JPS5946337B2 - Thermal diffusivity measurement method - Google Patents

Thermal diffusivity measurement method

Info

Publication number
JPS5946337B2
JPS5946337B2 JP53149230A JP14923078A JPS5946337B2 JP S5946337 B2 JPS5946337 B2 JP S5946337B2 JP 53149230 A JP53149230 A JP 53149230A JP 14923078 A JP14923078 A JP 14923078A JP S5946337 B2 JPS5946337 B2 JP S5946337B2
Authority
JP
Japan
Prior art keywords
layer
sample
measured
thermal diffusivity
sealed container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53149230A
Other languages
Japanese (ja)
Other versions
JPS5575641A (en
Inventor
仁士 尾形
達生 増見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP53149230A priority Critical patent/JPS5946337B2/en
Publication of JPS5575641A publication Critical patent/JPS5575641A/en
Publication of JPS5946337B2 publication Critical patent/JPS5946337B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 この発明は、非定常法による熱拡散率の測定法に関し、
更に詳しくはオプトアユーステイツク効果において試料
内に起こる温度の定常波により誘起される密封容器内の
圧力波の振幅を入射電磁波の2っの異なる変調周波数に
おいて測定し、その振幅の比から熱拡散率を測定する非
定常法による熱拡散率測定法に関するものである。
[Detailed Description of the Invention] The present invention relates to a method for measuring thermal diffusivity using an unsteady method.
In more detail, the amplitude of the pressure wave in the sealed container induced by the standing temperature wave that occurs in the sample in the opto-eustatic effect is measured at two different modulation frequencies of the incident electromagnetic wave, and the thermal diffusivity is calculated from the ratio of the amplitudes. The present invention relates to a thermal diffusivity measurement method using an unsteady method for measuring .

オプトアユーステイツク効果とは、気体で満たされた密
封容器内に設置された物質に、この物質が吸収する電磁
波に変調を加えて照射すると、密封容器内に電磁波変調
周波数と同じ周波数の圧力波が生じる現象をいう。
The opto-eustatic effect is when a material placed in a sealed container filled with gas is irradiated with modulated electromagnetic waves that the material absorbs. A phenomenon that occurs.

非定常法による熱拡散率の測定方法は、試料内に熱的に
非平衡の状態を強制的に作り、その緩和に伴つて起こる
試料の温度分布の変化を測定することにより熱拡散率を
求めるものであり、定常法による測定装置に比べて一般
的に測定時間が短く、しかも温度だけを時間の関数とし
て狽1淀すればよいという特長がある。
The method of measuring thermal diffusivity using the unsteady method involves forcibly creating a thermally non-equilibrium state within the sample, and then determining the thermal diffusivity by measuring the change in the temperature distribution of the sample that occurs as the state relaxes. This method generally requires a shorter measurement time than a measuring device using a steady method, and has the advantage that only the temperature needs to be stagnated as a function of time.

この非定常法の代表的なものとしては、オングストロー
ム法、フラッシュ法がある。
Typical examples of this unsteady method include the Angstrom method and the Flash method.

オングストローム法では、長さに比べて断面積が十分小
さいロッド状の試料の一端を周期的に加熱、冷却を行な
う熱源に接触させることにより、試料の一端に周期的な
温度変化を起こさせ、結果的に試料内に温度の波動を起
こし、この温度の波動が試料内を伝播する状態を波動の
伝播方向に対して加熱点よりの距離の異なつた2点以上
の測定点において温度を測定することにより観測し、各
測定点で得られる温度の波動の振幅と位相を用いて熱拡
散率を算出する。一方フラツシユ法による測定法では、
平面板の試料の一方の表面に光吸収層を設け、これに例
えばキセノンアークフラツシユあるいはレーザパルス等
を照射して光吸収層による瞬間的な加熱を行い、この時
起こる吸収層での温度上昇が試料の厚さ方向に伝幡され
て照射面と反対側の試料表面に起こす温度変化をフラツ
シユ照射後の時間の関数として測定し、この時得られる
温度一時間曲線より熱拡散率を算出する。
In the Angstrom method, one end of a rod-shaped sample with a sufficiently small cross-sectional area compared to its length is brought into contact with a heat source that periodically heats and cools it, causing periodic temperature changes at one end of the sample. Temperature waves are generated within the sample, and the temperature is measured at two or more measurement points at different distances from the heating point in the direction of propagation of the waves. The thermal diffusivity is calculated using the amplitude and phase of the temperature wave obtained at each measurement point. On the other hand, in the measurement method using the flash method,
A light absorption layer is provided on one surface of a flat plate sample, and the light absorption layer is instantaneously heated by irradiating it with, for example, xenon arc flash or laser pulses, and the temperature rise in the absorption layer that occurs at this time. The temperature change that occurs on the surface of the sample on the opposite side of the irradiated surface as a result of propagation in the thickness direction of the sample is measured as a function of time after flash irradiation, and the thermal diffusivity is calculated from the temperature one-hour curve obtained at this time. .

