JPS6138410B2 - - Google Patents

Info

Publication number
JPS6138410B2
JPS6138410B2 JP53042976A JP4297678A JPS6138410B2 JP S6138410 B2 JPS6138410 B2 JP S6138410B2 JP 53042976 A JP53042976 A JP 53042976A JP 4297678 A JP4297678 A JP 4297678A JP S6138410 B2 JPS6138410 B2 JP S6138410B2
Authority
JP
Japan
Prior art keywords
sample
layer
measured
thermal diffusivity
sealed container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53042976A
Other languages
Japanese (ja)
Other versions
JPS54135589A (en
Inventor
Hitoshi Ogata
Tatsuo Masumi
Hideaki Kusakawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4297678A priority Critical patent/JPS54135589A/en
Publication of JPS54135589A publication Critical patent/JPS54135589A/en
Publication of JPS6138410B2 publication Critical patent/JPS6138410B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 この発明は、非定常法による熱拡散率の測定装
置に関し、更に詳しくはオプトアコーステイツク
効果において試料内に起こる温度の定常波により
誘起される密封容器内の圧力波の振幅が入射電磁
波の変調周波数に依存することを利用して、熱拡
散率を測定する非定常法による熱拡散率測定装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for measuring thermal diffusivity using an unsteady method. The present invention relates to a thermal diffusivity measuring device using an unsteady method that measures thermal diffusivity by utilizing the fact that the modulation frequency of incident electromagnetic waves depends on the modulation frequency of incident electromagnetic waves.

オプトアコーステイツク効果とは、気体で満た
された密封容器内に設置された物質に、この物質
が吸収する電磁波に変調を加えて照射すると、密
封容器内に電磁波変調周波数と同じ周波数の圧力
波が生じる現象をいう。
The opto-acoustic effect is that when a substance placed in a sealed container filled with gas is irradiated with modulated electromagnetic waves that the substance absorbs, a pressure wave with the same frequency as the electromagnetic wave modulation frequency is generated inside the sealed container. A phenomenon that occurs.

非定常法による熱拡散率の測定装置は、試料内
に熱的に非平衡の状態を強制的に作り、その緩和
に伴つて起こる試料の温度分布の変化を測定する
ことにより熱拡散率を求めるものであり、定常法
による測定装置に比べて一般的に測定時間が短
く、しかも温度だけを時間の関数として測定すれ
ばよいという特長がある。
A thermal diffusivity measuring device using an unsteady method calculates thermal diffusivity by forcibly creating a thermally non-equilibrium state within a sample and measuring the change in temperature distribution of the sample that occurs as the state relaxes. This method has the advantage that it generally takes less time to measure than a measuring device using a steady method, and only the temperature needs to be measured as a function of time.

この非定常法の代表的なものとしては、オング
ストローム法,フラツシユ法がある。オングスト
ローム法による測定装置では、長さに比べて断面
積が十分小さいロツド状の試料の一端を周期的に
加熱,冷却を行う熱源に接触させることにより、
試料の一端に周期的な温度変化を起こさせ、結果
的に試料内に温度の波動を起こし、この温度の波
動が試料内を伝播する状態を波動の伝播方向に対
して加熱点よりの距離の異なつた2点以上の測定
点において温度を測定することにより観測し、各
測定点で得られる温度の波動と位相を用いて熱拡
散率を算出する。
Representative examples of this unsteady method include the Angstrom method and the Flash method. In a measuring device using the Angstrom method, one end of a rod-shaped sample whose cross-sectional area is sufficiently small compared to its length is brought into contact with a heat source that periodically heats and cools the rod.
A periodic temperature change is caused at one end of the sample, resulting in a temperature wave within the sample, and the state in which this temperature wave propagates within the sample is determined by the distance from the heating point in the wave propagation direction. Observation is made by measuring the temperature at two or more different measurement points, and the thermal diffusivity is calculated using the wave and phase of the temperature obtained at each measurement point.

一方、フラツシユ法による測定装置では、平面
板の試料の一方の表面に光吸収層を設け、これに
例えばキセノンアークフラツシユあるいはレーザ
パルス等を照射して光吸収による瞬間的な加熱を
行い、この時起こる吸収層での温度上昇が試料の
厚さ方向に伝播されて照射面と反対側の試料表面
に起こす温度変化をフラツシユ照射後の時間の関
数として測定し、この時得られる温度−時間曲線
より熱拡散率を算出する。
On the other hand, in a measurement device using the flash method, a light absorption layer is provided on one surface of a flat plate sample, and this layer is irradiated with, for example, a xenon arc flash or laser pulse to instantaneously heat it by light absorption. The temperature rise in the absorption layer that occurs during flash irradiation is propagated in the thickness direction of the sample, and the temperature change that occurs on the sample surface opposite to the irradiated surface is measured as a function of time after flash irradiation, and the temperature-time curve obtained at this time is measured. Calculate the thermal diffusivity.

