 and read into the horizontal output line 16, and the signal charge is further transferred in the direction of arrow 17 and output ○ut.
It is well known that .

積層型の場合は、前記のフォトダイオードは光導変換機
能を有するものでなく、この機能は、この領域上に金属
電極を介して新たに形成された光電変換膜にて行われ、
フォトダイオードは、前記ゲート電極のソース端電極と
しての機能を有すのみである。光電変換膜をこのように
ソース端電極上に三次元的に設けることにより、同図中
の斜線で示すソース端電極面積よりも平面的に大きな一
絵素相当の光電変換領域が得られる。説明の明白化のた
め、積層時のこのような光電変換領域の一絵素相当分を
同図中に点線18として示す。
In the case of a stacked type, the photodiode does not have a photoconductive conversion function, and this function is performed by a photoelectric conversion film newly formed on this area via a metal electrode,
The photodiode only functions as a source end electrode of the gate electrode. By providing the photoelectric conversion film three-dimensionally on the source end electrode in this manner, a photoelectric conversion region corresponding to one picture element, which is larger in plan than the area of the source end electrode indicated by diagonal lines in the figure, can be obtained. For clarity of explanation, such a photoelectric conversion area corresponding to one pixel when laminated is shown as a dotted line 18 in the figure.

この図かられかるように、積層型の場合は、Si単独素
子に比べて光電変換に寄与する面積部分が特開昭引)−
16074(2) 大巾に大きくなり感度が大巾に向上するが、これにとも
なって飽和電荷量も大巾に大きくなるので次に述べる欠
点が生じる。
As can be seen from this figure, in the case of the stacked type, the area that contributes to photoelectric conversion is larger than that of a single Si element.
16074(2) Although the width is greatly increased and the sensitivity is greatly improved, the amount of saturation charge also becomes greatly increased, resulting in the following drawbacks.

すなわち1絵素に対応する光電変換膜より得られた信号
電荷は、前記垂直ライン14がccpで構成された場合
、CODの各々の1ビツトへ移送されるのは周知のとう
りである。この信号電荷がCCDの1ピットの最大電荷
量すなわち最大転送可能電荷量QCCDよりも大きい場
合、1フイールド毎(或いは1フレーム毎)に信号電荷
量を全部CCD側へ移送し切れなくなり、すなわち余剰
電荷が前記ソース端に残る。移送し切るためには何フィ
ールド分(1フイールドは16.6m11)かの時間を
要してしまいこの時間分だけの残像を生じせしめること
になる。
That is, it is well known that the signal charge obtained from the photoelectric conversion film corresponding to one picture element is transferred to each one bit of the COD when the vertical line 14 is configured by CCP. If this signal charge is larger than the maximum charge amount of one pit of the CCD, that is, the maximum transferable charge amount QCCD, it becomes impossible to transfer all the signal charge amount to the CCD side every field (or every frame), that is, surplus charge remains at the source end. It takes several fields (one field is 16.6 m11) to completely transfer the image, and an afterimage corresponding to this time is generated.

周知のようにインターライン型CODの走査面は2:1
時のインターレース時には2フイールド毎に1回、ノン
インターレース時Kid 1フイールド毎に1回各々垂
直ブランキング期間に於いて光電変換膜より得られた絵
素信号を垂直ラインを構5 ・ −・ 成するCODへ読み込む。今仮シに光照射により生じた
絵素信号の電荷Qsが前記の最大転送可能電荷量QCC
Dの5倍を有すと、インタレース動作時には1oフィー
ルド分の時間(約166m5)だけ残像を生じさす。電
荷量Qsは被写体中に於いて強力に輝く物体の輝度が高
ければ高いほど大きくなり、従って残像の生じる時間と
その量が大きくなるのでいわゆるハイライト残像の現象
が生じる。
As is well known, the scanning plane of interline type COD is 2:1.
The pixel signals obtained from the photoelectric conversion film during the vertical blanking period are used to form a vertical line once every two fields during interlacing and once every one field when non-interlaced. Load into COD. Now, the electric charge Qs of the pixel signal generated by light irradiation is the maximum transferable electric charge QCC mentioned above.
If it is 5 times as large as D, an afterimage will occur for a time period of 10 fields (approximately 166 m5) during interlace operation. The amount of charge Qs increases as the brightness of an object that shines strongly in the subject increases, and therefore the time and amount of afterimages increase, resulting in the phenomenon of so-called highlight afterimages.