上記の2方法のいずれを用いても熱拡散率を測定できる
が、両者にはそれぞれ欠点がある。
Although thermal diffusivity can be measured using either of the above two methods, both have their own drawbacks.

即ち、前者では試料をロツド状に成型する必要があつて
、試料物質が大量に必要であるとか、あるいは試料表面
からの熱損失を最小に押えるための断熱系の整備が必要
であるので、装置が大がかりになる。また、演淀に比較
的長時間を要し、しかも温度測定のため温度検出素子を
試料に接触させるので、試料と検出素子の間の接触抵抗
及び加熱熱源と試料の間の接触抵抗が誤差要因となつた
り、測定対象が比較的熱拡散率の大きい物質に限られる
等の難点がある。一方、後者の場合にも温度の測定のた
めに温度検出素子を試料に接触させる必要があり、その
時の接触抵抗が誤差要因となる。
That is, in the former case, it is necessary to mold the sample into a rod shape, which requires a large amount of sample material, or it is necessary to prepare an insulating system to minimize heat loss from the sample surface. becomes large-scale. In addition, since it takes a relatively long time to conduct the experiment, and the temperature detection element is brought into contact with the sample to measure the temperature, the contact resistance between the sample and the detection element and the contact resistance between the heating heat source and the sample are sources of error. There are some drawbacks, such as the fact that the measurement target is limited to substances with a relatively high thermal diffusivity. On the other hand, in the latter case as well, it is necessary to bring the temperature detection element into contact with the sample in order to measure the temperature, and the contact resistance at that time becomes an error factor.

また、熱拡散率の算出は、測定が短時間であるため熱損
失を考慮しないでよいという仮定のもとに行われており
、金属等の熱伝導率の大きなものではこの仮定を良く満
たすが、高分子フイルム等熱伝導率の小さなものになる
ほど誤差が大きくなるという欠点がある。要約すれば、
これらの測定法では接触抵抗が誤差要因となることおよ
び断熱条件の設定が困難であるとの欠点を有している。
さらにオプトアユーステイツク効果を用いる非定常法に
よる熱拡散率測定法も従来から知られているが、この方
法では被測定層と入射電磁波を効率よく吸収する薄い吸
収層とからなる2重層を試料とし、この試料を気体(以
下バツクグラウンドガスと称する)を封入した密封容器
に被測定層がバツクグラウンドガスに接し、かつ密封容
器の壁面の一部を構成するように設置し、この試料に変
調された電磁波を照射してその時に発生する圧力波の振
幅と、吸収層のみで同様に測定された圧力波の振幅の比
をとり、この比の対数値の電磁波の変調周波数に対する
勾配より熱拡散率を求める。
In addition, thermal diffusivity is calculated based on the assumption that heat loss does not need to be taken into account because the measurement is short, and materials with high thermal conductivity such as metals satisfy this assumption well. The disadvantage is that the smaller the thermal conductivity, such as a polymer film, the greater the error. In summary,
These measurement methods have the disadvantages that contact resistance becomes a factor of error and that it is difficult to set adiabatic conditions.
Furthermore, a thermal diffusivity measurement method using an unsteady method that uses the opto-utilization effect has been known for a long time, but in this method, a double layer consisting of a layer to be measured and a thin absorbing layer that efficiently absorbs incident electromagnetic waves is used as a sample. This sample was placed in a sealed container filled with gas (hereinafter referred to as background gas) so that the layer to be measured was in contact with the background gas and formed part of the wall of the sealed container, and the sample was modulated. The ratio of the amplitude of the pressure wave generated at that time by irradiating the electromagnetic wave with the amplitude of the pressure wave similarly measured only in the absorbing layer is calculated, and the slope of the logarithm of this ratio with respect to the modulation frequency of the electromagnetic wave is calculated. Find the rate.

この方法によれば、試料表面の温度変動の振幅と圧力波
の振幅が比例していることから、試料表面の温度を直接
測定する必要はなく、従つて上記の接触抵抗による誤差
要因をなくすことができ、さらに断熱条件の設定もより
容易になるが、次に述べる欠点を有する。すなわち、熱
拡散率を求めるのに吸収層のみの場合と吸収層および被
測定層とから成る2重層の2回について、圧力波の周波
数依存性を測定しなければならず、時間と労力を要する
。この発明は上記欠点を除去し、試料物質の如何に拘ら
ず正確かつ迅速に熱拡散率を洞徒することができる熱拡
散率測定法を提供することを目的とする。
According to this method, since the amplitude of the temperature fluctuation on the sample surface is proportional to the amplitude of the pressure wave, there is no need to directly measure the temperature on the sample surface, thus eliminating the error factor caused by the above-mentioned contact resistance. Although this method makes it easier to set the heat insulation conditions, it has the following disadvantages. In other words, to determine the thermal diffusivity, the frequency dependence of pressure waves must be measured twice: once for the absorbing layer only, and once for the double layer consisting of the absorbing layer and the layer to be measured, which requires time and effort. . It is an object of the present invention to eliminate the above-mentioned drawbacks and to provide a method for measuring thermal diffusivity that can accurately and quickly determine the thermal diffusivity regardless of the sample material.

