JPS60160645A - Laminated semiconductor integrated circuit device - Google Patents

Laminated semiconductor integrated circuit device

Info

Publication number
JPS60160645A
JPS60160645A JP59015191A JP1519184A JPS60160645A JP S60160645 A JPS60160645 A JP S60160645A JP 59015191 A JP59015191 A JP 59015191A JP 1519184 A JP1519184 A JP 1519184A JP S60160645 A JPS60160645 A JP S60160645A
Authority
JP
Japan
Prior art keywords
hole
chip
integrated circuit
covered
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59015191A
Other languages
Japanese (ja)
Inventor
Mitsunori Ketsusako
光紀 蕨迫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59015191A priority Critical patent/JPS60160645A/en
Publication of JPS60160645A publication Critical patent/JPS60160645A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/482Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body
    • H01L23/485Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body consisting of layered constructions comprising conductive layers and insulating layers, e.g. planar contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/481Internal lead connections, e.g. via connections, feedthrough structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
    • H01L2224/171Disposition
    • H01L2224/1718Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/17181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/1015Shape
    • H01L2924/10155Shape being other than a cuboid
    • H01L2924/10158Shape being other than a cuboid at the passive surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits

Abstract

PURPOSE:To obtain a through-hole construction which can expect a stable and high process yield by making a construction wherein a through-hole is provided in a semiconductor substrate, the aperture of the hole on one main surface is larger than the aperture of the hole on the other main surface, the internal wall of the hole is covered with an insulation film and at least a part of the insulation film covering the internal wall is covered with a conductor. CONSTITUTION:On the surface of a semiconductor substrate 40, a group of elements has been formed by selective doping, etc. A through-hole is provided in a part of the substrate and the through-hole consists of a smaller hole 41 and a larger hole 42. The internal surface of the through-hole is covered with a comparatively thick insulation film 43 such as an oxidized film, a conductive layer 44 formed in the through-hole and the semiconductor substrate 40 are electrically insulated and simultaneously, the parasitic capacity is reduced. The conductive layer in the through-hole is extended at the boundary of the smaller hole 41 and the larger hole 42, is formed a bonding pad 45 for the bottom surface of a chip and on it, a downward solder bump 46 is formed. The conductive layer 44 in the through-hole is connected to a bonding pad 48 against the upper surface of pitch through a multilayer wiring layer 47 at the side of the surface where the group of element is formed.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は半導体集積回路チップを積層して成る半導体集
積回路の構造に係る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to the structure of a semiconductor integrated circuit formed by stacking semiconductor integrated circuit chips.

〔発明の背景〕[Background of the invention]

電子計算機のような高度の電子回路システムは従来高密
度集積回路(LSI)のパッケージを単位とし、これを
多数プリント配線基板上に配列し、さらにプリント基板
を複数接続させる実装法により構成されていた。さらに
進んだシステムでは、第1図に例示するような複チップ
モジュールを構成し、配線長を短縮して集積度の向上を
図るとともに配線遅延を縮少して高速化が図られていた
6第1図に示す複チップモジュールでは、各L’SIチ
ップ11,11’ 、11’は素子の形成された層12
を下向きにし、チップの周縁部に設けられたポンディン
グパッド13を、多層配線セラミック基板14の上に設
けられたポンディングパッド15に対向させ、公知のフ
ェースダウンボンディング技術により接続されている。
Advanced electronic circuit systems such as computers have traditionally been constructed using high-density integrated circuit (LSI) packages as units, arranged in large numbers on printed circuit boards, and then connected to multiple printed circuit boards. . A more advanced system consists of a multi-chip module as shown in Figure 1, which shortens the wiring length to improve the degree of integration and reduces wiring delays to increase speed. In the multi-chip module shown in the figure, each L'SI chip 11, 11', 11' has a layer 12 on which elements are formed.
The bonding pads 13 provided on the peripheral edge of the chip face downward and are connected to the bonding pads 15 provided on the multilayer wiring ceramic substrate 14 by a known face-down bonding technique.

この複チップモジュールでは、ボンディングのための金
属細線は不要であり、各チップは半田により多層配線基
板に固定され、実装密度、システムの信頼性等、多くの
利点がある。
This multi-chip module does not require thin metal wires for bonding, and each chip is fixed to the multilayer wiring board by solder, which has many advantages such as packaging density and system reliability.

しかし、これら従来の実装法では、完成したLSIチッ
プより出発しており、ポンディングパッドは各チップの
周縁部のみに設けられ、チップ間の接続は一旦多層配線
基板を介して行なわれていたため、配線長の短縮にも限
界があった。すなわちこの方式では、チップを平面的に
配列して得られる配線長よりも短い距離でチップ間の信
号伝達を行なうことはできなかった。
However, in these conventional mounting methods, starting from a completed LSI chip, bonding pads were provided only at the periphery of each chip, and connections between chips were once made via a multilayer wiring board. There was also a limit to shortening the wiring length. That is, with this method, it was not possible to transmit signals between chips over a distance shorter than the wiring length obtained by arranging the chips in a planar manner.

チップを平面的に配列して得られる配線長よりも短い距
離でチップ間の信号伝達を行わしめる方式として第2図
に例示するチップ積層形集積技術がある。この例では、
LSIチップ21.21’ 。
As a method for transmitting signals between chips over a distance shorter than the wiring length obtained by arranging chips in a planar manner, there is a chip stacking type integration technique illustrated in FIG. 2. In this example,
LSI chip 21.21'.