このようかハイライト残像の他に、信号電荷量がQCC
Dより犬のとき、CCD中を転送し切れなくなり、オー
バーフローしてしまい、第2図で示す再生画面20の一
部に、電球のような高輝度物体21の下部に斜線で示す
偽信号、すなわちプルーミング成分22が生じてしまう
ような問題があった。
In addition to this highlight afterimage, the amount of signal charge is QCC.
When it is a dog from D, the data cannot be transmitted through the CCD and overflows, resulting in a false signal shown as a diagonal line below a high brightness object 21 such as a light bulb in a part of the playback screen 20 shown in FIG. There was a problem that a pluming component 22 was generated.

このような、ハイライト残像とブルーミングの問題を軽
減するだめに、従来より提案されてきた方法として、垂
直転送りロックパルス列に於いて垂直ブランキング期間
中に高周波の転送パルスを6ベーニ・ 設けることにより余剰電荷を掃き出してしまう方法が、
たとえば特願昭55−43951号(特開昭56−14
0773号)に詳述されている。この方法によると前記
の問題は軽減はされるが、光量が撮像素子の有する飽和
光量の例えば数十倍程度まで大きくなるとやはりハイラ
イト残像及びプルーミングが生じてしまう。との原因は
、光量が非常に犬になればなるほど余剰電荷が増加し、
掃き出し切れなくなることにある。掃き出し切れ々くな
る原因はソース端の信号電荷をゲートを介してCCD側
へ余剰電荷相当分のみを捨て去る際、捨て去る量はゲー
トに印加される電圧すなわちゲート直下の空え層レベル
が押し下げられる量に依存する。
In order to alleviate such highlight afterimages and blooming problems, a method that has been proposed in the past is to provide six high-frequency transfer pulses during the vertical blanking period in the vertical transfer lock pulse train. The method of sweeping out the excess charge is
For example, Japanese Patent Application No. 55-43951 (Japanese Unexamined Patent Publication No. 56-14
No. 0773). Although this method alleviates the above-mentioned problem, highlight afterimages and pluming still occur when the amount of light increases, for example, to several tens of times the saturated amount of light possessed by the image sensor. The reason for this is that the more the amount of light increases, the more the excess charge increases.
The problem lies in not being able to sweep it all away. The reason why the signal charge is not completely swept out is that when only the signal charge equivalent to the excess charge at the source end is discarded to the CCD side via the gate, the amount discarded is the voltage applied to the gate, that is, the amount that the level of the empty layer directly under the gate is pushed down. Depends on.

捨て去る量を大きくするだめには、ゲート電圧を大きく
なければならず、そうするとLSIとしての耐圧をはる
かに上回る電圧を必要としてし捷い、撮像素子破壊をき
たしてしまう。
In order to increase the amount thrown away, the gate voltage must be increased, which would require a voltage that far exceeds the withstand voltage of the LSI, resulting in destruction of the image sensor.

発明の目的 本発明は、容易々構成で、強い光に対してハイ7 ・ ライト残像、ブルーミングの除去を可能とし、良質な画
像を得ることを目的とする。また、本発明は上述のよう
な欠点を除いた、すなわち強大光に対して、撮像素子の
耐圧が守れる範囲内の電圧を使用しても、ハイライト残
像、ブルーミングを完全に除去可能とすることを目的と
する。
OBJECTS OF THE INVENTION It is an object of the present invention to easily configure a high-7 light afterimage and remove blooming in strong light, and to obtain high-quality images. Furthermore, the present invention eliminates the above-mentioned drawbacks, that is, it is possible to completely eliminate highlight afterimages and blooming even when using a voltage within the range that protects the withstand voltage of the image sensor against intense light. With the goal.

発明の構成 本発明は、従来のごとき余剰電荷の掃き去てと異なり、
光電変換膜上に透明電極を設けた積層型の固体撮像素子
の利点を用い、垂直ブランキング期間中の高周波転送パ
ルスの存在する期間中に対応して、透明電極に特殊なパ
ルスすなわち第1の期間と第2の期間で異なる大きさの
電圧を印加するものである。
Structure of the Invention The present invention differs from the conventional method of sweeping away excess charge;
Using the advantage of a stacked solid-state image sensor in which a transparent electrode is provided on a photoelectric conversion film, a special pulse, that is, the first Voltages of different magnitudes are applied during the period and the second period.