この発明に係る熱拡散率測定法は、被測定層と入射電磁
波に対し適当な吸収係数と厚さを有する薄い吸収層とか
らなる2重層を試料とし、この試料をバツクグラウンド
ガスを封入した密封容器に被測定層がバツクグラウンド
ガスに接し、かつ密封容器の壁面の一部を構成するよう
に設置し、この試料に変調された電磁波を照射してその
時に発生する圧力波の振幅を、変調周波数を変化させて
2つの変調周波数において測定し、2つの振幅の比より
熱拡散率を求めることを特徴とする。
The thermal diffusivity measurement method according to the present invention uses a double layer as a sample consisting of a layer to be measured and a thin absorbing layer having an appropriate absorption coefficient and thickness for incident electromagnetic waves, and the sample is sealed in a hermetically sealed container containing a background gas. The sample is installed in a container so that the layer to be measured is in contact with the background gas and forms part of the wall of the sealed container, and modulated electromagnetic waves are irradiated onto this sample to modulate the amplitude of the pressure waves generated at that time. It is characterized by measuring at two modulation frequencies by changing the frequency, and determining the thermal diffusivity from the ratio of the two amplitudes.

従つて、試料表面温度を直接測定しないため、誤差要因
となる接触抵抗が測定系から除外される。また断熱条件
の完全さは圧力波の振幅の比の対数値が被測定層の厚さ
に対して線形性を持つか否かにより確かめることができ
、被測定層の膜厚を適当に選定することにより、実際に
断熱条件を充分に満たすことが可能である。さらに、吸
収層と被測定層とからなる試料に対してだけ、2つの変
動周波数における圧力波の振幅を測定するだけで熱拡散
率を求めることができ、従来の測定法に比し非常に簡略
な測定法である。以下この発明の実施例を図に基づいて
説明する。
Therefore, since the sample surface temperature is not directly measured, contact resistance, which can cause errors, is excluded from the measurement system. In addition, the completeness of the insulation condition can be confirmed by checking whether the logarithm of the ratio of the amplitudes of pressure waves has linearity with respect to the thickness of the layer to be measured, and the thickness of the layer to be measured can be appropriately selected. By doing so, it is actually possible to fully satisfy the insulation conditions. Furthermore, thermal diffusivity can be determined by simply measuring the amplitude of pressure waves at two fluctuating frequencies for a sample consisting of an absorbing layer and a layer to be measured, which is extremely simple compared to conventional measurement methods. It is a measurement method. Embodiments of the present invention will be described below with reference to the drawings.

第1図はこの発明の一実施例を示すもので、1は試料、
2は密封容器で、その一壁面に電磁波入射窓3が形成さ
れ、他の壁面に音圧検出素子としてマイクロホン5が気
密性を保つように接着されている。6は光源(例えばキ
セノンランプ、タングステンランプ、あるいは各種のレ
ーザ)、7は電磁波の変調(変調周波数は10〜200
0Hz)を行うためのチヨツパ、8はマイクロホン5の
出力を増幅する増幅器、9は前記チヨツパ7からの参照
信号71と増幅器8の出力を受け、信号の振幅と位相を
測定する、いわゆるロツクインアンプで、このアンプ9
には図示されていないがレコーダが接続される。
FIG. 1 shows an embodiment of the present invention, in which 1 is a sample;
Reference numeral 2 denotes a sealed container, on one wall of which an electromagnetic wave entrance window 3 is formed, and on the other wall a microphone 5 as a sound pressure detection element is adhered to maintain airtightness. 6 is a light source (e.g. xenon lamp, tungsten lamp, or various lasers); 7 is electromagnetic wave modulation (modulation frequency is 10 to 200
8 is an amplifier for amplifying the output of the microphone 5, and 9 is a so-called lock-in amplifier that receives the reference signal 71 from the chopper 7 and the output of the amplifier 8 and measures the amplitude and phase of the signal. So, this amplifier 9
Although not shown in the figure, a recorder is connected thereto.