上記の2方法のいずれを用いても熱拡散率を測
定できるが、両者にはそれぞれ欠点がある。即
ち、前者では試料をロツド状に成型する必要があ
つて、試料物質が大量に必要であるとか、あるい
は試料表面からの熱損失を最小に押えるための断
熱系の整備が必要であるので、装置が大がかりに
なる。また、測定に比較的長時間を要し、しかも
温度測定のため温度検出素子を試料に接触させる
ので、試料と検出素子の間の接触抵抗及び加熱熱
源と試料の間の接触抵抗が誤差要因となつたり、
測定対象が比較的熱拡散率の大きい物質に限られ
る等の難点がある。
Although thermal diffusivity can be measured using either of the above two methods, both have their own drawbacks. That is, in the former case, it is necessary to mold the sample into a rod shape, which requires a large amount of sample material, or it is necessary to prepare an insulating system to minimize heat loss from the sample surface. becomes large-scale. In addition, since the measurement takes a relatively long time and the temperature detection element is brought into contact with the sample to measure the temperature, the contact resistance between the sample and the detection element and the contact resistance between the heating heat source and the sample are sources of error. Summer,
There are drawbacks such as the fact that the measurement target is limited to substances with a relatively high thermal diffusivity.

一方、後者の場合にも温度の測定のために温度
検出素子を試料に接触させる必要があり、そのと
きの接触抵抗が誤差要因となる。また、熱拡散率
の算出は、測定が短時間であるため熱損失を考慮
しないでよいという仮定のもとに行われており、
金属等の熱伝導率の大きなものではこの仮定を良
く満たすが、高分子フイルム等熱伝導率の小さな
ものになるほど誤差が大きくなるという欠点があ
る。
On the other hand, in the latter case as well, it is necessary to bring the temperature detection element into contact with the sample in order to measure the temperature, and the contact resistance at that time becomes an error factor. In addition, the calculation of thermal diffusivity is performed on the assumption that heat loss does not need to be considered because the measurement is short.
This assumption is well satisfied for materials with high thermal conductivity such as metals, but the error increases as materials with low thermal conductivity such as polymer films are used.

要約すれば、従来の測定装置は接触抵抗が誤差
要因となること及び断熱条件の設定が困難である
との欠点を有している。
In summary, conventional measuring devices have the disadvantages that contact resistance becomes a factor of error and that it is difficult to set adiabatic conditions.

この発明は上記欠点を除去し、試料物質の如何
に拘らず正確かつ簡単に熱拡散率を測定すること
ができる熱拡散率測定装置を提供することを目的
とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a thermal diffusivity measuring device that can eliminate the above-mentioned drawbacks and accurately and easily measure thermal diffusivity regardless of the sample material.

この発明に係る熱拡散率測定装置は、被測定層
と入射電磁波を効率よく吸収する薄い吸収層とか
らなる2重層を試料とし、この試料を気体(以下
バツクグラウンドガスと称する)を封入した密封
容器に被測定層がバツクグラウンドガスに接し、
かつ密封容器の壁面の一部を構成するように設置
し、この試料に変調された電磁波を照射してその
時に発生する圧力波の振幅と、吸収層のみで同様
に測定された圧力波の振幅の比をとり、この値の
電磁波の変調周波数の平方根に対する勾配より熱
拡散率を求めることを特徴とする。
The thermal diffusivity measurement device according to the present invention uses a double layer as a sample consisting of a layer to be measured and a thin absorbing layer that efficiently absorbs incident electromagnetic waves, and the sample is sealed in a gas (hereinafter referred to as background gas) sealed. The layer to be measured is in contact with the background gas in the container,
The amplitude of the pressure wave generated when the sample is irradiated with modulated electromagnetic waves, and the amplitude of the pressure wave similarly measured only in the absorption layer. The thermal diffusivity is determined from the slope of this value with respect to the square root of the modulation frequency of the electromagnetic wave.

従つて、試料表面温度を直接測定しないため、
誤差要因となる接触抵抗が測定系から除去され
る。また、断熱条件の完全さは圧力波の振幅の比
の対数値が被測定層の厚さに対して線形性を持つ
か否かにより確かめるとができ、被測定層の膜厚
を適当に選定することにより、実際に断熱条件を
充分に満たすことが可能である。
Therefore, since the sample surface temperature is not directly measured,
Contact resistance, which causes errors, is removed from the measurement system. In addition, the completeness of the insulation condition can be confirmed by checking whether the logarithm of the ratio of the amplitudes of pressure waves has linearity with respect to the thickness of the layer to be measured, and the thickness of the layer to be measured can be appropriately selected. By doing so, it is possible to actually fully satisfy the insulation conditions.