実施例の説明 第3図は本発明の装置に用いる駆動電圧のうちの主要な
部分を示したタイミングチャート、第4図は各タイミン
グにおける固体撮像素子の動作状態を示す0 φ■1.φ■2は垂直ラインを構成する二相駆動式のC
CDの転送りロックであり、期間t。は光信号蓄積期間
で、蓄積された信号電荷は絵素読み込みパルスvcHで
CCD側へ読み込まれ、更に位相が互いに異なる二相の
転送パルス■1.■2によって垂直方向に転送される。
DESCRIPTION OF THE EMBODIMENTS FIG. 3 is a timing chart showing the main parts of the drive voltage used in the device of the present invention, and FIG. 4 is a timing chart showing the operating state of the solid-state image sensor at each timing. φ■2 is a two-phase drive type C that forms a vertical line.
CD transfer lock, period t. is an optical signal accumulation period, and the accumulated signal charge is read into the CCD side by a pixel reading pulse vcH, and two-phase transfer pulses with different phases 1. ■Transferred vertically by 2.

垂直ブランキング期間V、 B L K中に存在するS
4.S2のパルス列は後述するように余剰電荷を掃き捨
てるだめの高周波転送パルスであり、互いに位相が異な
るパルスでもある。
S present during the vertical blanking period V, BLK
4. As will be described later, the pulse train S2 is a high frequency transfer pulse for discarding excess charge, and is also a pulse having different phases.

φITOは本発明の根幹をなす、光電変換膜上の透明電
極に印加するパルスを示す。
φITO indicates a pulse applied to a transparent electrode on a photoelectric conversion film, which is the basis of the present invention.

第4図に本発明に用いる積層型の一絵素相当領域の平面
図の一例を概略的に示す。
FIG. 4 schematically shows an example of a plan view of a layered type region corresponding to one picture element used in the present invention.

31は光信号電荷が蓄積されるソース端電極領域32は
COD転送チャンネル領域であり、領域32は斜線で示
すストレージ領域33と点々で示すトランスファ領域3
4の二つの領域からC0D1ビット分として構成されて
いる。点線で示す領域36は前記ノース端電極31の上
部に電気的に接触して設けられた一絵素相当領域の光導
電膜領9 へ ・ 域を示す036はソース端電極の信号電荷をCODのス
トレージ領域33へ読み込むだめのゲート領域でこの領
域上のゲート電極はCODの転送電極と共用するもので
ある。同図中のX −X/の線に沿った断面図の概略を
クロックパルスの各期間t。
Reference numeral 31 denotes a source end electrode region 32 in which optical signal charges are accumulated, which is a COD transfer channel region, and region 32 includes a storage region 33 indicated by diagonal lines and a transfer region 3 indicated by dots.
It is configured as one bit of C0D from two areas of 4. A region 36 indicated by a dotted line is connected to the photoconductive film region 9 corresponding to one pixel, which is provided in electrical contact with the upper part of the north end electrode 31. A region 036 indicates a region 36 that connects the signal charge of the source end electrode to the COD. This is the gate area for reading into the storage area 33, and the gate electrode on this area is also used as the transfer electrode of the COD. A cross-sectional view taken along the line X-X/ in the figure is schematically shown for each period t of the clock pulse.

〜t6に対応して示したものが第5図である。なお、第
4図においてはCODチャンネル領域の転送電極および
読み込み用のゲート電極は省略している。
What is shown in FIG. 5 corresponds to t6. In addition, in FIG. 4, the transfer electrode and the reading gate electrode in the COD channel region are omitted.

以下−この図についての詳述をする前にx −x’線に
沿った期間10〜16時の各断面に共通する部分の説明
を、期間t。時を例にとり説明する。
Below - Before detailed description of this figure, a description of the common parts of each section along the line x-x' from period 10 to 16 o'clock will be given for period t. This will be explained using time as an example.