なお、4は入射窓3部の気密性を保つためのOリングで
ある。また、密封容器2にはバツクグラウンドガスが封
入されている。前記試料1は第2図に示すように被測定
層1aと吸収層1bとからなり、第1図または第3図に
示すようにその被洞淀層1aがバツクグラウンドガスと
接し、かつ容器2の壁面の一部を構成するように、例え
ば接着テープによる貼付等によつて入射窓3内面に取付
けるか、あるいは第4図に示すように入射窓3と対向す
る壁面に取付ける。吸収層1bは変調された電磁波ビー
ムを吸収して発熱し、被測定層1aの吸収層1bと接す
る面に周期的な温度変化を起こさせる役割を持つ。この
吸収層1bは、例えばカーボンブラツクバインダ一樹脂
からなる溶液の塗布等により形成される。次に上記測定
装置の動作について説明する。変調された電磁波ビーム
61を試料1に照射すると吸収層1bに電磁波が吸収さ
れ、そのエネルギーは吸収層1b内で熱エネルギーに変
調されて吸収層1bの周期的な温度変化を引き起こす。
被測定層1aと吸収層1bが接しているため、被測定層
1aの吸収層1b側の表面温度もやはり同周期、同位相
で変化する。この温度の波動は被測定層1a内を伝幡し
、反対側の表面でバツクグラウンドガスを加熱し、密封
容器2内に圧力波を生じさせる。この圧力波の振幅(以
下音圧と称する)をマイクロホン5で測定する。このよ
うに測定される音圧Qは、熱流が完全に試料1面に対し
て垂直な方向にのみ起こり、一次元の問題として考える
ことができ、被測定層1aと吸収層1bが接する面をZ
とし、生負の方向に対して温度分布が常に対称であると
いう条件が満たされている次式の関係を満足する。1−
S ただしQ。
Note that 4 is an O-ring for keeping the entrance window 3 part airtight. Further, the sealed container 2 is filled with a background gas. The sample 1 consists of a layer to be measured 1a and an absorption layer 1b as shown in FIG. 2, and the layer to be measured 1a is in contact with the background gas as shown in FIG. It is attached to the inner surface of the entrance window 3 by, for example, pasting with adhesive tape so as to constitute a part of the wall of the entrance window 3, or it is attached to the wall facing the entrance window 3 as shown in FIG. The absorption layer 1b absorbs the modulated electromagnetic wave beam, generates heat, and has the role of causing periodic temperature changes on the surface of the layer 1a to be measured that is in contact with the absorption layer 1b. This absorbent layer 1b is formed, for example, by applying a solution of carbon black binder and resin. Next, the operation of the above measuring device will be explained. When the sample 1 is irradiated with the modulated electromagnetic wave beam 61, the electromagnetic wave is absorbed by the absorption layer 1b, and the energy is modulated into thermal energy within the absorption layer 1b, causing periodic temperature changes in the absorption layer 1b.
Since the layer to be measured 1a and the absorption layer 1b are in contact with each other, the surface temperature of the layer to be measured 1a on the absorption layer 1b side also changes with the same period and phase. This temperature wave propagates within the layer to be measured 1a, heats the background gas on the opposite surface, and generates a pressure wave within the sealed container 2. The amplitude of this pressure wave (hereinafter referred to as sound pressure) is measured with a microphone 5. The sound pressure Q measured in this way can be thought of as a one-dimensional problem because the heat flow occurs only in the direction perpendicular to the surface of the sample, and the surface where the layer to be measured 1a and the absorbing layer 1b are in contact can be considered as a one-dimensional problem. Z
and satisfies the relationship of the following equation, which satisfies the condition that the temperature distribution is always symmetrical in the positive and negative directions. 1-
S However, Q.

は渭淀装置固有の定数、ωは変調周波数、α8は被測定
層1aの熱拡散率、λは吸収層1bの光学吸収係数およ
び熱拡散係数の大きさによつて決る定数であり、さらに
Xは被測定層1aの厚さである。定数λおよび被測定層
1aの厚さXが既知であれば、適当な2つの変調角周波
数ω1,ω2での音圧Ql,Q2を測定することにより
、次の関係からα8を求めることができる。にる2
] −一 0次
に定数λを求める方法を述べる。試料1が吸収層1bの
みからなる場合、音圧Qは次式により与えられる。Q−
QO〔λ (3) 従つて、変調角周波数ωの関数としてQを測定し、10
gQと10gωの関係の傾きから定数λを求めることが
できる。
is a constant specific to the Weiyodo device, ω is the modulation frequency, α8 is the thermal diffusivity of the layer 1a to be measured, λ is a constant determined by the magnitude of the optical absorption coefficient and thermal diffusivity of the absorption layer 1b, and is the thickness of the layer to be measured 1a. If the constant λ and the thickness X of the layer 1a to be measured are known, α8 can be found from the following relationship by measuring the sound pressures Ql and Q2 at two appropriate modulation angular frequencies ω1 and ω2. . Niru 2
] -1 We will explain how to find the constant λ to the 0th order. When the sample 1 consists of only the absorbing layer 1b, the sound pressure Q is given by the following equation. Q-
QO [λ (3) Therefore, we measure Q as a function of modulation angular frequency ω, and 10
The constant λ can be determined from the slope of the relationship between gQ and 10gω.

