JPS601562B2 - Film thickness measurement method - Google Patents

Film thickness measurement method

Info

Publication number
JPS601562B2
JPS601562B2 JP7439179A JP7439179A JPS601562B2 JP S601562 B2 JPS601562 B2 JP S601562B2 JP 7439179 A JP7439179 A JP 7439179A JP 7439179 A JP7439179 A JP 7439179A JP S601562 B2 JPS601562 B2 JP S601562B2
Authority
JP
Japan
Prior art keywords
layer
sample
film thickness
measured
sealed container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7439179A
Other languages
Japanese (ja)
Other versions
JPS55166006A (en
Inventor
仁士 尾形
達生 増見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP7439179A priority Critical patent/JPS601562B2/en
Publication of JPS55166006A publication Critical patent/JPS55166006A/en
Publication of JPS601562B2 publication Critical patent/JPS601562B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Description

【発明の詳細な説明】 この発明は、非接触法による膜の厚さの測定法に関し、
更に詳しくはオプトアコーステイツク効果において試料
内に起こる温度の定常波により誘起される密封容器内の
圧力波の振幅を入射電磁波の2つの異なる変調周波数に
おいて測定し、その振幅の比から膜厚を測定する非接触
法による膜厚測定法に関するものである。
[Detailed Description of the Invention] The present invention relates to a method for measuring the thickness of a film by a non-contact method.
More specifically, in the opto-acoustic effect, the amplitude of the pressure wave in the sealed container induced by the standing temperature wave that occurs in the sample is measured at two different modulation frequencies of the incident electromagnetic wave, and the film thickness is measured from the ratio of the amplitudes. This relates to a non-contact film thickness measurement method.

オプトアコースティック効果とは、気体で満たされた密
封容器内に設置された物質に、この物質が吸収する電磁
波に変調を加えて照射すると、密封容器内に電磁波変調
周波数と同じ周波数の圧力波が生じる現象をいう。
The opto-acoustic effect is when a substance placed in a sealed container filled with gas is irradiated with modulated electromagnetic waves that the substance absorbs, producing pressure waves with the same frequency as the electromagnetic wave modulation frequency within the sealed container. refers to a phenomenon.

従来の膜厚測定法には、触針法、くり返し反射法、偏光
解析法、電気抵抗法、電気容量法、超音波法、うず電流
法等が知られている。
Conventional film thickness measurement methods include a stylus method, a repeated reflection method, an ellipsometry method, an electrical resistance method, a capacitance method, an ultrasonic method, an eddy current method, and the like.

しかし触針法の場合には対象物質が堅い物質に限られ、
くり返し反射法の場合には破壊検査であり、偏光解析法
では一義的に膜厚を求められないし、また不透明物質に
は適応できず、さらに他の電磁気的測定法では物質の電
磁気的性質により適用範囲が制限される等の欠点を有し
ている。さらにオプトアコーステイツク効果を用いる非
接触法による膜厚測定法も従来から知られているが、こ
の方法では被測定層と入射電磁波を効率よく吸収する薄
い吸収層とからなる2重層を試料とし、この試料を気体
(以下バックグラウンドガスと称する)の封入された密
封容器内に被測定層がバックグラウンドガスに接し、か
つ密封容器の壁面の一部を構成するように段直し、この
試料に変調された電磁波を照射してその時に発生する圧
力波の振幅と、吸収層のみで同様に測定された圧力波の
振幅の比をとり、この比の対数値の電磁波の変調周波数
に対する勾配より膜厚を求める。
However, in the case of the stylus method, the target material is limited to hard materials;
In the case of the repeated reflection method, it is a destructive test, and the ellipsometric method cannot uniquely determine the film thickness and cannot be applied to opaque materials, and other electromagnetic measurement methods cannot be applied due to the electromagnetic properties of the material. It has drawbacks such as limited range. Furthermore, a non-contact film thickness measurement method using the opto-acoustic effect has been known, but in this method, a double layer consisting of a layer to be measured and a thin absorption layer that efficiently absorbs incident electromagnetic waves is used as a sample. This sample was placed in a sealed container filled with gas (hereinafter referred to as background gas) so that the layer to be measured was in contact with the background gas and formed part of the wall of the sealed container, and the sample was modulated. The ratio of the amplitude of the pressure wave generated at that time by irradiating the electromagnetic wave to the amplitude of the pressure wave similarly measured only in the absorbing layer is determined, and the film thickness is calculated from the slope of the logarithm of this ratio with respect to the modulation frequency of the electromagnetic wave. seek.