電極41はP型St基板42を適用したCODの転送電
極々らびにこれと共用される読込みゲート電極であり、
クロック端子Vに導かれている。
The electrode 41 is a COD transfer electrode to which a P-type St substrate 42 is applied, and a read gate electrode that is shared with these.
It is led to clock terminal V.

同図中の領域C(l−j:CCD(垂直ライン)領域(
第4図の領域33 、34 )であり、ソース端電極で
あるn+領域31の信号電荷がn−不純物領域36直下
のゲートチャンネル領域qを経て、COD領域Cへ読み
込捷れるようになっている。前記ソー1ol” 二′ ス端電極n 領域31上には充電変換膜36が積層され
ており、この膜36に逆バイアス電圧を印加することに
より光電変換機能を持たすだめに、透明電極ITO端子
43が設けられている。光の強弱に対応して膜36中で
得られた信号電荷はn+領域31に読み込まれるように
なっている。
Area C (l-j: CCD (vertical line) area (
4), the signal charge in the n+ region 31, which is the source end electrode, is read into the COD region C through the gate channel region q directly under the n- impurity region 36. There is. A charge conversion film 36 is laminated on the end electrode n region 31, and a transparent electrode ITO terminal 43 is stacked on the end electrode n region 31 in order to have a photoelectric conversion function by applying a reverse bias voltage to this film 36. Signal charges obtained in the film 36 are read into the n+ region 31 in response to the intensity of light.

同図中のP型Si 基板42中において、点線44で示
す部分は空乏層レベルを模式的に示したものである。
In the P-type Si 2 substrate 42 in the figure, a portion indicated by a dotted line 44 schematically shows the depletion layer level.

以下、to−t6の各期間に於ける信号電荷、余剰電荷
、空乏層レベルの状態等を順次説明する。
Hereinafter, the states of the signal charge, surplus charge, depletion layer level, etc. in each period to-t6 will be sequentially explained.

なお、各図の空乏層内に、斜線で示しだ部分は余剰電荷
45、クロスハツチで示しだ部分は上述のQCCD(同
図中のバケツの深さdに蓄積され得る量よりも小さい電
荷すなわち正しく映像として再現される正常電荷46を
示すものとする。
In addition, in the depletion layer in each figure, the hatched area is the excess charge 45, and the crosshatched area is the QCCD described above (the amount of charge smaller than the amount that can be accumulated at the depth d of the bucket in the figure, that is, the correct amount). It is assumed that a normal charge 46 is reproduced as an image.

クロックパルスv1.v2に応じて空乏層レベル44が
変動しているが、説明の明白化のため一つの定常状態で
空乏層レベルを表示したものである。
Clock pulse v1. Although the depletion layer level 44 varies according to v2, the depletion layer level is shown in one steady state for clarity of explanation.

1)18時(気91砧α〕 光が光電変換膜36に入射し、光量に対応した信号電荷
がこの期間中にこの膜中で蓄積され、信号電荷の量に対
応して、領域31に電位変動を与える。今、仮りにこの
膜36が異種接合膜例えば商品名工、11−ビコンで知
られるZn5e−ZnxCdl−xTo のような異種
接合膜の場合、得られる信号電荷はエレクトロンである
。従って光が強大左ときn 領域31直下の空乏層内に
図示するように正常電荷46(クロスハツチ部)に加え
て余剰電荷45(同図の斜線部)が蓄わえられることに
なる。
1) 18:00 (K91 Kinuta) Light enters the photoelectric conversion film 36, and signal charges corresponding to the amount of light are accumulated in this film during this period, and are distributed in the region 31 in accordance with the amount of signal charges. Provides potential fluctuations. Now, if this film 36 is a heterojunction film such as Zn5e-ZnxCdl-xTo, known as 11-Bicon, the signal charge obtained is an electron. Therefore, the signal charge obtained is an electron. When the light is intense, excess charges 45 (shaded area in the figure) are stored in the depletion layer directly under the n-region 31 in addition to normal charges 46 (cross hatched area) as shown in the figure.