(2)式を用いてα8を求める便宜上、λが1であるよ
うな吸収層1bを得ることは有効である。実際にλが1
であるような吸収層1bが得られることを次に示す。す
なわち、カーボンブラツク35%を、バインダー樹脂ポ
リビニールブチラール65%と共にエチルアルコール適
量に溶解し、5時間以上ボールミルで撹拌した塗料を電
磁波入射窓3に塗付し、膜厚がそれぞれ5μM,lOp
m,l3μmおよび30μmの吸収層を得た。
For the sake of convenience in determining α8 using equation (2), it is effective to obtain the absorption layer 1b in which λ is 1. Actually λ is 1
It will be shown below that an absorbing layer 1b having the following properties can be obtained. That is, 35% carbon black was dissolved in an appropriate amount of ethyl alcohol together with 65% polyvinyl butyral binder resin, and the paint was stirred in a ball mill for more than 5 hours and then applied to the electromagnetic wave entrance window 3, with a film thickness of 5 μM and 1 Op.
Absorption layers of m, l3 μm and 30 μm were obtained.

これらの吸収層の各各に対し、Qの電磁波変調角周波数
ω依存性を測定した結果を第5図に示す。第5図に示さ
れるように、10gωと10gQの関係はすべて直線関
係となり、その傾きから定数λを算出することができる
。このようにして求めた定数λの値は吸収層の厚さが5
μmの時1であり、5μm以上の吸収層に対してはすべ
て1より大きい値が得られた。従つてここで用いた塗料
の場合には膜厚を5μmとする吸収層については定数λ
が1になることが実験的に確認された。この発明は原理
的には(2)式の関係を使うものであるが、実際の測定
上次に述べるような問題点がある。
FIG. 5 shows the results of measuring the dependence of Q on electromagnetic wave modulation angular frequency ω for each of these absorption layers. As shown in FIG. 5, the relationship between 10gω and 10gQ is a linear relationship, and the constant λ can be calculated from the slope thereof. The value of the constant λ obtained in this way is 5 when the thickness of the absorption layer is 5.
1 for absorption layers of 5 μm or more, and all values greater than 1 were obtained for absorbing layers of 5 μm or more. Therefore, in the case of the paint used here, the constant λ for the absorption layer with a film thickness of 5 μm
was experimentally confirmed to be 1. Although this invention uses the relationship expressed by equation (2) in principle, there are problems in actual measurement as described below.

即ち、試料(1)が実際に密封容器(2)に設置され、
吸収層1bが電磁波を吸収して発熱し、周期的な温度変
化を起こした場合に、被測定層1aの吸収層1bと接す
る面をZとした時に正負の方向に対して温度分布が対称
にならないからである。このような一次元の熱伝導の問
題は一般的には古くから解が求められている。その解は
各種のパラメータを導入して非常に複雑な形となるが、
熱伝導の正負方向の大きさの比較である熱損失パラメー
タを適当に選べば、前述の音圧Qの対数値と被測定層の
膜厚Xとの関係は、ある変調角周波数範囲と膜厚範囲で
線形の関係に従うことが知られている。発明者等はこの
線形性の成り立つ被測定層1aの厚さXの範囲を実験的
に求めうることを見出した。即ち、カーボンとバインダ
ー樹脂ポリビニールブチラールからなる前述の塗料を用
い、膜厚6μM,lOμM9l9μMF24μM,3O
Pm,34μmのポリ塩化ビニール樹脂に塗付し、カー
ボンブチラール樹脂層を吸収層1b、ポリ塩化ビニール
樹脂層を被浦徒層1aとした2重層の試料を作成し、こ
れを第4図に示すように設置し、光源6にキセノンラン
プを用いて白色光を入射し、音圧の膜圧依存性を周波数
をパラメータとして泗徒した。
That is, the sample (1) is actually placed in the sealed container (2),
When the absorbing layer 1b absorbs electromagnetic waves and generates heat, causing periodic temperature changes, the temperature distribution becomes symmetrical in the positive and negative directions when the surface of the measured layer 1a in contact with the absorbing layer 1b is defined as Z. This is because it will not happen. Solutions to such one-dimensional heat conduction problems have generally been sought for a long time. The solution becomes very complex by introducing various parameters, but
If the heat loss parameter, which is a comparison of the magnitude of heat conduction in the positive and negative directions, is appropriately selected, the relationship between the logarithm of the sound pressure Q described above and the film thickness It is known to follow a linear relationship in the range. The inventors have discovered that the range of the thickness X of the layer to be measured 1a within which this linearity holds can be determined experimentally. That is, using the above-mentioned paint consisting of carbon and binder resin polyvinyl butyral, the film thickness was 6 μM, 10 μM9l9 μMF24 μM, 30 μM.
Pm, 34 μm polyvinyl chloride resin was coated, and a double layer sample was prepared with the carbon butyral resin layer as the absorbent layer 1b and the polyvinyl chloride resin layer as the absorbent layer 1a, which is shown in Figure 4. A xenon lamp was used as the light source 6, and white light was applied to the light source 6, and the dependence of the sound pressure on the membrane pressure was measured using the frequency as a parameter.