第1図はこの発明の原理を示すもので、1は試
料、2は密封容器で、その一壁面に電磁波入射窓
3が形成され、他の壁面に音圧検出素子としてマ
イクロホン5が気密性を保つように装着されてい
る。6は光源(例えばキセノンランプ,タングス
テンランプ,あるいは各種のレーザ)、7は電磁
波の変調(変調周波数は20〜2000Hz)を行うため
のチヨツパ、8はマイクロホン5の出力を増幅す
る増幅器、9は前記チヨツパ7からの参照信号と
増幅器8の出力を受け、信号の振幅と位相を測定
する、いわゆるロツクインアンプで、このアンプ
9には図示されていないがレコーダが接続され
る。なお、4は入射窓3部の気密性を保つための
Oリングである。また、密封容器2にはバツクグ
ラウンドガスが封入されている。
Fig. 1 shows the principle of the present invention, in which 1 is a sample, 2 is a sealed container, in which an electromagnetic wave entrance window 3 is formed on one wall, and a microphone 5 as a sound pressure detection element is placed on the other wall to ensure airtightness. It is attached to keep it in place. 6 is a light source (for example, a xenon lamp, a tungsten lamp, or various lasers); 7 is a chopper for modulating electromagnetic waves (the modulation frequency is 20 to 2000 Hz); 8 is an amplifier for amplifying the output of the microphone 5; 9 is the aforementioned This is a so-called lock-in amplifier that receives the reference signal from the chopper 7 and the output of the amplifier 8 and measures the amplitude and phase of the signal.A recorder (not shown) is connected to the amplifier 9. Note that 4 is an O-ring for keeping the entrance window 3 part airtight. Further, the sealed container 2 is filled with a background gas.

前記試料1は第2図に示すように被測定層1a
と吸収層1bとからなり、第1図または第3図に
示すようにその被測定層1aがバツクグラウンド
ガスと接し、つ容器2の壁面の一部を構成するよ
うに、例えば接着テープによる貼付等によつて入
射窓3内面に取付けるか、あるいは第4図に示す
ように入射窓3と対向する壁面に取付ける。吸収
層1bは変調された電磁波ビームを吸収して発熱
し、被測定層1aの吸収層1bと接する面に周期
的な温度変化を起きさせる役割を持つ。この吸収
層1bは、例えばカーボンブラツクバインダー樹
脂溶液の塗布等により形成される。
The sample 1 has a layer to be measured 1a as shown in FIG.
and an absorbing layer 1b, and is pasted with adhesive tape, for example, so that the measured layer 1a is in contact with the background gas and constitutes a part of the wall surface of the container 2, as shown in FIG. 1 or 3. It can be attached to the inner surface of the entrance window 3 by means of, for example, or it can be attached to the wall surface facing the entrance window 3 as shown in FIG. The absorption layer 1b absorbs the modulated electromagnetic wave beam, generates heat, and has the role of causing periodic temperature changes on the surface of the layer 1a to be measured that is in contact with the absorption layer 1b. This absorbent layer 1b is formed, for example, by applying a carbon black binder resin solution.

次に上記測定装置の動作について説明する。変
調された電磁波ビーム6aを試料1に照射する
と、吸収層1bに電磁波が吸収され、そのエネル
ギーは吸収層1b内で熱エネルギーに変換されて
吸収層1bの温度が上昇する。
Next, the operation of the above measuring device will be explained. When the sample 1 is irradiated with the modulated electromagnetic wave beam 6a, the electromagnetic wave is absorbed by the absorption layer 1b, and the energy is converted into thermal energy within the absorption layer 1b, increasing the temperature of the absorption layer 1b.

今、仮に試料1が吸収層1bのみで構成されて
いるものとすると、上記の熱エネルギーは吸収層
1bと接するバツクグラウンドガスに熱伝導によ
り伝達され、ガスの周期的な温度上昇を引き起こ
す。この場合、バツクグラウンドガスが一定体積
のため、圧力波が発生する。入射電磁波が角周波
数ωで変調されているとすると、吸収層1bのバ
ツクグラウンドガスと接する側の表面での温度の
変動成分θ(t)は θ(t)=θpcos(ωt−ε) ……(1) により表わされる。ただし、θoは吸収層1bの
吸収係数が充分大きければ、吸収層1b自体の熱
伝導率と比熱によつて決まる値であり、εは初期
位相角である。また、吸収層表面温度の変動成分
の振幅θoと密封容器2内の圧力変動の振幅Qと
の間には Q=γP0θ/√2lggT0 ……(2) なる関係がある。ただし、Po,Toは密封容器2
内の圧力と温度、γ及びagはバツクグラウンド
ガスの定圧比熱と定容比熱の比及び熱拡散率、l
gは密封容器2の電磁波入射方向の長さである。
この2式より密封容器2内の条件が定まると試料
表面温度の圧力波のそれぞれの振幅が比例関係に
あることがわかる。
Now, assuming that the sample 1 is composed only of the absorption layer 1b, the above thermal energy is transferred to the background gas in contact with the absorption layer 1b by thermal conduction, causing a periodic temperature rise of the gas. In this case, pressure waves are generated because the background gas has a constant volume. Assuming that the incident electromagnetic wave is modulated at the angular frequency ω, the temperature fluctuation component θ(t) on the surface of the absorption layer 1b in contact with the background gas is θ(t) = θ p cos (ωt - ε) ...It is expressed by (1). However, if the absorption coefficient of the absorption layer 1b is sufficiently large, θo is a value determined by the thermal conductivity and specific heat of the absorption layer 1b itself, and ε is the initial phase angle. Furthermore, there is a relationship between the amplitude θo of the fluctuation component of the absorption layer surface temperature and the amplitude Q of the pressure fluctuation inside the sealed container 2 as follows: Q=γP 0 θ 0 /√2l g a g T 0 ...(2) be. However, Po and To are sealed containers 2
, γ and a g are the ratio of constant pressure specific heat to constant volume specific heat and thermal diffusivity of the background gas,
g is the length of the sealed container 2 in the electromagnetic wave incident direction.
From these two equations, it can be seen that when the conditions inside the sealed container 2 are determined, the amplitudes of the pressure waves of the sample surface temperature are in a proportional relationship.