この方法によれば、試料表面の温度変動の振幅と圧力波
の振幅が比例していることから、試料表面の温度を直接
測定する必要はなく、従って非接触で膜厚を測定するこ
とができるが、次に述べる欠点を有する。すなわち、膜
厚を求めるのに吸収層のみの場合と、吸収層および被測
定層とからなる2重層の2回について、圧力波の周波数
依存性を測定しなければならず、時間と労力を要する。
この発明は上記欠点を除去し、広い範囲の物質の膜に対
して正確かつ迅速に膜厚を測定することができる膜厚測
定法を提供することを目的とする。
According to this method, since the amplitude of the temperature fluctuation on the sample surface is proportional to the amplitude of the pressure wave, there is no need to directly measure the temperature on the sample surface, and therefore the film thickness can be measured without contact. However, it has the following drawbacks. In other words, to determine the film thickness, the frequency dependence of pressure waves must be measured twice: once for the absorbing layer only, and once for the double layer consisting of the absorbing layer and the layer to be measured, which requires time and effort. .
It is an object of the present invention to provide a film thickness measuring method capable of eliminating the above-mentioned drawbacks and accurately and quickly measuring the film thickness of films of a wide range of substances.

この発明に係る膜厚測定法は、被測定層と入射電磁波に
対し適当な吸収係数と厚さを有する薄い吸収層とからな
る2重層を試料とし、この試料をバックグラウンドガス
を封入した密封容器に被測定層がバックグラウンドガス
に接し、かつ密封容器の壁面の一部を構成するように設
置し、この試料に変調された電磁波を照射してその時に
発生する圧力波の振幅を、変調周波数を変化させて2つ
の変調周波数において測定し、2つの振幅の比より膜厚
を求めることを特徴とする。
In the film thickness measurement method according to the present invention, a double layer consisting of a layer to be measured and a thin absorption layer having an appropriate absorption coefficient and thickness for incident electromagnetic waves is used as a sample, and the sample is placed in a sealed container containing a background gas. The layer to be measured is placed in contact with the background gas and forms part of the wall of the sealed container, and the sample is irradiated with modulated electromagnetic waves.The amplitude of the pressure wave generated at that time is determined by the modulation frequency. It is characterized by measuring at two modulation frequencies by changing the amplitude, and determining the film thickness from the ratio of the two amplitudes.

従って、本測定法は非接触式であり試料を破壊すること
は全くなく、また試料の透明度あるいは電磁気的性質等
に依存せず、従来の膜厚測定法に比し極めて広い適用範
囲を有する膜厚測定法である。
Therefore, this measurement method is non-contact and does not destroy the sample at all, and does not depend on the transparency or electromagnetic properties of the sample, and has a much wider range of application than conventional film thickness measurement methods. This is a thickness measurement method.

以下この発明の実施例を図に基づいて説明する。Embodiments of the present invention will be described below based on the drawings.

第1図はこの発明の一実施例を示すもので、1は試料、
2は密封容器で、その一壁面に電磁波入射窓3が形成さ
れ、他の壁面に音圧検出素子としてマイクロホン5が気
密性を保つように装着されている。
FIG. 1 shows an embodiment of the present invention, in which 1 is a sample;
Reference numeral 2 denotes a sealed container, in which an electromagnetic wave entrance window 3 is formed on one wall surface, and a microphone 5 as a sound pressure detection element is mounted on the other wall surface so as to maintain airtightness.