なお吸収層1bの厚さは5μmである。このようにして
求めた音圧と膜厚の関係を第6図に示す。この第6図か
ら判るように音圧Qの対数値と膜厚Xとの関係はXの高
次の項を含むことが明らかとなつたが、膜厚が小さい範
囲では、1nQはXに対して直線関係を示すことより塩
化ビニール樹脂等の熱拡散率の小さい物質は膜厚を5〜
20μmの範囲とすることにより(1)式を満たす条件
が充分整つていることが判明した。被渭定層1aとして
は膜厚15μmのポリ塩化ビニール樹脂を用い、吸収層
1bにはカーボンとポリビニールブチラールからなる前
述塗料から製膜した膜厚5μmの膜を用いて、(2)式
によりポリ塩化ビニールの熱拡散率を求めたところ、α
8=1.1X10−3CTL−Sec−1となり、今ま
で発表された値が0.9〜2.4x10−3cri1−
Sec−1であることから充分妥当な値であることがわ
かる。
Note that the thickness of the absorption layer 1b is 5 μm. The relationship between the sound pressure and film thickness thus determined is shown in FIG. As can be seen from Figure 6, the relationship between the logarithm of the sound pressure Q and the film thickness The film thickness of materials with low thermal diffusivity, such as vinyl chloride resin, is 5 to
It has been found that by setting the thickness in the range of 20 μm, the conditions for satisfying the formula (1) are sufficiently satisfied. A polyvinyl chloride resin with a film thickness of 15 μm was used as the floating constant layer 1a, and a film with a film thickness of 5 μm formed from the above-mentioned paint consisting of carbon and polyvinyl butyral was used as the absorption layer 1b. When we calculated the thermal diffusivity of polyvinyl chloride, α
8=1.1X10-3CTL-Sec-1, and the values announced so far are 0.9 to 2.4x10-3cri1-
Since it is Sec-1, it can be seen that this is a sufficiently reasonable value.

熱拡散率の大きい試料として銅を選び、0.15關の厚
さの銅板を用いてポリ塩化ビニール樹脂の場合と同様に
して熱拡散率の値を求めた。その値は1.38cTi1
−Sec−1で、例えば化学便覧に記載されている熱伝
導率と比熱を参照して計算された熱拡散率の値1.14
cIL−Sec−1とかなり良い一致が見られている。
熱拡散率の大きな物質については、被測定層としての狽
徒可能な膜厚は大きくなることが知られる。それ故、熱
拡散率の大きい物質ほど被測定層としての膜厚は大きく
て良く、より測定が容易であるとの傾向は有するものの
、この発明においては試料層の膜厚条件さえ整えば、熱
拡散率の小さい通常断熱材といわれる物質の測定値につ
いても充分な信頼性を保証し得るものである。以上のよ
うにこの発明によれば、被測定層の一面に吸収層を設け
、この吸収層に変調された電磁波を照射し、その結果発
熱を起こさせて被測定層の一面に温度の波動を起こさせ
、この温度の波動が他面に伝幡されるときに生じる振幅
の減衰の大きさが熱拡散率と波動伝幡の距離と周波数に
依存することより、周波数を変化させ被測定層の厚さよ
り熱拡散率を求めることができる。
Copper was selected as a sample with a large thermal diffusivity, and the thermal diffusivity value was determined in the same manner as in the case of polyvinyl chloride resin using a copper plate with a thickness of 0.15 mm. Its value is 1.38cTi1
- In Sec-1, the value of thermal diffusivity is 1.14, which is calculated by referring to the thermal conductivity and specific heat described in the chemical handbook, for example.
A fairly good match with cIL-Sec-1 is observed.
It is known that for substances with a large thermal diffusivity, the film thickness that can be used as a layer to be measured becomes large. Therefore, although there is a tendency that the higher the thermal diffusivity of a substance, the larger the thickness of the layer to be measured is required and the easier the measurement is, in this invention, as long as the thickness conditions of the sample layer are set, Sufficient reliability can also be guaranteed for the measured values of substances that have a low diffusivity and are commonly called heat insulating materials. As described above, according to the present invention, an absorption layer is provided on one surface of the layer to be measured, and the absorption layer is irradiated with modulated electromagnetic waves, thereby generating heat and causing temperature waves on one surface of the layer to be measured. The magnitude of the amplitude attenuation that occurs when this temperature wave is propagated to another surface depends on the thermal diffusivity, the distance of the wave propagation, and the frequency. Thermal diffusivity can be determined from the thickness.