さて、試料1が被測定層1aと吸収層1bの2
層よりなる場合を考える。被測定層1aと吸収層
1bが接しているため、被測定層1aの吸収層1
b側の表面温度はやはり(1)式により示される。こ
の温度の波動は、被測定層1a内を伝播し、反対
側の表面でバツクグラウンドガスを加熱し、試料
1が吸収層1bのみの時と同様に密封容器2内に
圧力波を生じさせる。この時バツクグラウンドガ
スと接する被測定層1aの表面の温度θs(x,
t)は、被測定層1aの厚さをxとし、熱拡散能
をasとすると次のような条件、即ち熱流が完全
に試料1面に対して垂直な方向にのみ起こり、1
次元の問題と考えることができ、被測定層1aと
吸収層1bが接する面をZとし、正負の方向に対
して温度分布が常に対称であるという条件が満た
されている時には θs(x,t)=θ0exp(−asx)
cos(ωt−asx−ε)…(3) の形に表わされる。なお、asは熱拡散率αsによ
りas=(ω/2αs1/2で定義される。このこと
から(1)式と(3)式を比較することによりθs(x,
t)とθ(t)の振幅の比 R=θs(x,t)/θ(t) の対数値は lnR=A−asx=A−(ω/2α1/2x …(4) で示される。ここに A=ln{cos(ωt−ax−ε)/cos(ωt
−ε)} である。また、両波動の位相差は △θ=−asx =−(ω/2α1/2x ……(5) になる。
Now, the sample 1 consists of two layers: the layer to be measured 1a and the absorption layer 1b.
Consider the case of layers. Since the layer to be measured 1a and the absorption layer 1b are in contact with each other, the absorption layer 1 of the layer to be measured 1a
The surface temperature on the b side is also expressed by equation (1). This temperature wave propagates within the layer to be measured 1a, heats the background gas on the opposite surface, and generates a pressure wave in the sealed container 2 in the same way as when the sample 1 consists of only the absorbing layer 1b. At this time, the temperature θs(x,
t) is calculated under the following conditions, where x is the thickness of the layer 1a to be measured and a s is the thermal diffusivity, that is, the heat flow occurs only in the direction perpendicular to the surface of the sample, and 1
It can be thought of as a dimensional problem, and when the surface where the measured layer 1a and the absorbing layer 1b are in contact is Z, and the condition that the temperature distribution is always symmetrical in the positive and negative directions is satisfied, θs(x, t ) = θ 0 exp (−a s x)
It is expressed in the form cos(ωt-a s x-ε)...(3). Note that a s is defined by the thermal diffusivity α s as a s =(ω/2α s ) 1/2 . From this, by comparing equations (1) and (3), θs(x,
The logarithm of the ratio of the amplitudes of t) and θ(t) R=θ s (x, t)/θ(t) is lnR=A−a s x=A−(ω/2α s ) 1/2 x … (4). Here A=ln{cos(ωt-a s x-ε)/cos(ωt
−ε)}. Moreover, the phase difference between both waves is Δθ=−a s x =−(ω/2α s ) 1/2 x (5).

この発明は原理的には(4)式あるいは(5)式の関係
を使うものであるが、実際の測定上次に述べるよ
うな問題点がある。即ち、試料1が実際に密封容
器2に設置され、吸収層1bが電磁波を吸収して
発熱し、周期的な温度変化を起こした場合に、被
測定層1aの吸収層1bと接する面をZとした時
に正負の方向に対して温度分布が対称にならない
からである。このような1次元の熱伝導の問題は
一般的には古くから解が求められている。その解
は各種のパラメータを導入して非常に複雑な形と
なるが、熱伝導の正負方向の大きさの比較である
熱損失パラメータを適当に選べば、前述の振幅比
Rがある角周波数範囲と試料層の厚さの範囲で(4)
式に従うことが知られている。発明者等はこのR
とω1/2の線形性の成り立つ条件を試料層の厚さ
を変化させることにより実験的に求め得るとを見
出した。
Although this invention uses the relationship expressed by equation (4) or (5) in principle, there are problems in actual measurement as described below. That is, when the sample 1 is actually installed in the sealed container 2 and the absorbing layer 1b absorbs electromagnetic waves and generates heat, causing periodic temperature changes, the surface of the layer 1a to be measured that is in contact with the absorbing layer 1b is This is because the temperature distribution is not symmetrical in the positive and negative directions when Solutions to such one-dimensional heat conduction problems have generally been sought for a long time. The solution is very complicated by introducing various parameters, but if the heat loss parameter, which is a comparison of the magnitude of heat conduction in the positive and negative directions, is selected appropriately, the angular frequency range where the amplitude ratio R mentioned above is and sample layer thickness (4)
It is known that the formula is followed. The inventors, etc.
We found that the conditions for the linearity of and ω 1/2 can be determined experimentally by changing the thickness of the sample layer.