21″′等の片面に、素子群の形成された層22゜22
’ 、22#等が設けられ、素子層22の上に設けられ
たポンディングパッド23と、チップ21’の裏面に設
けられたポンディングパッド24とが接続され、順次こ
のような形でチップが積層・接続されて、基板25にマ
ウントされている。
A layer 22゜22 on which a group of elements is formed on one side of 21'', etc.
', 22#, etc. are provided, and the bonding pad 23 provided on the element layer 22 and the bonding pad 24 provided on the back surface of the chip 21' are connected, and the chip is sequentially bonded in this manner. They are stacked, connected, and mounted on a substrate 25.

このような構成で積層形集積回路を形成するためには、
チップの表裏間を信号伝達するための構造が必要であり
、従来は第3図に例示する断面図の如き構造をとってい
た。第3図はチップ相互の接続を行なう前の個別チップ
の断面を示すものである。チップを構成する半導体基板
31.31’の各々の表面には選択ドーピングにより素
子群が設けられ、一部にはチップ貫通孔32.32’等
が設けられている。貫通孔32.32’の表面は酸化膜
等による絶縁膜33.33’が設けられ、さらにその上
部に設けられる導電性被膜34゜34′と基板31.3
1’ とを電気的に分離している。配線層の上にはチッ
プ間の相互接続するために用いられる半田バンプ35,
35’ が形成されており、下層チップのバンプ35′
は上層チップの開孔部から延在するポンディングパッド
34に正対している。この例に示される半田パンプの大
きさは20μm径程度であり、これは、多層配線の施さ
れたチップに存在する表面の凹凸およびチップの反りよ
りも大きく、半田溶解時にチップ上の全バンプがそれぞ
れ対向するポンディングパッドに接触した状態が実現す
る様配慮されている。
In order to form a stacked integrated circuit with such a configuration,
A structure for transmitting signals between the front and back sides of the chip is required, and conventionally a structure as shown in the cross-sectional view shown in FIG. 3 has been used. FIG. 3 shows a cross section of the individual chips before interconnection between the chips. Element groups are provided on the surface of each of the semiconductor substrates 31, 31' constituting the chip by selective doping, and chip through holes 32, 32', etc. are provided in some parts. An insulating film 33.33' made of an oxide film or the like is provided on the surface of the through hole 32.32', and a conductive film 34.34' and a substrate 31.3 are provided on top of the insulating film 33.33'.
1' are electrically separated from each other. On the wiring layer are solder bumps 35 used for interconnection between chips.
35' is formed, and the bump 35' of the lower chip is formed.
is directly opposite the bonding pad 34 extending from the aperture in the upper chip. The size of the solder bump shown in this example is about 20 μm in diameter, which is larger than the surface irregularities and chip warpage that exist on a chip with multilayer wiring, and when the solder is melted, all the bumps on the chip are Care has been taken to ensure that each is in contact with the opposing bonding pad.

また、熱圧接による半田溶解時に、半田がポンディング
パッドからの圧し出しによって接触することかないよう
に、貫通孔の容積は半田パンプの体積よりも大となる様
に工夫されていた。
In addition, the volume of the through hole was designed to be larger than the volume of the solder pump so that the solder would not come into contact with the solder due to pressure from the pumping pad when the solder is melted by hot pressure welding.

しかしながら、例示した構造では、貫通孔の内容積を大
きくとるために、例えば50μm厚さの半導体基板の場
合には10μm以上の径の貫通孔を形成する必要があり
、集積度の向上を阻害していた。また半田パンプが半導
体基板の片面にのみ形成されるため、対向するポンディ
ングパッドの表面状態によっては、熱圧着時の接続に不
良が生ずることがあり、信頼性に若干の問題を有してい
た。
However, in the illustrated structure, in order to increase the internal volume of the through hole, for example, in the case of a 50 μm thick semiconductor substrate, it is necessary to form the through hole with a diameter of 10 μm or more, which impedes the improvement of the degree of integration. was. In addition, since the solder pump is formed only on one side of the semiconductor substrate, depending on the surface condition of the opposing bonding pad, a connection failure may occur during thermocompression bonding, causing some reliability problems. .

〔発明の目的〕[Purpose of the invention]

本発明は、チップ積層集積を実現するかかる半導体素子
の構造をさらに改良し、確実なチップ接続と高集積化チ
ップへの適用を可能なせしめる手段を提供することを目
的とする。
An object of the present invention is to further improve the structure of such a semiconductor element that realizes chip stacking, and to provide a means for ensuring reliable chip connection and application to highly integrated chips.

〔発明の概要〕[Summary of the invention]

本発明は、チップ相互の接続を確実にかつ自己整合的に
行なうために、対向するポンディングパッドの両方に半
田パンプを設け、かつバンプの横漏れを防止するために
、貫通孔に関しチップの裏面側に表面側よりも大きな開
口部を設けた構造とすることを特徴とする。かかる構造
により、貫通孔の表面側の開口部を必要最小限に縮小で
き、基板表面の能動素子領域が拡大すると共により高集
積なLSIがチップ集積に適用できる方途が提供できる
The present invention provides solder pumps on both opposing bonding pads in order to connect chips to each other reliably and in a self-aligned manner, and in order to prevent side leakage of the bumps, solder pumps are provided on the back side of the chip with respect to through holes. It is characterized by a structure in which a larger opening is provided on the side than on the front side. With this structure, the opening on the surface side of the through hole can be reduced to the necessary minimum, the active element area on the substrate surface can be expanded, and a method can be provided in which a more highly integrated LSI can be applied to chip integration.

〔発明の実施例〕[Embodiments of the invention]

以下、実施例に基づき本発明を説明する。第4図は本発
明の一実施例を度すLSIチップの断面構造図である。
The present invention will be explained below based on Examples. FIG. 4 is a cross-sectional structural diagram of an LSI chip implementing an embodiment of the present invention.