1i)tI 時(顎Gkt’hb) この時、ITo側の端子43の電位φITOは第3図で
示すように低い電圧vLに設定すると、これにともなっ
てn+領域31直下の空乏層レベルが浅くなる。なぜな
ら、光電変換膜35は容昂ヲ有しているので、ITO端
子43はn+領域31と容量結合がなされており、IT
O電位φITOが低くなると、n+領域31の電位も低
くなるからである。
1i) At the time of tI (jaw Gkt'hb) At this time, when the potential φITO of the terminal 43 on the ITo side is set to a low voltage vL as shown in FIG. 3, the level of the depletion layer directly under the n+ region 31 becomes shallow. Become. This is because the photoelectric conversion film 35 has capacitance, so the ITO terminal 43 is capacitively coupled to the n+ region 31, and the IT
This is because when the O potential φITO decreases, the potential of the n+ region 31 also decreases.

一方、転送りロックφV1tφv2の垂直ブランキング
期間V、BLK中に各々電極41に印加される高周波転
送パルス列S1.S2によって、n−領域36直下の空
乏層レベルが10時で示したポテンシャルレベルψ2か
ら、tl 時で示すψ4に増大する0又、n+領域31
直下のポテンシャルレベル信号電荷が零時の電位)はt
。時に於いてψ1であったのが、tl 時には−に述の
ようにITO電圧がvL(たとえば8vと低くするので
領域31直下のポテンシャルレベルもψ3と低くなる。
On the other hand, the high-frequency transfer pulse trains S1, . Due to S2, the depletion layer level immediately below the n- region 36 increases from the potential level ψ2 shown at 10 o'clock to ψ4 shown at tl, and the n+ region 31
The potential level immediately below (the potential when the signal charge is zero) is t
. At the time, it was ψ1, but at the time of tl, the ITO voltage is lowered to vL (for example, 8V) as described in -, so the potential level immediately below the region 31 is also reduced to ψ3.

従来より提案されてきた余剰電荷を掃き捨てる方法に」
;ると、信号電荷が蓄積されているバケツの底(前述の
n+領域31直下のポテンシャルレベルψ1)が深いt
 寸であるから、余剰電荷分のみq 、CCD 側へ前
述の高周波転送パルスS1.S2をゲートパルスとして
用いて捨てるには、ψ2レベルを10時の図で示すψ6
レベル丑で深くしなければならない。このようにψ2レ
ベルを深くするには、ゲート電圧は通常のLSI設計レ
ベルから考えると約30V以上必要とし、その結果素子
の耐圧をはるかに上回ってしまい(通常LSIでは3 
− 最高でも20V程度)、素子破壊をきたしてしまう。
A method for discarding excess charge that has been proposed in the past.”
; Then, the bottom of the bucket in which signal charges are accumulated (the potential level ψ1 directly below the n+ region 31 described above) is deep t.
Therefore, only the surplus charge q is transferred to the CCD side by the above-mentioned high frequency transfer pulse S1. To use S2 as a gate pulse and discard it, set the ψ2 level to ψ6 as shown in the 10 o'clock diagram.
The level must be deepened. In order to deepen the ψ2 level in this way, the gate voltage needs to be about 30V or more considering the normal LSI design level, and as a result, the withstand voltage of the element is far exceeded (usually 30V or more in LSI).
- Maximum voltage is about 20V), which may cause element destruction.

然るに、本発明ではたとえばゲート直下のポテンシャル
レベルがψ4で示すように浅くても、ITO側の電圧を
低くするvLとすることにより上述の信号電荷が蓄積さ
れるバケツの底をψ3(t。
However, in the present invention, even if the potential level directly under the gate is shallow as shown by ψ4, for example, by lowering the voltage on the ITO side to vL, the bottom of the bucket in which the signal charges are accumulated is set to ψ3(t).

時にはψ1であったのが)と浅くすることにより、同図
の矢印で示すように余剰電荷分のみをCCD側へ容易に
移すことができる。
By making it as shallow as ψ1), only the excess charge can be easily transferred to the CCD side, as shown by the arrow in the figure.

1ii) t2時0敗1刀C) tl 時で記した矢印のように余剰電荷がCCD側へ移
った後の状態を示す。移り切るに要す時間は前記のゲー
ト領域qに於けるコンダクタンスqmで主として決まる
。通常は数n8〜数百ns あれば充分である。すなわ
ち、t2はtlの時刻より高々この程度の時間経過した
時刻であればよい。
1ii) t2 time 0 loss 1 sword C) tl As shown by the arrow marked at time, the state is shown after the surplus charge is transferred to the CCD side. The time required to complete the transition is mainly determined by the conductance qm in the gate region q. Usually, several n8 to several hundred ns is sufficient. That is, t2 may be a time at most after this amount of time has elapsed since time tl.