即ち、カーボンブラツク35%を、バインダー樹
脂ポリビニルブチラール65%と共にエチルアルコ
ール適量に溶解し、5時間以上ボールミルで撹拌
した塗料を膜厚6μm,10μm,19μm,24μ
m,30μm,34μmのポリ塩化ビニル樹脂に塗布
し、カーボン−ブチラール樹脂層を吸収層1b、
ポリ塩化ビニル樹脂層を被測定層1aとした2重
層の試料を作成し、これを第4図に示すように設
置し、光源6にキセノンランプを用いて白色光を
入射し、圧力波の振幅の膜厚依存性を周波数をパ
ラメータとして測定した。なお、吸収層1bの厚
さは5〜10μmである。
That is, 35% carbon black was dissolved in an appropriate amount of ethyl alcohol along with 65% polyvinyl butyral binder resin, and the paint was stirred in a ball mill for more than 5 hours to form a coating with a film thickness of 6 μm, 10 μm, 19 μm, or 24 μm.
The carbon-butyral resin layer is applied to the absorbent layer 1b,
A double-layer sample with a polyvinyl chloride resin layer as the layer to be measured 1a was prepared, and this was installed as shown in Figure 4. White light was incident on the light source 6 using a xenon lamp, and the amplitude of the pressure wave was measured. We measured the dependence of the film on the film thickness using the frequency as a parameter. Note that the thickness of the absorption layer 1b is 5 to 10 μm.

このようにして測定した値を予め吸収層1bの
みの基準となる試料で得られた振幅で除すること
によつて求めたR値の膜厚依存性を第5図に示
す。この第5図から判るようにR値は lnR=A−αs0x−αs1x2 ……(6) のようにxの高次の項を含むことが明らかとなつ
たが、膜厚が小さい範囲では、lnRはxに対して
直線関係を示すことにより塩化ビニル樹脂等の熱
拡散率の小さい物質は膜厚を5〜20μmの範囲と
することにより(4)式を満たす条件が充分整つてい
ることが判明した。
FIG. 5 shows the dependence of the R value on the film thickness, which was obtained by dividing the value thus measured by the amplitude previously obtained with the reference sample of the absorbing layer 1b only. As can be seen from Figure 5, it is clear that the R value includes higher-order terms of x as shown in lnR=A−α s0 x−α s1 x2 (6), but the film thickness is small. In this range, lnR shows a linear relationship with x, so for substances with low thermal diffusivity such as vinyl chloride resin, by setting the film thickness in the range of 5 to 20 μm, the conditions to satisfy equation (4) are sufficiently established. It turned out that there was.

第6図はR値の角周波数ωの平方根に対する依
存性を示すものである。R値は√と直線関係を
示し、この勾配は(4)式より(1/2αs1/2xであ
る。この直線の勾配よりポリ塩化ビニルの熱拡散
率を求めると、αs=1.07×10-3cm2・sec-1とな
り、今まで発表された値が0.9〜2.4×10-3cm2
sec-1であることから充分妥当な値であることが
判る。
FIG. 6 shows the dependence of the R value on the square root of the angular frequency ω. The R value shows a linear relationship with √, and the slope of this is (1/2α s ) 1/2 x from equation (4). If we calculate the thermal diffusivity of polyvinyl chloride from the slope of this straight line, we get α s = 1.07×10 -3 cm 2・sec −1 , which is higher than the values announced so far from 0.9 to 2.4×10 −3 cm 2
Since it is sec -1 , it can be seen that this is a sufficiently reasonable value.

熱拡散率の大きい試料として銅を選び、0.15mm
の厚さの銅板を用いてポリ塩化ビニル樹脂の場合
と同様にして熱拡散率の値を求めた。その値は
1.38cm2・sec-1で、例えば化学便覧に記載されて
いる熱伝導率と比熱を参照して計算された熱拡散
率の値1.14cm2・sec-1かなり良い一致が見られて
いる。熱拡散率の大きな物質については、被測定
層としての測定可能な膜厚は大きくなることが知
られる。それ故、熱拡散率の大きい物質ほど被測
定層としての膜厚は大きくて良く、より測定が容
易であるとの傾向は有するものの、この発明にお
いては試料層の膜厚条牛さえ整えば、熱拡散率の
小さな通常断熱材といわれる物質の測定値につい
ても充分な信頼性を保証し得るものである。
Copper was selected as a sample with a large thermal diffusivity, and the diameter was 0.15 mm.
Thermal diffusivity values were determined in the same manner as in the case of polyvinyl chloride resin using a copper plate with a thickness of . Its value is
1.38 cm 2 · sec -1 , which is a fairly good agreement with the value of thermal diffusivity, 1.14 cm 2 · sec -1 , which was calculated with reference to the thermal conductivity and specific heat listed in the chemical handbook, for example. It is known that for substances with a large thermal diffusivity, the measurable thickness of the layer to be measured becomes large. Therefore, although there is a tendency that the higher the thermal diffusivity of a substance, the larger the thickness of the layer to be measured is required and the easier the measurement is, in this invention, as long as the thickness of the sample layer is adjusted, Sufficient reliability can also be guaranteed for the measured values of substances that have a low thermal diffusivity and are commonly called heat insulating materials.