半導体基板40の表面には選択ドーピング等により素子
群が形成されている。基板の一部には貫通孔が設けられ
、その貫通孔は細部41、及び太部42より構成される
。貫通孔の内面は酸化膜等の比較的厚い復縁膜43で覆
われ、貫通孔内部に形成される導電体層44と半導体基
板40との間の電気的絶縁を図り、同時に寄生容量を低
減している。貫通孔内部の導電体層は貫通孔細部41と
貫通孔太部42の境界部で広がり、チップ下面に対する
ポンディングパッド45を形成し、その上部に下向きの
半田バンプ46が形成される。貫通孔内導電体[44は
素子群形成面側で多層配線層47を介してチップ上面に
対するポンディングパッド48に接続され、該ポンディ
ングパッド48には上向きの半田バンプが形成される。
Element groups are formed on the surface of the semiconductor substrate 40 by selective doping or the like. A through hole is provided in a part of the substrate, and the through hole is composed of a detail 41 and a thick part 42. The inner surface of the through hole is covered with a relatively thick reinforcing film 43 such as an oxide film, which provides electrical insulation between the conductor layer 44 formed inside the through hole and the semiconductor substrate 40, and at the same time reduces parasitic capacitance. ing. The conductor layer inside the through hole widens at the boundary between the through hole detail 41 and the through hole thick portion 42 to form a bonding pad 45 for the bottom surface of the chip, and a downwardly directed solder bump 46 is formed on top of the bonding pad 45 . The through-hole conductor [44 is connected to a bonding pad 48 on the top surface of the chip via a multilayer wiring layer 47 on the side where the element group is formed, and an upward solder bump is formed on the bonding pad 48.

第4図に示す、C,Dは、素子のゲートに信号を伝える
ための多層配線層内の導体部分を指示している。第4図
の例では、貫通孔配線は上部の半田バンプ49と下部の
半田バンプ46を接続し、かつ、素子の一出力に接続さ
れた形となっているが、勿論このような構成に限定され
るものではなく、多層配線N47を介して任意の入出力
が上下の半田バンプに接続できることは言うまでもない
C and D shown in FIG. 4 indicate conductor portions within the multilayer wiring layer for transmitting signals to the gate of the element. In the example shown in FIG. 4, the through-hole wiring connects the upper solder bump 49 and the lower solder bump 46, and is connected to one output of the element, but of course this configuration is not limited. Needless to say, any input/output can be connected to the upper and lower solder bumps via the multilayer wiring N47.

第“4図では、1つの貫通孔及び1組の上下半田バンプ
について示したが、本発明ではこれらの貫通孔およびバ
ンプが多数形成されて成る。
Although FIG. 4 shows one through hole and one set of upper and lower solder bumps, in the present invention, a large number of these through holes and bumps are formed.

第5図に本発明によって提供される集積回路チップを複
数個積層した場合の部分断面図を示す。
FIG. 5 shows a partial cross-sectional view of a case where a plurality of integrated circuit chips provided by the present invention are stacked.

ここでは貫通孔細部と分離用絶縁膜は省略しである。貫
通孔を介して上下に形成された半田バンプを有する集積
回路チップ51.51’ 、51”。
The details of the through hole and the isolation insulating film are omitted here. Integrated circuit chips 51.51', 51'' with solder bumps formed above and below through through holes.

51 nl等を重ね、半田の融点以上の温度に保つこと
によって接続部で互に対向する半田バンプは容易に融着
し、融着部52.52’等の断面形状が図示するように
凹状となるよ・うポインディングパッドの大きさ、半田
バンプの体積及び貫通孔太部の深さ等を+i節すれば、
表面張力が有効に働き、半田バンプの大きさ以内の位置
合わせのす九を吸収して自己整合的に集積回路チップが
再配列する。
51 nl etc. and keeping the temperature above the melting point of the solder, the solder bumps facing each other at the connection part are easily fused, and the cross-sectional shape of the fused part 52, 52' etc. becomes concave as shown in the figure. By adding +i to the size of the pointing pad, the volume of the solder bump, the depth of the thick part of the through hole, etc.
Surface tension acts effectively and absorbs the misalignment within the size of the solder bump, rearranging the integrated circuit chip in a self-aligned manner.

この効果はチップ内のバンプ数が多い程大きいことが認
められている。冷却により再固化した融着部により、集
積回路チップが相互に物理的に接続されると共に、信号
伝達のための電気的接続がなされる。電気的接続は融着
部および貫通孔部導体を介して上下の集積回路チップが
同一電位になるようになされる場合もあれば、多層配線
層53゜53′等を介して他の融着部に接続される場合
もあり、また単に物理的接続カニけの場合も有り得る。
It is recognized that this effect is greater as the number of bumps in the chip increases. The fused portion, which is resolidified by cooling, physically connects the integrated circuit chips to each other and provides electrical connections for signal transmission. Electrical connections may be made through the fused portion and through-hole conductors so that the upper and lower integrated circuit chips are at the same potential, or may be connected to other fused portions via multilayer wiring layers 53, 53', etc. In some cases, it may be connected to the other, or it may be simply a physical connection.

融着一体化された集積回路チップ群はさられ多層配線基
板54に接続され、さらに外部への信号取出し等がこの
多層配線基板を介してなされる。第5図の例は簡略にす
るため集積回路チップの表裏1組の半田バンプに着目し
て図示しであるが、実際にはこの様なバンプが采積回路
チップに多数形成されている。
The fused and integrated integrated circuit chip group is connected to a multilayer wiring board 54, and signals are output to the outside via this multilayer wiring board. Although the example of FIG. 5 focuses on one set of solder bumps on the front and back sides of an integrated circuit chip for the sake of simplicity, in reality, a large number of such bumps are formed on an integrated circuit chip.