6は光源(例えばキセノンランプ、タングステンランプ
、あるいは各種のレーザ)、7は電磁波の変調(変調周
波数は10〜2000Hz)を行うためのチョツパ、8
はマイクロホン5の出力を増幅する増幅器、9は前記チ
ョッパ7からの参照信号71と増幅器8の出力を受け、
信号の振幅と位相を測定する、いわゆる〇ツクインアン
プで、このアンプ9には図示されていないがレコーダが
接続されている。
6 is a light source (for example, a xenon lamp, a tungsten lamp, or various lasers); 7 is a chopper for modulating electromagnetic waves (the modulation frequency is 10 to 2000 Hz); 8
is an amplifier that amplifies the output of the microphone 5; 9 receives the reference signal 71 from the chopper 7 and the output of the amplifier 8;
This amplifier 9 is a so-called twin-in amplifier that measures the amplitude and phase of a signal, and a recorder (not shown) is connected to this amplifier 9.

なお、4は入射窓3部の気密性を保つための○リングで
ある。また密封容器2にはバックグラウンドガスが封入
されている。前記試料1は第2図に示すように被測定層
laと吸収層lbとからなり、第1図または第3図に示
すようにその被測定層laがバックグラウンドガスと接
し、かつ容器2の壁面の一部を構成するように、例えば
接着テープによる貼付等によって入射窓3に取付けるか
、あるいは第4図に示すように入射窓3と対向する壁面
に取付ける。吸収層lbは変調された電磁波ビームを吸
収して発熱し、被測定層laの吸収層lbと接する面に
周期的な温度変化を起こさせる役割を持つ。この吸収層
1b‘ま、例えばカーボンブラックバインダー樹脂から
なる溶液の塗布等により形成される。次に上記測定装置
の動作について説明する。変調された電磁波ビーム61
を試料1に照射すると吸収層lbに電磁波が吸収され、
そのエネルギーは吸収層lb内で熱エネルギーに変換さ
れて吸収層lbの周期的な温度変化を引き起こす。被測
定層laと吸収層lbが接しているため、被測定層la
の吸収層lb側の表面温度もやはり同周期、同位相で変
化する。この温度の波動は被測定層la内を伝播し、反
対側の表面でバックグラウンドガスを加熱し、密封容器
2内に圧力波を生じさせる。この圧力波の振幅(以下音
圧と称する)をマイクロホン5で測定する。このように
測定される音圧Qは、次の関係を満足する。Q二Q〇の
一入eXp{−(季浄さ)2X}‐‐‐‐‐‐(1)た
だしQoは測定装置固有の定数、也は変調角周波数、Q
sは被測定値laの熱拡散率、入は吸収層lbの光学吸
収係数および熱拡散係数の大きさによって決る定数であ
り、さらに×は被測定層laの厚さである。
Note that 4 is a circle for keeping the 3 parts of the entrance window airtight. Further, the sealed container 2 is filled with a background gas. The sample 1 consists of a layer to be measured la and an absorption layer lb as shown in FIG. It is attached to the entrance window 3 by, for example, pasting with adhesive tape so as to constitute a part of the wall surface, or it is attached to the wall surface facing the entrance window 3 as shown in FIG. The absorption layer lb absorbs the modulated electromagnetic wave beam, generates heat, and has the role of causing periodic temperature changes on the surface of the layer la to be measured that is in contact with the absorption layer lb. This absorbent layer 1b' is formed, for example, by applying a solution of carbon black binder resin. Next, the operation of the above measuring device will be explained. Modulated electromagnetic wave beam 61
When sample 1 is irradiated with , the electromagnetic wave is absorbed by the absorption layer lb,
The energy is converted into thermal energy within the absorbing layer lb, causing periodic temperature changes in the absorbing layer lb. Since the layer to be measured la and the absorption layer lb are in contact, the layer to be measured la
The surface temperature on the absorption layer lb side also changes with the same period and phase. This temperature wave propagates within the layer la to be measured, heats the background gas on the opposite surface, and generates a pressure wave within the sealed container 2. The amplitude of this pressure wave (hereinafter referred to as sound pressure) is measured with a microphone 5. The sound pressure Q measured in this way satisfies the following relationship. Q2 Q〇 1 eXp {- (Kijisa) 2
s is the thermal diffusivity of the measured value la, s is a constant determined by the magnitude of the optical absorption coefficient and thermal diffusivity of the absorption layer lb, and x is the thickness of the measured layer la.