第7図はこの発明の実施例を示すもので、原理
的には上記のものと同様に(4)式を使うものである
が、電磁波吸収層のみからなる基準となる参照用
試料と吸収層及び被測定層からなる試料を、同性
能の音圧検出器を備えた同形、同寸法の2つの密
封容器の試料取付部に別々に装着し、これらに電
磁波を照射した場合の2つの音圧検出器の出力信
号強度の比の対数値を測定するようにしている。
FIG. 7 shows an embodiment of the present invention, in which formula (4) is used in principle as in the above one, but a reference sample consisting only of an electromagnetic wave absorbing layer and an absorbing layer are used. and the layer to be measured are separately attached to the sample mounts of two sealed containers of the same shape and size equipped with sound pressure detectors of the same performance, and the two sound pressures are measured when electromagnetic waves are irradiated to these containers. The logarithm of the ratio of the detector output signal intensities is measured.

第7図において、1,101は試料、2,10
2は密封容器、3,103は電磁波入射窓、4,
104はOリング、5,105はマイクロホン、
6は光源、7はチヨツパ、8,108は増幅器、
9,109はロツクインアンプ、10,15は演
算回路、11はX−Yレコーダ、12はビームス
プリツタ、13,113は凹面鏡、14はスキヤ
ナであり、前記チヨツパ7により変調された電磁
波ビーム6aはビームスプリツタ12で分割され
て光ビーム6b,6cとなり、凹面鏡13,11
3により容器2,102の入射窓3,103に集
光される。前記試料1は吸収層1bと被測定層1
aからなり、また試料101は吸収層1bのみか
らなる。
In Figure 7, 1,101 is the sample, 2,10
2 is a sealed container, 3,103 is an electromagnetic wave entrance window, 4,
104 is an O-ring, 5,105 is a microphone,
6 is a light source, 7 is a chipper, 8,108 is an amplifier,
9 and 109 are lock-in amplifiers, 10 and 15 are arithmetic circuits, 11 is an X-Y recorder, 12 is a beam splitter, 13 and 113 are concave mirrors, and 14 is a scanner, which emits the electromagnetic wave beam 6a modulated by the chopper 7. is split by the beam splitter 12 into light beams 6b and 6c, which are then split by the concave mirrors 13 and 11.
3, the light is focused on the entrance window 3, 103 of the container 2, 102. The sample 1 includes an absorbing layer 1b and a layer to be measured 1.
The sample 101 consists of only the absorption layer 1b.

音圧検出器としてのマイクロホン5,105の
出力信号は増幅器8,108で増幅された後、ロ
ツクインアンプ9,109により電磁波変調周波
数と同じ周波数成分をもつ信号だけが検出され、
増幅される。この後演算回路10の入力となり、
2つのマイクロホン5,105の出力信号強度の
比の対数値が求められ、演算出力10aがX−Y
レコーダ11のY軸の入力となる。
After the output signal of the microphone 5, 105 as a sound pressure detector is amplified by the amplifier 8, 108, only the signal having the same frequency component as the electromagnetic wave modulation frequency is detected by the lock-in amplifier 9, 109.
amplified. After this, it becomes an input to the arithmetic circuit 10,
The logarithm of the ratio of the output signal strengths of the two microphones 5 and 105 is obtained, and the calculation output 10a is
This becomes the Y-axis input of the recorder 11.

一方、チヨツパ7の変調周波数はスキヤナ14
により時間の関数として連続的に掃引され、参照
信号7aはロツクインアンプ9,109の入力と
なる。また、スキヤナ14の電圧出力は演算回路
15によりその平方根値に変換された後、その出
力信号15aがX−Yレコーダ11のX軸の入力
となる。X−Yレコーダ11はX,Y軸への入力
に応じて動作し、(4)式の関係が記録される。この
記録の直線の勾配を実測することにより、直ちに
熱拡散率が求められる。
On the other hand, the modulation frequency of Chotsupa 7 is Scanner 14
The reference signal 7a is continuously swept as a function of time, and the reference signal 7a becomes an input to the lock-in amplifier 9,109. Further, the voltage output of the scanner 14 is converted into its square root value by the arithmetic circuit 15, and then the output signal 15a becomes the X-axis input of the X-Y recorder 11. The X-Y recorder 11 operates according to inputs to the X and Y axes, and records the relationship expressed by equation (4). By actually measuring the slope of this recorded straight line, the thermal diffusivity can be immediately determined.