また、温度の渭淀は、被測定面が密封容器内のバツクグ
ラウンドガスに接してこのガスを加熱し、その結果起こ
る圧力変動を測定することによつて可能であり、従来の
欠点である温度検出素子と試料の接触抵抗による誤差要
因を除去することができる。さらに、オプトアューステ
イツク効果を用いる従来の方法では、吸収層のみからな
る場合と吸収層および被測定層からなる場合の2回につ
いて、圧力波の周波数依存性を油淀しなければならなか
つたが、この発明によれば被測定層と吸収層とからなる
場合についてのみ、2つの周波数において音圧を測定す
るだけで熱拡散率を用いることができるという利点があ
る。また、被測定層の膜厚を適当に選択することにより
、銅のように大きい熱拡散率をもつものから、高分子フ
イルムのように極めて小さい熱拡散率をもつものまで、
幅広い範囲で精度良くその値を測定することができる利
点がある。
Temperature stagnation can also be achieved by heating this gas by bringing the surface to be measured into contact with background gas in a sealed container and measuring the resulting pressure fluctuations. Error factors caused by contact resistance between the detection element and the sample can be eliminated. Furthermore, in the conventional method using the opto-astake effect, the frequency dependence of the pressure wave must be taken care of twice: when it consists of only an absorbing layer and when it consists of an absorbing layer and a layer to be measured. However, according to the present invention, there is an advantage that thermal diffusivity can be used by simply measuring sound pressure at two frequencies only in the case of a layer to be measured and an absorbing layer. In addition, by appropriately selecting the thickness of the layer to be measured, it is possible to adjust the temperature from a material with a high thermal diffusivity such as copper to a material with an extremely small thermal diffusivity such as a polymer film.
It has the advantage of being able to measure the value accurately over a wide range.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第5図はこの発明の一実施例を示すもので、第
1図は測定系のプロツク図、第2図は試料の構成を示す
側面図、第3図及び第4図は密封容器への試料取付状態
を説明するための断面図、第5図は音圧と変調周波数と
の関係を示す特性図、第6図は吸収層一被測定層からの
音圧と吸収層のみの音圧との比と被測定層の膜厚の関係
を示す特性図である。 1・・・・・・試料、1a・・・・・・被測定層、1b
・・・・・・吸収層、2・・・・・・密封容器、3・・
・・・・電磁波入射窓、4・・・・・・Oリング、5・
・・・・・マイクロホン、6・・・・・・光源、7・・
・・・・チヨツパ、8・・・・・・増幅器、9・・・・
・・ロツクインアンプ。
Figures 1 to 5 show an embodiment of the present invention. Figure 1 is a block diagram of the measurement system, Figure 2 is a side view showing the structure of the sample, and Figures 3 and 4 are sealed. A cross-sectional view to explain how the sample is attached to the container, Figure 5 is a characteristic diagram showing the relationship between sound pressure and modulation frequency, and Figure 6 is a diagram showing the sound pressure from the absorption layer and the measured layer and the absorption layer only. FIG. 3 is a characteristic diagram showing the relationship between the ratio to sound pressure and the thickness of the layer to be measured. 1... Sample, 1a... Layer to be measured, 1b
...Absorbent layer, 2... Sealed container, 3...
...Electromagnetic wave incidence window, 4...O ring, 5.
...Microphone, 6...Light source, 7...
...Chiyotsupa, 8...Amplifier, 9...
...Lock-in amplifier.

Claims (1)