定数入および被測定層laの熱拡散率Qsが既知であれ
ば、適当な2つの変調角周波数の,,の2での音圧Q,
,Q2を測定することにより次の関係から被測定層の厚
さ×を求めることができる。QI=(2÷)入eXp{
−(巻芋〆x}岬(2Q2 のI次に定数入を求める方
法を述べる。
If a constant is entered and the thermal diffusivity Qs of the layer to be measured la is known, the sound pressure Q at two appropriate modulation angular frequencies, , 2,
, Q2, the thickness x of the layer to be measured can be determined from the following relationship. QI=(2÷)input eXp{
-(Makiimo〆x}Misaki(2Q2 We will explain how to find the constant input in the I order.

試料1が吸収層lbのみからなる場合、音圧Qは次式に
より与えられる。Q:Q〇の一入 ……
………【31従って、変調角周波数のの関数としてQを
測定し、logQとlogのの関係の煩きから定数入を
求めることができる。
When the sample 1 consists of only the absorbing layer lb, the sound pressure Q is given by the following equation. Q: One piece of Q〇...
[31] Therefore, it is possible to measure Q as a function of the modulation angular frequency and find a constant value from the relationship between logQ and log.

‘2}式を用いて×を求める便宜上、入が1であるよう
な吸収層lbを得ることは有効である。実際に入が1で
あるような吸収層lbが得られることを次に示す。すな
わち、カーボンブラック35%を、バインダー樹脂ポリ
ビニールブチラール65%と共にエチルアルコール適量
に溶解し、5時間以上ボールミルで擬拝した塗料を電磁
波入射窓3に塗布し、膜厚がそれぞれ5山肌、10ム机
、13ムのおよび30〆机の吸収層を得た。これらの吸
収層の各々に対し、Qの電磁波変調角周波数の依存性を
測定した結果を第5図に示す。第5図に示されるように
、logのとlogQの関係はすべて直線関係となり、
その傾きから定数入を算出することができる。このよう
にして求めた定数入の値は吸収層の厚さが5山肌の時1
であり、5〃の以上の吸収層に対してはすべて1より大
きい値が得られた。従ってこ)で用いた塗料の場合には
膜厚を5A机とする吸収層については定数入が1になる
ことが実験的に確認された。次に本発明による高分子フ
ィルムの測定結果について述べる。
For the sake of convenience in finding x using the formula '2}, it is effective to obtain an absorbing layer lb in which the input is 1. It will be shown below that an absorbing layer lb having an input of 1 can actually be obtained. That is, 35% carbon black is dissolved in an appropriate amount of ethyl alcohol together with 65% polyvinyl butyral binder resin, and a paint that has been polished in a ball mill for more than 5 hours is applied to the electromagnetic wave entrance window 3, and the film thickness is 5 mounds and 10 mcm, respectively. Absorbent layers of 13 mm, 13 mm and 30 mm were obtained. FIG. 5 shows the results of measuring the dependence of Q on the electromagnetic wave modulation angular frequency for each of these absorption layers. As shown in Figure 5, the relationships between log and logQ are all linear relationships,
The constant value can be calculated from the slope. The value of the constant obtained in this way is 1 when the thickness of the absorption layer is 5 peaks.
, and all values greater than 1 were obtained for absorbent layers of 5 or more. Therefore, in the case of the paint used in this case, it was experimentally confirmed that the constant value is 1 for the absorption layer having a film thickness of 5A. Next, the measurement results of the polymer film according to the present invention will be described.