同図かられかるように、前記n+領域31直下の空乏層
領域(以後、絵素側と呼ぶ)に残存した信号電荷46は
、前記のQCCD電荷量以下の正常電荷として残る。転
送CCD側の空乏層領域に移147・ ・・ された余剰電荷46は同図の点々部aで示す前記のQC
CD電荷量相当分と、」−述したプルーミングの原因に
なる斜線部すで示す電荷量の足し合した量となる。すな
わち、aとbの合計が上述の余剰電荷46に相当する。
As can be seen from the figure, the signal charges 46 remaining in the depletion layer region directly below the n+ region 31 (hereinafter referred to as the picture element side) remain as normal charges less than the QCCD charge amount. The surplus charge 46 transferred to the depletion layer region on the transfer CCD side is transferred to the above-mentioned QC shown by dotted areas a in the figure.
The amount is the sum of the amount equivalent to the CD charge amount and the amount of charge shown in the shaded area that causes the pluming described above. That is, the sum of a and b corresponds to the above-mentioned surplus charge 46.

この余剰電荷46は垂直ブランキング期間中に後述する
ようなメカニズムで素子外部へ掃き捨てるので、ブルー
ミング、ハイライト残像分は再生画面に現われることは
ガい。
Since this surplus charge 46 is swept away to the outside of the element by a mechanism to be described later during the vertical blanking period, blooming and highlight afterimages do not appear on the playback screen.

曲) 13時(第1d) この時刻において、ITO電圧φrroff:高い電圧
vHたとえば20Vに変化させることにより、絵素仙膿
或31のバケツの底は再び深くなり、信号電荷としての
正常電荷46はCODの転送りロックが印加されても転
送CCD 側へリークせずに保持される。又このように
ITO電圧を高くすると、光電変換膜35へ印加される
バイアス電圧が低下し5v程度となり、この高い期間中
に光電変換膜35中で発生する電荷量を抑制することが
できる。すなわち、光量が強大であってもこの高い期間
中では発生する余剰電荷量が一定以上には増加しない機
能を光15 ゛ 導変換膜36にもたすととができるようになっている。
Song) 13:00 (1st d) At this time, by changing the ITO voltage φrroff: high voltage vH to, for example, 20 V, the bottom of the bucket of the picture element 31 becomes deeper again, and the normal charge 46 as the signal charge becomes Even if the COD transfer lock is applied, it is maintained without leaking to the transfer CCD side. Further, when the ITO voltage is increased in this way, the bias voltage applied to the photoelectric conversion film 35 is reduced to about 5V, and the amount of charge generated in the photoelectric conversion film 35 during this high period can be suppressed. That is, even if the amount of light is strong, the amount of surplus charge generated during this high period does not increase beyond a certain level.

t3時刻以後は、上述の余剰電荷a、bは両方とも」二
連のたとえば1.8朧程度の高周波転送パルスS1.S
2によって垂直ラインを構成するCCD中を転送するこ
とにより、水平転送ラインを経て素子外部へ排出される
After time t3, both of the above-mentioned surplus charges a and b are transferred to two consecutive high-frequency transfer pulses S1. S
2, the signal is transferred through the CCD constituting the vertical line, and is discharged to the outside of the device via the horizontal transfer line.

1■)t4時(算ワロe) この時刻になると、上述したように余剰電荷が全て素子
外部へ排出され、COD領域に存在する電荷量は零とな
り、絵素側にのみ正常な信号電荷46が残っている。
1■) Time t4 (calculation) At this time, as mentioned above, all the excess charge is discharged to the outside of the element, the amount of charge existing in the COD region becomes zero, and normal signal charge 46 is generated only on the picture element side. remains.