ここで、前記第4図に示した如き構造を形成する製造工
程の一例を第6図にて説明する。
An example of the manufacturing process for forming the structure shown in FIG. 4 will now be described with reference to FIG. 6.

この例では貫通孔形成を2段階に分けて行なっており、
第1段階は工程の初期のデバイス層形成前、第2段階は
デバイス層の形成以降である。この工程を第6図(イ)
から順に説明すると、先ず、Stウェーハ600上に例
えば5in2の如きSiのドライエッチ用マスク材60
1を形成し、将来貫通孔となる部分を開口する。次いで
(ロ)に示すようにこの部分のSiを公知のドライエツ
チング技術によりほぼ垂直な壁面が形成される様約5〜
15μm程度の六602を形成する。次いで(ハ)に示
すようにSi、N4の薄膜603を方向性被着により形
成し、選択酸化により側壁部のみ酸化膜604を成長さ
せる。この5i02膜604は将来貫通孔の絶縁材とな
るものである。次に(ニ)に示すよう気相化学堆積(C
VD)法により高濃度にドープした多結晶5i605を
形成し、貫通孔を埋め戻すと共に平坦化膜を形成する。
In this example, through-hole formation is performed in two stages.
The first stage is at the beginning of the process, before the formation of the device layer, and the second stage is after the formation of the device layer. This process is shown in Figure 6 (a).
To explain in order, first, a Si dry etching mask material 60 such as 5 in 2 is placed on the St wafer 600.
1 and open a portion that will become a through hole in the future. Next, as shown in (b), this portion of Si is etched by a known dry etching technique to form a nearly vertical wall surface.
A hexagon 602 of about 15 μm is formed. Next, as shown in (c), a thin film 603 of Si and N4 is formed by directional deposition, and an oxide film 604 is grown only on the sidewalls by selective oxidation. This 5i02 film 604 will serve as an insulating material for the through hole in the future. Next, as shown in (d), vapor phase chemical deposition (C
Highly doped polycrystalline 5i605 is formed by VD) method to backfill the through holes and form a planarization film.

これにはCVDを複数回繰り返し、必要があれば平坦化
スパッタ処理を施す。通常穴径が1μm程度の場合には
スパッタ処理は不要である。次いで(ホ)に示すように
多結晶Siを貫通孔を含む領域を残してエツチング除去
する。この状態は通常の集積回路(LSI)を形成する
初期状態と同じであり、St、N4マスク603を適宜
パターニングすることにより、従来のLSI製造工程に
従って(ハ)に点線で囲って示す多層配線層を含む素子
層を形成することができる。なお必要があれば(ホ)の
状態でさらにSi、N4層を形成することにより、酸化
速度の差による多結晶層の減少を避けることもできる。
For this purpose, CVD is repeated several times, and if necessary, a flattening sputtering process is performed. Normally, when the hole diameter is about 1 μm, sputtering is not necessary. Next, as shown in (E), the polycrystalline Si is etched away leaving a region containing the through holes. This state is the same as the initial state when forming a normal integrated circuit (LSI), and by appropriately patterning the St, N4 mask 603, the multilayer wiring layer shown in (c) surrounded by a dotted line is formed according to the conventional LSI manufacturing process. An element layer containing the following can be formed. If necessary, by further forming Si and N4 layers in the state (e), it is possible to avoid reduction in the polycrystalline layer due to the difference in oxidation rate.

ここまでは従来のLSIプロセスで用いられてきた厚さ
約500μmのSiウェーハを用いて処理される。次い
で、下半分の貫通孔を形成すると共に積層厚みを減少さ
せるために全体の厚さを削減しくト)の如き状態とする
。このときの厚さはデバイス層形成によって発生する反
りが後の工程に支障がない、例えば50μm程度で良い
。また、要すれば周縁部のみを厚い状態で残し、中央部
のみを薄膜化する手法も用いることができる。前者の場
合には機械的研磨により形成することができるが、後者
の場合ではエツチングあるいはイオンシリング等を併用
する必要があるが、バンブの形成時には周縁部が厚いま
ま残っている方が、作業性は良い。しかしこの選択は本
発明に関しては本質的でない。
Up to this point, a Si wafer with a thickness of approximately 500 μm, which has been used in a conventional LSI process, is used. Next, a through hole is formed in the lower half and the overall thickness is reduced in order to reduce the laminated thickness, resulting in the state shown in g). The thickness at this time may be about 50 μm, for example, so that warpage caused by device layer formation does not interfere with subsequent steps. Furthermore, if necessary, a method may be used in which only the peripheral portion is left thick and only the central portion is made thin. In the former case, it can be formed by mechanical polishing, but in the latter case, it is necessary to use etching or ion silling, but it is easier to work if the peripheral edge remains thick when forming the bump. is good. However, this choice is not essential to the invention.