【特許請求の範囲】 1 少なくとも1つの電磁波入射窓または試料取付窓を
有し、内部に所要の気体が封入された密封容器と、試料
に照射する電磁波を発生する電磁波発生器と、上記電磁
波を変調する変調器と、被測定層と電磁波を吸収する吸
収層とからなり、その被測定層が前記密封容器の内面の
一部を形成するように装着された試料に、変調された電
磁波が照射されたとき前記密封容器内に生じる圧力波の
振幅、位相等を測定する音圧検出器とを備え、前記変調
器は、第1及び第2の少なくとも2つの変調周波数で変
調を行つて前記吸収層に電磁波照射を行い、第1の変調
周波数における前記音圧検出器の出力と、第2の変調周
波数における音圧検出器の出力との比から熱拡散率を求
めるようにしたことを特徴とする熱拡散率測定法。 2 試料の被測定層の膜厚を、断熱性物質では5〜20
μmとしたことを特徴とする特許請求の範囲第1項記載
の熱拡散率測定法。 3 試料の被測定層の膜厚を、金属等の良好な熱伝導体
では20μm〜0.5mmとしたことを特徴とする特許
請求の範囲第1項記載の熱拡散率測定法。 4 密封容器を、圧力−電気変換材料で構成して音圧検
出器を兼ねるようにしたことを特徴とする特許請求の範
囲第1項記載の熱拡散率測定法。
[Claims] 1. A sealed container having at least one electromagnetic wave entrance window or sample mounting window and in which a required gas is sealed, an electromagnetic wave generator that generates electromagnetic waves to irradiate the sample, and an electromagnetic wave generator that generates the electromagnetic waves. The modulated electromagnetic waves are irradiated onto a sample that is composed of a modulator that modulates, a layer to be measured, and an absorption layer that absorbs electromagnetic waves, and the layer to be measured forms a part of the inner surface of the sealed container. a sound pressure detector that measures the amplitude, phase, etc. of a pressure wave generated in the sealed container when The layer is irradiated with electromagnetic waves, and the thermal diffusivity is determined from the ratio of the output of the sound pressure detector at the first modulation frequency and the output of the sound pressure detector at the second modulation frequency. Thermal diffusivity measurement method. 2. Set the thickness of the layer to be measured on the sample to 5 to 20
The thermal diffusivity measuring method according to claim 1, characterized in that the value is μm. 3. The thermal diffusivity measuring method according to claim 1, wherein the thickness of the layer to be measured of the sample is 20 μm to 0.5 mm for a good thermal conductor such as metal. 4. The method for measuring thermal diffusivity according to claim 1, wherein the sealed container is made of a pressure-electricity converting material so as to double as a sound pressure detector.
JP53149230A 1978-12-01 1978-12-01 Thermal diffusivity measurement method Expired JPS5946337B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53149230A JPS5946337B2 (en) 1978-12-01 1978-12-01 Thermal diffusivity measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53149230A JPS5946337B2 (en) 1978-12-01 1978-12-01 Thermal diffusivity measurement method

Publications (2)

Publication Number Publication Date
JPS5575641A JPS5575641A (en) 1980-06-07
JPS5946337B2 true JPS5946337B2 (en) 1984-11-12

Family

ID=15470705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53149230A Expired JPS5946337B2 (en) 1978-12-01 1978-12-01 Thermal diffusivity measurement method

Country Status (1)

Country Link
JP (1) JPS5946337B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6345541U (en) * 1986-09-10 1988-03-28

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6345541U (en) * 1986-09-10 1988-03-28

Also Published As

Publication number Publication date
JPS5575641A (en) 1980-06-07

Similar Documents

Publication Publication Date Title
US3879992A (en) Multiple crystal oscillator measuring apparatus
Dabby et al. Thermal self‐focusing of laser beams in lead glasses
Patel et al. Pulsed optoacoustic spectroscopy of condensed matter
Borroni-Bird et al. Single crystal adsorption microcalorimetry
US5713665A (en) Method and apparatus for thermal diffusivity measurement
US4276780A (en) Optoacoustic spectroscopy of thin layers
GB2089041A (en) A Flow Type Photoacoustic Detector
JPS5946337B2 (en) Thermal diffusivity measurement method
Cesar et al. Photoacoustic determination of thermal diffusivity of solids: Application to CdS
Lima et al. Measurement of the thermal properties of liquids using a thermal wave interferometer
JPH03156351A (en) Method and apparatus for measuring thermal diffusivity by ac heating
JPS6138410B2 (en)
JPS5925974B2 (en) Thermal diffusivity measurement method
Akabori et al. Measurement of the thermal diffusivity of thin films on substrate by the photoacoustic method
JPH05172738A (en) Acoustic cell
JPS5945100B2 (en) Thermal diffusivity measuring device
JPS601562B2 (en) Film thickness measurement method
Hubbard et al. A fixed path acoustic interferometer for the study of matter
Hansen et al. Specular reflection from mercury vapor
Satheeshkumar et al. Use of a photoacoustic cell as a sensitive laser power meter
Moss et al. The absolute determination of near millimetre wave power in free space
Roozen et al. Converting sunlight into audible sound by means of the photoacoustic effect: The Heliophone
JP2006214921A (en) Thermal diffusivity measuring method for substance, and instrument therefor
JPS63159740A (en) Heat constant measuring instrument by laser flash method
SU1631387A2 (en) Installation for determining thermo-physical properties of materials