すなわち、カーボンとバインダー樹脂ポリビニルプチラ
ールからなる前述の塗料を、予めうず電流法により膜厚
を求められた厚さ6r仇のポリ塩化ビニル樹脂に塗布し
、カーボンーブチラール樹脂層を吸収層lb、ポリ塩化
ビニル樹脂層を被測定層laとした2重層の試料を作製
し、これを第4図に示すように設置し、光源にキセノン
ランプを用いて白色光を入射し、変調角周波数の,=1
0000、■2 =1600での音圧の比Q,/Q2を
求めたところ4.8×10‐2になった。なお、吸収層
lbの厚さは5山肌であった。この値と、別に求めたポ
リ塩化ビニル樹脂の熱拡散率の値1.07×10‐3の
・se〆1、および入=1を用いて‘2}式より膜厚を
求めると6.0仏のとなり、うず電流法により求めた値
と非常によい一致が見られた。この高分子フィルムの膜
厚測定の例においては、吸収層としてカーボンを樹脂に
分散させたフィルムを用いたが、たとえば金属等の基板
上に存在する薄い皮膜の厚さ等を測定する場合には、基
板そのものを吸収層として用いればよい。
That is, the above-mentioned coating material consisting of carbon and binder resin polyvinyl butyral is applied to a polyvinyl chloride resin having a thickness of 6 r whose film thickness was previously determined by the eddy current method, and the carbon-butyral resin layer is formed into an absorbing layer lb, A double-layer sample was prepared with a polyvinyl chloride resin layer as the layer to be measured la, and this was set up as shown in Figure 4. White light was incident using a xenon lamp as a light source, and the modulation angular frequency was measured. =1
The sound pressure ratio Q, /Q2 at 0000, ■2 = 1600 was found to be 4.8×10-2. Note that the thickness of the absorbent layer lb was 5 mounds. Using this value, the value of the thermal diffusivity of polyvinyl chloride resin obtained separately, 1.07×10-3・se〆1, and input=1, the film thickness is calculated from the formula '2}: 6.0 Very good agreement was observed with the value obtained by the eddy current method. In this example of measuring the film thickness of a polymer film, a film with carbon dispersed in resin was used as the absorption layer, but when measuring the thickness of a thin film on a substrate such as a metal, etc. , the substrate itself may be used as the absorption layer.

また、この発明によれば、従来測定することが困難であ
った油膜の厚さの測定等、固体上の液体状皮膜の厚さに
ついても測定することができる。以上のように本発明は
従来の各種膜厚測定法に比し、非接触かつ非破壊検査で
あること、および適用範囲が著しく広いこと等の利点が
ある。
Further, according to the present invention, it is also possible to measure the thickness of a liquid film on a solid, such as the thickness of an oil film, which has been difficult to measure in the past. As described above, the present invention has advantages over various conventional film thickness measurement methods, such as non-contact and non-destructive testing and a significantly wider range of application.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第5図はこの発明の一実施例を示すもので、第
1図は測定系のブロック図、第2図は試料の一構成例を
示す側面図、第3図及び第4図は密封容器への試料取付
状態を説明するための断面図、第5図は音圧と変調角周
波数との関係を示す特性図である。 1・…・・試料、la・・・…被測定層、lb・・…・
吸収層、2・・・・・・密封容器、3・…・・電磁波入
射窓、4・・・・・・0リング、5・・・・・・マイク
ロホン、6・・・・・・光源、7・・・・・・チョッバ
、8・・・…増幅器、9・・・…ロックィンアンプ。 なお、図中同一符号は同一または相当部分を示す。第1
図 第2図 第3図 第4図 第5図
Figures 1 to 5 show an embodiment of the present invention, in which Figure 1 is a block diagram of the measurement system, Figure 2 is a side view showing an example of the structure of a sample, and Figures 3 and 4. FIG. 5 is a cross-sectional view for explaining how a sample is attached to a sealed container, and FIG. 5 is a characteristic diagram showing the relationship between sound pressure and modulation angular frequency. 1...sample, la...layer to be measured, lb...
Absorption layer, 2... sealed container, 3... electromagnetic wave incidence window, 4... 0 ring, 5... microphone, 6... light source, 7... Chobba, 8... Amplifier, 9... Lock-in amplifier. Note that the same reference numerals in the figures indicate the same or corresponding parts. 1st
Figure 2 Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 1 被測定層と入射電磁波を効率よく吸収する吸収層と
からなる2重層を試料とし、この試料を所要の気体を封
入した密封容器に上記被測定層が上記気体に接し、かつ
上記密封容器の壁面の一部を構成するように設置し、上
記試料に互いに異なる変調周波数の電磁波をそれぞれ照
射して、発生する各々の圧力波の振幅の比から膜厚を求
めるようにしたことを特徴とする膜厚測定法。
1. A double layer consisting of a layer to be measured and an absorbing layer that efficiently absorbs incident electromagnetic waves is used as a sample, and the sample is placed in a sealed container containing a required gas, and the layer to be measured is in contact with the gas, and the layer in the sealed container is The sample is installed so as to form part of a wall surface, and the sample is irradiated with electromagnetic waves having different modulation frequencies, and the film thickness is determined from the ratio of the amplitudes of the respective pressure waves generated. Film thickness measurement method.
JP7439179A 1979-06-12 1979-06-12 Film thickness measurement method Expired JPS601562B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7439179A JPS601562B2 (en) 1979-06-12 1979-06-12 Film thickness measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7439179A JPS601562B2 (en) 1979-06-12 1979-06-12 Film thickness measurement method