次いで、裏面にエツチング用マスク材(図示せず)、例
えば5in2あるいはAQ等、を被着し表面のポインデ
ィングパッド位置に合わせて、裏面に開口部を設け、酵
述のドライエッチによりシリコン層をエツチングし、(
チ)に示すように、貫通孔細部の底部が露出する様に、
貫通孔太部607を形成する。この貫通孔大部径は1貫
通孔間隔の1/2以下であるが、実用」二は30−.5
0μn1で深さと同程度で良い。さらに貫通孔細部の底
部に残っているSi、N4箇も除去して、′n通孔細部
に充填されている多結晶Stを露出させる。
Next, an etching mask material (not shown), such as 5in2 or AQ, is applied to the back surface, an opening is formed on the back surface in accordance with the pointing pad position on the front surface, and the silicon layer is etched by dry etching. Etching (
As shown in h), so that the bottom of the through hole is exposed,
A thick portion 607 of the through hole is formed. The major diameter of this through hole is less than 1/2 of the interval between 1 through hole, but in practical use it is 30-. 5
The depth may be 0 μn1, which is about the same as the depth. Further, Si and N4 remaining at the bottom of the through-hole details are also removed to expose the polycrystalline St filled in the through-hole details.

次いで(す)に示すようにウェーハ裏面にCVD5in
、を被着し、貫通孔細部の底部をホトリソクラフイで除
去し、裏面との=1ンタク)へ孔609を設番フる。な
おこのコンタクト孔609は大きな段差の底部に形成す
るため、通常のレジスト法による光学的リソグラフ−r
では困難であるが装束イオンビームを用いれば容易に形
成することができる。
Next, as shown in (S), CVD 5 inch
, and remove the bottom part of the through hole using photolithography to form a hole 609 (=1 contact with the back surface). Note that since this contact hole 609 is formed at the bottom of a large step, optical lithography using a normal resist method is used.
However, it is possible to easily form this by using a focused ion beam.

次いで、ウェーハ裏面にポインディンパッドを形成する
金属被服を被着し、パターニングにより(ヌ)に示すよ
うにポインディングパッド6】0を形成する。
Next, a metal coating for forming a pointing pad is applied to the back surface of the wafer, and a pointing pad 6]0 is formed by patterning as shown in FIG.

なお(へ)以降の工程は当然のことながら表面層に保護
膜が形成された状態で行なう。表面のポンディングパッ
ドは(へ)の段階で形成しても良いし、また(ヌ)の段
階で形成しても差しつかえない。表裏面に形成されたポ
ンディングパッドにメッキ法等公知の技術により半田層
を形成し、加熱によりバンプ611,611’ を形成
する。なお、半田バンプの形成はこの段階で行なわず、
チップを積層した後に加熱して球状とし同時に融着処理
をする方が、工程上都合が良いが、ここでは前に引用し
た例と形状を合わせるために例示しである。この最終形
状(ヌ)は第4図と等価であり、これを基本単位として
チップ積層が行われる。
Incidentally, the following steps are naturally performed with a protective film formed on the surface layer. The surface bonding pad may be formed in the (f) step, or may be formed in the (n) step. A solder layer is formed on the bonding pads formed on the front and back surfaces by a known technique such as plating, and bumps 611, 611' are formed by heating. Note that solder bumps are not formed at this stage.
Although it is more convenient in terms of process to heat the chips after stacking them to make them spherical and to perform a fusing process at the same time, this example is given here to match the shape with the example cited earlier. This final shape (N) is equivalent to that shown in FIG. 4, and chips are stacked using this as a basic unit.

本発明はこのようなチップ積層のための基本的形状に関
するもので、第4図に例示する形態には限定されないし
、また第6図に例示した工程のみによって形成されるも
のではない。これを示すために他の実施例を第7図に示
す。この場合、基本的構造は第4図の実施例と同じであ
るが、工程の4・■違により、貫通孔太部71.71’
等の断面形状が異なる。この場合には、貫通孔太部はウ
ェーハ72の裏面に5in2を被着して開口部を設けた
後、公知のアルカリ性溶液による異方性エッチを施し、
(111)結晶面で形成されるピラミッド状ピットを利
用している、 〔発明の効果〕 以上述べた如く、本発明によれば、チップ積層形蒙積回
路の形成に際し、安定でかつ高度の工程歩留りの期待で
きる貫通孔構造を与えることができる。
The present invention relates to such a basic shape for stacking chips, and is not limited to the form illustrated in FIG. 4, nor is it formed only by the steps illustrated in FIG. 6. Another embodiment is shown in FIG. 7 to illustrate this. In this case, the basic structure is the same as the embodiment shown in FIG.
etc. have different cross-sectional shapes. In this case, the thick part of the through hole is formed by depositing a 5in2 film on the back surface of the wafer 72 to form an opening, and then performing anisotropic etching using a known alkaline solution.
(111) Utilizes pyramid-shaped pits formed on crystal planes. [Effects of the Invention] As described above, according to the present invention, a stable and advanced process is possible when forming a chip-stacked monolithic circuit. A through-hole structure with high yield can be provided.