上記実施例は熱拡散率の絶対値を測定する場合
であるが、例えば断熱材の優劣評価あるいは熱伝
導材の評価のように熱拡散率の相対的な大小を判
定する場合にも応用できる。即ち、測定条件とし
て、被測定層の膜厚、入射電磁波の変調周波数そ
の他が同一であれば、測定される信号強度は被測
定層内の温度の波動の減衰の程度のみにより決ま
ることになり、信号強度の大小と熱拡散率の大小
が対応している。従つて、適当な膜厚を選定すれ
ば、吸収層を取付けるだけで迅速かつ簡単に熱拡
散率の相対的評価が可能である。
Although the above embodiment is for measuring the absolute value of the thermal diffusivity, it can also be applied to determining the relative magnitude of the thermal diffusivity, such as evaluating the superiority or inferiority of heat insulating materials or evaluating thermal conductive materials. In other words, if the measurement conditions are the same, such as the thickness of the layer to be measured and the modulation frequency of the incident electromagnetic wave, the measured signal strength will be determined only by the degree of attenuation of the temperature wave within the layer to be measured. The magnitude of the signal intensity corresponds to the magnitude of the thermal diffusivity. Therefore, by selecting an appropriate film thickness, relative evaluation of thermal diffusivity can be performed quickly and easily simply by attaching the absorbing layer.

また、密封容器2,102を圧力−電気変換材
料により構成して音圧検出器を兼ねるようにして
もよい。
Further, the sealed container 2, 102 may be made of a pressure-electricity converting material so that it also serves as a sound pressure detector.

以上のようにこの発明によれば、被測定層の一
面に吸収層を設け、この吸収層に変調された電磁
波を照射し、その結果発熱を起こさせて被測定層
の一面に温度の波動を起こさせ、この温度の波動
が他面に伝播されるときに生じる振幅の減衰の大
きさが熱拡散率と波動伝播の距離と周波数に依存
することにより、周波数を変化させ、被測定層の
厚さより熱拡散率を求めることができる。また、
温度の測定は、被測定面が密封容器内のバツクグ
ラウンドガスに接してこのガスを加熱し、その結
果起こる圧力変動を測定することによつて可能で
あり、従来の欠点である温度検出素子と試料の接
触抵抗による誤差要因を除去することができる。
更に、被測定層の膜厚を適当に選択することによ
り、銅のように大きい熱拡散率をもつものから、
高分子フイルムのように極めて小さい熱拡散率を
もつものまで、幅広い範囲で精度良くその値を測
定することができる。又、吸収層から成る試料を
第2の密封容器に装着してリフアレンスセルを形
成し、基準信号を得るようにしており、吸収体や
媒体気体の劣化などを素速く検知することがで
き、これによつても測定精度を向上させることが
できる。
As described above, according to the present invention, an absorption layer is provided on one surface of the layer to be measured, and the absorption layer is irradiated with modulated electromagnetic waves, thereby generating heat and causing temperature waves on one surface of the layer to be measured. The amplitude attenuation that occurs when this temperature wave is propagated to the other surface depends on the thermal diffusivity and the distance and frequency of wave propagation, so the frequency is changed and the thickness of the layer to be measured is From this, the thermal diffusivity can be determined. Also,
Temperature can be measured by bringing the surface to be measured into contact with background gas in a sealed container, heating this gas, and measuring the resulting pressure fluctuations. Error factors caused by contact resistance of the sample can be eliminated.
Furthermore, by appropriately selecting the thickness of the layer to be measured, it is possible to
It is possible to accurately measure the value of thermal diffusivity over a wide range, even for materials with extremely low thermal diffusivity such as polymer films. In addition, a reference cell is formed by attaching the sample made of the absorbing layer to a second sealed container to obtain a reference signal, and it is possible to quickly detect deterioration of the absorber or medium gas. This also allows the measurement accuracy to be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の原理を示す測定系のブロツ
ク図、第2図は試料の構成を示す側面図、第3図
及び第4図は密封容器への試料取付状態を説明す
るための断面図、第5図は吸収層−被測定層から
の信号強度と吸収層のみの信号強度の比と被測定
層の膜厚の関係を示す特性図、第6図は上記信号
強度比の周波数依存性を説明するための特性図、
第7図はこの発明の実施例を示す測定系のブロツ
ク図である。 1,101……試料、1a……被測定層、1b
……吸収層、2,102……密封容器、3,10
3……電磁波入射窓、4,104……Oリング、
5,105……マイクロホン、6……光源、7…
…チヨツパ、8,108……増幅器、9,109
……ロツクインアンプ、10,15……演算回
路、11……X−Yレコーダ、12……ビームス
プリツタ、13,113……凹面鏡、14……ス
キヤナ。なお、図中同一符号は同一または相当部
分を示す。
Fig. 1 is a block diagram of the measurement system showing the principle of this invention, Fig. 2 is a side view showing the structure of the sample, and Figs. 3 and 4 are cross-sectional views to explain how the sample is attached to the sealed container. , Fig. 5 is a characteristic diagram showing the relationship between the ratio of the signal intensity from the absorption layer to the measured layer and the signal intensity of the absorption layer alone and the film thickness of the measured layer, and Fig. 6 shows the frequency dependence of the signal intensity ratio. A characteristic diagram to explain
FIG. 7 is a block diagram of a measurement system showing an embodiment of the present invention. 1,101...sample, 1a...layer to be measured, 1b
...Absorbent layer, 2,102 ... Sealed container, 3,10
3... Electromagnetic wave incidence window, 4,104... O ring,
5,105...Microphone, 6...Light source, 7...
...Chiyotsupa, 8,108...Amplifier, 9,109
... Lock-in amplifier, 10, 15 ... Arithmetic circuit, 11 ... X-Y recorder, 12 ... Beam splitter, 13, 113 ... Concave mirror, 14 ... Scanner. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 1 少なくとも1つの電磁波入射窓または試料取
付窓を有し、内部に所要の気体が封入された第1
および第2の密封容器と、試料に照射する電磁波
を発生する電磁波発生器と、上記電磁波を変調す
る変調器と、前記第1の密封容器内に生じる圧力
波を検出する第1の音圧検出器と、前記第2の密
封容器内に生じる圧力波を検出する第2の音圧検
出器と、前記第1,第2の音圧検出器の出力信号
の強度の比の対数値を算出する第1の演算回路
と、前記変調器の変調周波数の平方根を算出する
第2の演算回路と、前記第1,第2の演算回路の
出力をY軸,X軸の入力とするレコーダとを備
え、前記第1,第2の密封容器の一方に被測定層
及び電磁波を吸収する吸収層からなる試料を、他
方に吸収層からなる基準の試料をそれぞれ装着し
て変調された電磁波を照射し、レコーダに描かれ
る直線の勾配より熱拡散率を求めるようにしたこ
とを特徴とする熱拡散率測定装置。
1 A first device having at least one electromagnetic wave incidence window or sample mounting window and having a required gas sealed inside.
and a second sealed container, an electromagnetic wave generator that generates electromagnetic waves to irradiate the sample, a modulator that modulates the electromagnetic waves, and a first sound pressure detector that detects pressure waves generated in the first sealed container. a second sound pressure detector that detects pressure waves generated in the second sealed container, and a logarithmic value of the ratio of the intensity of the output signals of the first and second sound pressure detectors. A first arithmetic circuit, a second arithmetic circuit that calculates the square root of the modulation frequency of the modulator, and a recorder that uses the outputs of the first and second arithmetic circuits as Y-axis and X-axis inputs. , attaching a sample consisting of a layer to be measured and an absorbing layer that absorbs electromagnetic waves to one of the first and second sealed containers, and a reference sample consisting of an absorbing layer to the other, and irradiating modulated electromagnetic waves; A thermal diffusivity measuring device characterized in that thermal diffusivity is determined from the slope of a straight line drawn on a recorder.
JP4297678A 1978-04-12 1978-04-12 Thermal diffusivity measuring apparatus Granted JPS54135589A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4297678A JPS54135589A (en) 1978-04-12 1978-04-12 Thermal diffusivity measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4297678A JPS54135589A (en) 1978-04-12 1978-04-12 Thermal diffusivity measuring apparatus