V)15時(第S−ロ舌) 絵素読み込みパルス■cHがクロック端子■に印加され
た瞬間に、信号電荷46が矢印のように絵素側からCC
D側へ読み込まれようとしているところを示すものであ
る。
V) 15:00 (No. S-Ro) At the moment when the pixel reading pulse ■cH is applied to the clock terminal ■, the signal charge 46 is transferred from the pixel side to the CC as shown by the arrow.
This shows what is about to be read into the D side.

vi)t6時(芽ぐいさ) 15時から、一定時間(前述のように数十ns〜数百n
s)以」二経過した時点に於いて、信号電荷4646は
絵素側からCCD側へ全て読み込寸れた状態を示す。
vi) t6 o'clock (budding) From 15 o'clock, for a certain period of time (several tens of ns to several hundred nanoseconds as mentioned above)
After s), the signal charges 4646 indicate a state where they have all been read from the picture element side to the CCD side.

以後の時間に於いて、転送パルスv1.■2(通常はT
Vの一水平走査期間1Hに相当する周波数15、75k
tlz)により垂直ライン中を信号電荷すなわち正常電
荷が転送され、素子外部へ順次取り出され、映像信号と
なることは周知のとおりである。
At subsequent times, the transfer pulse v1. ■2 (usually T
Frequency 15,75k corresponding to one horizontal scanning period 1H of V
It is well known that signal charges, that is, normal charges, are transferred in vertical lines by tlz), are sequentially taken out to the outside of the device, and become video signals.

このような簡単な駆動方法によって、強大光に対しても
、ハイライト残像ブルーミングが除去され、良好な画質
を得ることが可能となる。なお、」二連のようなインタ
ーライン型CODにニュービュン膜を積層した撮像素子
での例において、従来の掃き捨て方法ではハイライト残
像、ブルーミングの抑制倍率(飽和光量の倍数で示す)
は高々10〜20倍程度であったのが、本発明のとと<
 11でφITOを■L とし、”3 f9’ITOe
”H(!:すルトともに、20V程度以下の側圧範囲内
の駆動電圧具体的な断面構造を示すもので、50はゲー
ト酸17置・ 化膜、51は厚いS 102 膜、52は領域31と光
電変換膜35間に介在された金属電極、53は膜35上
の透明電極である。
With such a simple driving method, highlight afterimage blooming can be removed even in the case of intense light, and it is possible to obtain good image quality. In addition, in the case of an image sensor in which a Newbun film is laminated on an interline type COD such as a double series, the conventional sweeping method has a high suppression ratio (expressed as a multiple of the saturated light amount) of highlight afterimages and blooming.
was about 10 to 20 times at most, but with the present invention
11, set φITO to ■L, and set “3 f9'ITOe
``H (!: Both sults show the specific cross-sectional structure of the drive voltage within the lateral pressure range of about 20V or less, 50 is the gate acid 17 film, 51 is the thick S 102 film, and 52 is the region 31 and a metal electrode interposed between the photoelectric conversion film 35 and a transparent electrode 53 on the film 35.

発明の効果 以上のように、本発明は、強大光に対しても固体撮像素
子の耐圧の範囲内の電圧にて、ハイライト残像、プルー
ミングを容易に除去することができ、高性能な固体撮像
素子の実現に大きく寄与するものである。
Effects of the Invention As described above, the present invention can easily remove highlight afterimages and pluming even against intense light at a voltage within the withstand voltage range of the solid-state imaging device, and provides a high-performance solid-state imaging device. This will greatly contribute to the realization of the device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は固体撮像素子の概略平面図、第2図は示す構造
図、第6図は同素子の要部構造断面図である。 31・・・・・・電極領域、32・・・・・・転送チャ
ンネル領域、35・・・・・・光電変換膜、41・・・
・・・転送および読込みゲート電極、42・・・・・・
Si基板、43・・・・・・透18べ一:゛ 切電極端子、53・・・・・・透明電極、Sl、S2・
・団・尚周波転送パルス、φI To”’ ”’透明電
極に印加するパルス。 代理人の氏名 弁理士 中 尾 敏 男 はが1名第1
図 第2図 f 第3図 tす 第4図 X′ 第5図 第6図 43(ITの
FIG. 1 is a schematic plan view of a solid-state imaging device, FIG. 2 is a structural diagram, and FIG. 6 is a cross-sectional view of the main structure of the device. 31... Electrode region, 32... Transfer channel region, 35... Photoelectric conversion film, 41...
...Transfer and read gate electrode, 42...
Si substrate, 43... Transparent 18 base: Cut electrode terminal, 53... Transparent electrode, Sl, S2...
- Group/sho frequency transfer pulse, φI To"'"'Pulse applied to the transparent electrode. Name of agent: Patent attorney Toshio Nakao (1st person)
Figure 2 f Figure 3 t Figure 4 X' Figure 5 Figure 6 Figure 43 (IT