なお、本発明ではSi半導体材料として例にとり説明し
たが、発明の主旨に従えば、材料はStに限定されるこ
とはなく、G a A s等、■■化合物半導体や■■
化合物半導体等にも応用でき、これらの材料によるチッ
プを複合した集積素子にも適用できることは言うまでも
ない。
Although the present invention has been explained using a Si semiconductor material as an example, according to the gist of the invention, the material is not limited to St, but may also be a material such as GaAs, ■■ compound semiconductor, or ■■
Needless to say, the present invention can be applied to compound semiconductors, etc., and can also be applied to integrated devices made of composite chips made of these materials.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のフリップチップポインディングを示す断
面図、第2図はチップ積層集積の断面構造図、第3図は
従来の貫通配線構造を有するチップの断面図、第4図は
本発明の貫通配線構造を有するチップの一実施例の断面
概念図、第5図は本発明の実施例によるチップを積層し
た場合の断面構造を示す概念図、第6図は本発明の実施
例構造を形成するための工程を示す断面図、第7図は本
発明の他の実施例を示す断面携造図である。 40・・・基板シリコン、4■・・・貫通孔の細部、4
2・・・貫通孔の太部、44・・・S電体、45.48
川ポンデイングパツド、46.49・・・半田バンプ、
47・・・多層配線を含む素子層。 第 1 男 第 2 図 5 第 3 囚 (A) 第 4 菌 第 5 図 第 6 菌
Fig. 1 is a cross-sectional view showing conventional flip chip pointing, Fig. 2 is a cross-sectional structure diagram of chip stacking, Fig. 3 is a cross-sectional view of a chip with a conventional through-wiring structure, and Fig. 4 is a cross-sectional view of a chip with a conventional through-wiring structure. A cross-sectional conceptual diagram of an embodiment of a chip having a through-wiring structure, FIG. 5 is a conceptual diagram showing a cross-sectional structure when chips according to an embodiment of the present invention are stacked, and FIG. 6 shows a structure of an embodiment of the present invention. FIG. 7 is a sectional view showing another embodiment of the present invention. 40...Substrate silicon, 4■...Details of through hole, 4
2...Thick part of through hole, 44...S electric body, 45.48
River ponding pad, 46.49... solder bump,
47...Element layer including multilayer wiring. 1st man 2nd figure 5 3rd prisoner (A) 4th bacterium 5th figure 6 bacterium

Claims (1)

【特許請求の範囲】 1、半導体基板と複数積層して成る集積回路において、
該半導体基板には一主面の開口部が他の主面の開口部よ
りも大きな表裏貫通孔が設けられてあり、該貫通孔は内
壁が絶縁膜で覆われ、かつ該内壁被覆絶縁膜の少なくと
も一部が導電体で覆わわた構造を有することを特徴とす
る積層半導体集積回路装置。 2、絶縁膜で内壁が覆われた貫通孔の少なくとも一部が
導電体で充填された構造を有する特許請求範囲第1項記
載の積層半導体回路装置。
[Claims] 1. In an integrated circuit formed by laminating a plurality of semiconductor substrates,
The semiconductor substrate is provided with a front and back through hole in which an opening on one main surface is larger than an opening on the other main surface, and the inner wall of the through hole is covered with an insulating film, and the inner wall of the through hole is covered with an insulating film. A laminated semiconductor integrated circuit device having a structure in which at least a portion thereof is covered with a conductor. 2. The laminated semiconductor circuit device according to claim 1, having a structure in which at least a portion of the through hole whose inner wall is covered with an insulating film is filled with a conductor.
JP59015191A 1984-02-01 1984-02-01 Laminated semiconductor integrated circuit device Pending JPS60160645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59015191A JPS60160645A (en) 1984-02-01 1984-02-01 Laminated semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59015191A JPS60160645A (en) 1984-02-01 1984-02-01 Laminated semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPS60160645A true JPS60160645A (en) 1985-08-22

Family

ID=11881954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59015191A Pending JPS60160645A (en) 1984-02-01 1984-02-01 Laminated semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS60160645A (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0198253A (en) * 1987-10-09 1989-04-17 Sharp Corp Manufacture of solid type semiconductor device
JPH01140753A (en) * 1987-11-27 1989-06-01 Sharp Corp Three-dimensional semiconductor device
JPH0442957A (en) * 1990-06-06 1992-02-13 Matsushita Electron Corp Manufacture of semiconductor integrated circuit device
WO1999033107A1 (en) * 1997-12-18 1999-07-01 Daimlerchrysler Aktiengesellschaft Semiconductor wafer with integrated individual components, method and device for the production of said semiconductor wafer
US6087719A (en) * 1997-04-25 2000-07-11 Kabushiki Kaisha Toshiba Chip for multi-chip semiconductor device and method of manufacturing the same
JP2000277689A (en) * 1999-03-29 2000-10-06 Sony Corp Semiconductor device and manufacture thereof
US6809421B1 (en) * 1996-12-02 2004-10-26 Kabushiki Kaisha Toshiba Multichip semiconductor device, chip therefor and method of formation thereof
JP2005210048A (en) * 2003-12-22 2005-08-04 Seiko Epson Corp Manufacturing method of semiconductor device, semiconductor device, circuit board, and electronic apparatus
EP1573799A1 (en) * 2002-12-20 2005-09-14 International Business Machines Corporation Three-dimensional device fabrication method
JP2006005343A (en) * 2004-06-15 2006-01-05 Samsung Electronics Co Ltd Wafer-level chip scale package manufacturing method
US7005324B2 (en) * 2002-09-24 2006-02-28 Seiko Epson Corporation Method of fabricating stacked semiconductor chips
JP2007506278A (en) * 2003-09-15 2007-03-15 インターナショナル・ビジネス・マシーンズ・コーポレーション Integrated electronic chip and interconnect device, and method for manufacturing the same
FR2901635A1 (en) * 2006-06-09 2007-11-30 Commissariat Energie Atomique Front and rear surfaces three dimensional electrical connection forming method for e.g. silicon substrate, involves engraving lines and trenches, and realising metallization of walls of lines and base of trenches on surfaces by layers
WO2008108970A3 (en) * 2007-03-05 2008-12-24 Tessera Inc Chips having rear contacts connected by through vias to front contacts
US7675153B2 (en) 2005-02-02 2010-03-09 Kabushiki Kaisha Toshiba Semiconductor device having semiconductor chips stacked and mounted thereon and manufacturing method thereof
JP2010204112A (en) * 2010-04-26 2010-09-16 Hamamatsu Photonics Kk Sensor and method for manufacturing the same
US7901989B2 (en) 2006-10-10 2011-03-08 Tessera, Inc. Reconstituted wafer level stacking
US7952195B2 (en) 2006-12-28 2011-05-31 Tessera, Inc. Stacked packages with bridging traces
US8022527B2 (en) 2006-10-10 2011-09-20 Tessera, Inc. Edge connect wafer level stacking
US8043895B2 (en) 2007-08-09 2011-10-25 Tessera, Inc. Method of fabricating stacked assembly including plurality of stacked microelectronic elements
US8193615B2 (en) 2007-07-31 2012-06-05 DigitalOptics Corporation Europe Limited Semiconductor packaging process using through silicon vias
US8431435B2 (en) 2006-10-10 2013-04-30 Tessera, Inc. Edge connect wafer level stacking
US8432045B2 (en) 2010-11-15 2013-04-30 Tessera, Inc. Conductive pads defined by embedded traces
US8569876B2 (en) 2006-11-22 2013-10-29 Tessera, Inc. Packaged semiconductor chips with array
US8847380B2 (en) 2010-09-17 2014-09-30 Tessera, Inc. Staged via formation from both sides of chip
US8883562B2 (en) 2007-07-27 2014-11-11 Tessera, Inc. Reconstituted wafer stack packaging with after-applied pad extensions
US9099296B2 (en) 2010-12-02 2015-08-04 Tessera, Inc. Stacked microelectronic assembly with TSVS formed in stages with plural active chips
US9269692B2 (en) 2010-12-02 2016-02-23 Tessera, Inc. Stacked microelectronic assembly with TSVS formed in stages and carrier above chip
US9355948B2 (en) 2010-09-17 2016-05-31 Tessera, Inc. Multi-function and shielded 3D interconnects
US9640437B2 (en) 2010-07-23 2017-05-02 Tessera, Inc. Methods of forming semiconductor elements using micro-abrasive particle stream