Publications (2)

Publication Number Publication Date
JPS55166006A JPS55166006A (en) 1980-12-24
JPS601562B2 true JPS601562B2 (en) 1985-01-16

Family

ID=13545825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7439179A Expired JPS601562B2 (en) 1979-06-12 1979-06-12 Film thickness measurement method

Country Status (1)

Country Link
JP (1) JPS601562B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0545234U (en) * 1991-11-15 1993-06-18 株式会社ユニシアジエツクス Bearing structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0545234U (en) * 1991-11-15 1993-06-18 株式会社ユニシアジエツクス Bearing structure

Also Published As

Publication number Publication date
JPS55166006A (en) 1980-12-24

Similar Documents

Publication Publication Date Title
Perondi et al. Minimal‐volume photoacoustic cell measurement of thermal diffusivity: Effect of the thermoelastic sample bending
Patel et al. Pulsed optoacoustic spectroscopy of condensed matter
US3879992A (en) Multiple crystal oscillator measuring apparatus
Balderas-Lopez et al. Thermal diffusivity measurements in the photoacoustic open-cell configuration using simple signal normalization techniques
Hatta Thermal diffusivity measurements of thin films and multilayered composites
US4492107A (en) Acoustic power meter
JPH0358443B2 (en)
Helander et al. Photoacoustic study of layered samples
Zamiri et al. Laser ultrasonic receivers based on organic photorefractive polymer composites
US4682897A (en) Light scattering measuring apparatus
Lima et al. Measurement of the thermal properties of liquids using a thermal wave interferometer
JPS601562B2 (en) Film thickness measurement method
Chirtoc et al. Development of the front-detection photopyroelectric (FPPE) configuration for thermophysical study of glass-forming liquids
JPS601561B2 (en) Film thickness measurement method
Akabori et al. Measurement of the thermal diffusivity of thin films on substrate by the photoacoustic method
CN109342364A (en) A kind of solution detection method and device based on golden film photo-thermal effect
JPS6138410B2 (en)
CHIRTOC et al. Comparative study of coating thickness determination in packaging composite materials using photothermal radiometry, photoacoustic and photopyroelectric methods
JPS5925974B2 (en) Thermal diffusivity measurement method
Bento et al. Open photoacoustic cell X-ray detection
JPS5946337B2 (en) Thermal diffusivity measurement method
Hashimoto et al. Thermal diffusivity measurements for thin films by the photoacoustic effect
Schweitzer et al. Optical Depth Profiling of Thin Films by Impulse Mirage Effect Spectroscopy. Part II: Measurements Using Wide-Band Modulated Excitation
Yoshida et al. Measurement of Thermal Diffusivity of Semi-transparent Thin Plate by Phtoacoustic Method
JPS5945100B2 (en) Thermal diffusivity measuring device