Publications (2)

Publication Number Publication Date
JPS54135589A JPS54135589A (en) 1979-10-20
JPS6138410B2 true JPS6138410B2 (en) 1986-08-29

Family

ID=12651061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4297678A Granted JPS54135589A (en) 1978-04-12 1978-04-12 Thermal diffusivity measuring apparatus

Country Status (1)

Country Link
JP (1) JPS54135589A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63110814U (en) * 1987-01-08 1988-07-16

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4790578B2 (en) * 2006-12-11 2011-10-12 日本電信電話株式会社 Component concentration measuring device
CN103969061A (en) * 2013-01-25 2014-08-06 膳魔师(江苏)家庭制品有限公司 Temperature judging method of vacuum cup

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63110814U (en) * 1987-01-08 1988-07-16

Also Published As

Publication number Publication date
JPS54135589A (en) 1979-10-20

Similar Documents

Publication Publication Date Title
US3879992A (en) Multiple crystal oscillator measuring apparatus
Perondi et al. Minimal‐volume photoacoustic cell measurement of thermal diffusivity: Effect of the thermoelastic sample bending
US5713665A (en) Method and apparatus for thermal diffusivity measurement
CN113624718B (en) Photoacoustic spectrum trace gas detection device and method based on piezoresistive film
US3460030A (en) Method and apparatus for measuring the percent moisture content in process material utilizing microwave absorption and a diverse radiant energy absorption technique
JPS6367651B2 (en)
JPS6138410B2 (en)
Lima et al. Measurement of the thermal properties of liquids using a thermal wave interferometer
US3811782A (en) Method and apparatus for measuring thin film absorption at laser wavelengths
JPS5946337B2 (en) Thermal diffusivity measurement method
JPH05172738A (en) Acoustic cell
Akabori et al. Measurement of the thermal diffusivity of thin films on substrate by the photoacoustic method
JPS5945100B2 (en) Thermal diffusivity measuring device
JPS601561B2 (en) Film thickness measurement method
JPS601562B2 (en) Film thickness measurement method
US3572087A (en) Phase angle measurement of ultrasonic velocities
JPS59126933A (en) Opto-acoustic analyzing device
JPS63159740A (en) Heat constant measuring instrument by laser flash method
Moss et al. The absolute determination of near millimetre wave power in free space
JPS5487585A (en) Measuring method of thermal diffusivity
RU2023237C1 (en) Method of determining layer thickness
US2986227A (en) Acoustic wave measuring method and apparatus
Kerr Surface and Coating Absorption Measurement With An Alphaphone
JPS60119423A (en) Intensity distribution measuring device of optical beam
RU1822958C (en) Method for measuring coefficient of thermal conductivity