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0198253A (en) * 1987-10-09 1989-04-17 Sharp Corp Manufacture of solid type semiconductor device
JPH01140753A (en) * 1987-11-27 1989-06-01 Sharp Corp Three-dimensional semiconductor device
JPH0442957A (en) * 1990-06-06 1992-02-13 Matsushita Electron Corp Manufacture of semiconductor integrated circuit device
US7335517B2 (en) 1996-12-02 2008-02-26 Kabushiki Kaisha Toshiba Multichip semiconductor device, chip therefor and method of formation thereof
US6809421B1 (en) * 1996-12-02 2004-10-26 Kabushiki Kaisha Toshiba Multichip semiconductor device, chip therefor and method of formation thereof
US7829975B2 (en) 1996-12-02 2010-11-09 Kabushiki Kaisha Toshiba Multichip semiconductor device, chip therefor and method of formation thereof
US8174093B2 (en) 1996-12-02 2012-05-08 Kabushiki Kaisha Toshiba Multichip semiconductor device, chip therefor and method of formation thereof
US8283755B2 (en) 1996-12-02 2012-10-09 Kabushiki Kaisha Toshiba Multichip semiconductor device, chip therefor and method of formation thereof
US6087719A (en) * 1997-04-25 2000-07-11 Kabushiki Kaisha Toshiba Chip for multi-chip semiconductor device and method of manufacturing the same
US6383837B1 (en) 1997-04-25 2002-05-07 Kabushiki Kaisha Toshiba Method of manufacturing a multi-chip semiconductor device effective to improve alignment
WO1999033107A1 (en) * 1997-12-18 1999-07-01 Daimlerchrysler Aktiengesellschaft Semiconductor wafer with integrated individual components, method and device for the production of said semiconductor wafer
JP2000277689A (en) * 1999-03-29 2000-10-06 Sony Corp Semiconductor device and manufacture thereof
US7180168B2 (en) 2002-09-24 2007-02-20 Seiko Epson Corporation Stacked semiconductor chips
US7005324B2 (en) * 2002-09-24 2006-02-28 Seiko Epson Corporation Method of fabricating stacked semiconductor chips
EP1573799A4 (en) * 2002-12-20 2009-02-25 Ibm Three-dimensional device fabrication method
EP1573799A1 (en) * 2002-12-20 2005-09-14 International Business Machines Corporation Three-dimensional device fabrication method
JP2007506278A (en) * 2003-09-15 2007-03-15 インターナショナル・ビジネス・マシーンズ・コーポレーション Integrated electronic chip and interconnect device, and method for manufacturing the same
JP2005210048A (en) * 2003-12-22 2005-08-04 Seiko Epson Corp Manufacturing method of semiconductor device, semiconductor device, circuit board, and electronic apparatus
JP4706180B2 (en) * 2003-12-22 2011-06-22 セイコーエプソン株式会社 Manufacturing method of semiconductor device
JP2006005343A (en) * 2004-06-15 2006-01-05 Samsung Electronics Co Ltd Wafer-level chip scale package manufacturing method
US7675153B2 (en) 2005-02-02 2010-03-09 Kabushiki Kaisha Toshiba Semiconductor device having semiconductor chips stacked and mounted thereon and manufacturing method thereof
US7892890B2 (en) 2005-02-02 2011-02-22 Kabushiki Kaisha Toshiba Semiconductor device having semiconductor chips stacked and mounted thereon and manufacturing method thereof
FR2901635A1 (en) * 2006-06-09 2007-11-30 Commissariat Energie Atomique Front and rear surfaces three dimensional electrical connection forming method for e.g. silicon substrate, involves engraving lines and trenches, and realising metallization of walls of lines and base of trenches on surfaces by layers
US8076788B2 (en) 2006-10-10 2011-12-13 Tessera, Inc. Off-chip vias in stacked chips
US8426957B2 (en) 2006-10-10 2013-04-23 Tessera, Inc. Edge connect wafer level stacking
US8022527B2 (en) 2006-10-10 2011-09-20 Tessera, Inc. Edge connect wafer level stacking
US9899353B2 (en) 2006-10-10 2018-02-20 Tessera, Inc. Off-chip vias in stacked chips
US7901989B2 (en) 2006-10-10 2011-03-08 Tessera, Inc. Reconstituted wafer level stacking
US9048234B2 (en) 2006-10-10 2015-06-02 Tessera, Inc. Off-chip vias in stacked chips
US9378967B2 (en) 2006-10-10 2016-06-28 Tessera, Inc. Method of making a stacked microelectronic package
US8431435B2 (en) 2006-10-10 2013-04-30 Tessera, Inc. Edge connect wafer level stacking
US8999810B2 (en) 2006-10-10 2015-04-07 Tessera, Inc. Method of making a stacked microelectronic package
US9070678B2 (en) 2006-11-22 2015-06-30 Tessera, Inc. Packaged semiconductor chips with array
US8569876B2 (en) 2006-11-22 2013-10-29 Tessera, Inc. Packaged semiconductor chips with array
US9548254B2 (en) 2006-11-22 2017-01-17 Tessera, Inc. Packaged semiconductor chips with array
US8349654B2 (en) 2006-12-28 2013-01-08 Tessera, Inc. Method of fabricating stacked packages with bridging traces
US7952195B2 (en) 2006-12-28 2011-05-31 Tessera, Inc. Stacked packages with bridging traces
US8310036B2 (en) 2007-03-05 2012-11-13 DigitalOptics Corporation Europe Limited Chips having rear contacts connected by through vias to front contacts
WO2008108970A3 (en) * 2007-03-05 2008-12-24 Tessera Inc Chips having rear contacts connected by through vias to front contacts
US8883562B2 (en) 2007-07-27 2014-11-11 Tessera, Inc. Reconstituted wafer stack packaging with after-applied pad extensions
US8193615B2 (en) 2007-07-31 2012-06-05 DigitalOptics Corporation Europe Limited Semiconductor packaging process using through silicon vias
US8043895B2 (en) 2007-08-09 2011-10-25 Tessera, Inc. Method of fabricating stacked assembly including plurality of stacked microelectronic elements
JP2010204112A (en) * 2010-04-26 2010-09-16 Hamamatsu Photonics Kk Sensor and method for manufacturing the same
US9640437B2 (en) 2010-07-23 2017-05-02 Tessera, Inc. Methods of forming semiconductor elements using micro-abrasive particle stream
US8847380B2 (en) 2010-09-17 2014-09-30 Tessera, Inc. Staged via formation from both sides of chip
US9355948B2 (en) 2010-09-17 2016-05-31 Tessera, Inc. Multi-function and shielded 3D interconnects
US10354942B2 (en) 2010-09-17 2019-07-16 Tessera, Inc. Staged via formation from both sides of chip
US8432045B2 (en) 2010-11-15 2013-04-30 Tessera, Inc. Conductive pads defined by embedded traces
US9099296B2 (en) 2010-12-02 2015-08-04 Tessera, Inc. Stacked microelectronic assembly with TSVS formed in stages with plural active chips
US9269692B2 (en) 2010-12-02 2016-02-23 Tessera, Inc. Stacked microelectronic assembly with TSVS formed in stages and carrier above chip
US9368476B2 (en) 2010-12-02 2016-06-14 Tessera, Inc. Stacked microelectronic assembly with TSVs formed in stages with plural active chips
US9620437B2 (en) 2010-12-02 2017-04-11 Tessera, Inc. Stacked microelectronic assembly with TSVS formed in stages and carrier above chip