Claims (1)

【特許請求の範囲】[Claims] 水平、垂直の各クロックパルスにより動作し、前記垂直
クロックパルスの垂直ブランキング期間中に、垂直転送
パルスより高い周波転送パルスが一定期間印加されて動
作する走査面上に、光電変換膜およびこの−Fに透明電
極が設けられ、前記高周波転送パルスの存在する期間中
に対応して、前記透明電極に第1の期間と第2の期間で
異なる大きさの電圧を印加することを特徴とする固体撮
像装置。
A photoelectric conversion film and this - F is provided with a transparent electrode, and voltages of different magnitudes are applied to the transparent electrode in a first period and a second period corresponding to the period in which the high frequency transfer pulse is present. Imaging device.
JP58122802A 1983-07-06 1983-07-06 Solid-state image pickup device Granted JPS6016074A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP58122802A JPS6016074A (en) 1983-07-06 1983-07-06 Solid-state image pickup device
US06/626,730 US4661830A (en) 1983-07-06 1984-07-02 Solid state imager

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58122802A JPS6016074A (en) 1983-07-06 1983-07-06 Solid-state image pickup device

Publications (2)

Publication Number Publication Date
JPS6016074A true JPS6016074A (en) 1985-01-26
JPH0444470B2 JPH0444470B2 (en) 1992-07-21

Family

ID=14844993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58122802A Granted JPS6016074A (en) 1983-07-06 1983-07-06 Solid-state image pickup device

Country Status (1)

Country Link
JP (1) JPS6016074A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6768234B2 (en) 2000-03-14 2004-07-27 Kitz Corporation Electric actuator and fixing structure of the actuator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55163882A (en) * 1979-06-06 1980-12-20 Nec Corp System for driving charge transfer element
JPS5844864A (en) * 1981-09-11 1983-03-15 Hitachi Ltd Driving method for solid-state image pickup element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55163882A (en) * 1979-06-06 1980-12-20 Nec Corp System for driving charge transfer element
JPS5844864A (en) * 1981-09-11 1983-03-15 Hitachi Ltd Driving method for solid-state image pickup element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6768234B2 (en) 2000-03-14 2004-07-27 Kitz Corporation Electric actuator and fixing structure of the actuator
US6885119B2 (en) 2000-03-14 2005-04-26 Kitz Corporation Electric actuator and structure for fixing the same

Also Published As

Publication number Publication date
JPH0444470B2 (en) 1992-07-21

Similar Documents

Publication Publication Date Title
JP2525781B2 (en) Driving method for solid-state imaging device
JPS6115475A (en) Image pickup element and image pickup device
JPH02113678A (en) Solid state image pickup device
JPH0118629B2 (en)
JPS5983477A (en) Image pickup system
JPH022793A (en) Two-dimensional ccd image pickup element driving method
JPH02309877A (en) Solid-state image pickup device
JPH0237884A (en) Method for driving solid-state image pickup element
JPS6016074A (en) Solid-state image pickup device
JPS6016075A (en) Solid-state image pickup device
JPS59122085A (en) Solid-state image pickup element
US4661830A (en) Solid state imager
JPH06113207A (en) Solid-state image pickup device drive method and signal procesing method
US4599637A (en) Solid state imaging device with photoconductive layer
JPH0377711B2 (en)
JPS59132655A (en) Solid-state image pickup device
JP2987844B2 (en) Solid-state imaging device and driving method thereof
JPS60233986A (en) Drive method of solid-state image pickup device
JPH05316429A (en) Drive method for solid-state image pickup device
JPH03195278A (en) Photoelectric conversion control method for solid-state image pickup device
JPS6089177A (en) Image pickup element
JPH0786552A (en) Solid-state image pickup device
JPH01238385A (en) Image pickup device and electronic still camera
JPH05284426A (en) Driving method for solid-state image pickup device
JPS58215876A (en) Solid-state image pickup device