Similar Documents

Publication Publication Date Title
JPS60160645A (en) Laminated semiconductor integrated circuit device
US10672750B2 (en) Semiconductor device
US5481133A (en) Three-dimensional multichip package
US5027188A (en) Semiconductor integrated circuit device in which a semiconductor chip is mounted with solder bumps for mounting to a wiring substrate
KR100364635B1 (en) Chip-Level Three-Dimensional Multi-Chip Package Having Chip Selection Pad Formed On Chip-Level And Making Method Therefor
US7397117B2 (en) Chip package with die and substrate
US5220199A (en) Semiconductor integrated circuit device in which a semiconductor chip is mounted with solder bumps for mounting to a wiring substrate
JP5091221B2 (en) Semiconductor device
US7135378B2 (en) Process for fabricating a semiconductor device having a plurality of encrusted semiconductor chips
JPS6355213B2 (en)
JP2007506278A (en) Integrated electronic chip and interconnect device, and method for manufacturing the same
JP2014511039A (en) Semiconductor chip having support terminal pads
US10181411B2 (en) Method for fabricating a carrier-less silicon interposer
JP3356122B2 (en) System semiconductor device and method of manufacturing system semiconductor device
JPH0338043A (en) Semiconductor integrated circuit device
JP5171726B2 (en) Semiconductor device
JPS60140850A (en) Manufacture of laminated integration type semiconductor circuit device
TWI409933B (en) Chip stacked package structure and its fabrication method
US6703286B1 (en) Metal bond pad for low-k inter metal dielectric
JP4356196B2 (en) Semiconductor device assembly
JP2005101186A (en) Laminated semiconductor integrated circuit
KR102647093B1 (en) Semiconductor package structures, methods, devices and electronic products
JPH0410649A (en) Manufacture of semiconductor substrate for three-dimensional packaging
JPS6091660A (en) Manufacture of semiconductor device
JP3005545B1 (en) Semiconductor integrated circuit device