JPS5925974B2 - Thermal diffusivity measurement method - Google Patents

Thermal diffusivity measurement method

Info

Publication number
JPS5925974B2
JPS5925974B2 JP52156236A JP15623677A JPS5925974B2 JP S5925974 B2 JPS5925974 B2 JP S5925974B2 JP 52156236 A JP52156236 A JP 52156236A JP 15623677 A JP15623677 A JP 15623677A JP S5925974 B2 JPS5925974 B2 JP S5925974B2
Authority
JP
Japan
Prior art keywords
sample
layer
measured
thermal diffusivity
sealed container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52156236A
Other languages
Japanese (ja)
Other versions
JPS5487585A (en
Inventor
達生 増見
英昭 草川
仁士 尾形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP52156236A priority Critical patent/JPS5925974B2/en
Publication of JPS5487585A publication Critical patent/JPS5487585A/en
Publication of JPS5925974B2 publication Critical patent/JPS5925974B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 この発明は、非定常法による熱拡散率の測定方法に関し
、さらに詳しくはオプトアコースティック効果において
被測定試料内に起こる温度の定常波により誘起される密
封容器内の圧力波の振幅が入射電磁波の変調周波数に依
存することを利用して、熱拡散率を測定する非定常法に
よる熱拡散率測定方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring thermal diffusivity using an unsteady method, and more specifically to a method for measuring thermal diffusivity using an unsteady method, and more specifically, it relates to a method for measuring thermal diffusivity using an unsteady method, and more specifically, it relates to a method for measuring thermal diffusivity using an unsteady method. The present invention relates to a thermal diffusivity measurement method using an unsteady method that measures thermal diffusivity by utilizing the fact that the amplitude depends on the modulation frequency of incident electromagnetic waves.

上記のオプトアコースティック効果とは、気体で満たさ
れた密封容器内に設置された物質に、この物質が吸収す
る電磁波に変調を加えて照射すると、密封容器内に電磁
波変調周波数と同じ周波数の圧力波が生じる現象をいう
The opto-acoustic effect mentioned above is when a substance placed in a sealed container filled with gas is irradiated with modulated electromagnetic waves that the substance absorbs, causing a pressure wave with the same frequency as the electromagnetic wave modulation frequency to appear inside the sealed container. A phenomenon that occurs.

非定常法による熱拡散率の測定方法の特徴は試料内に熱
的に非平衡の状態を強制的に作力、その緩和に伴つて起
こる試料の温度分布の変化を測定することにより熱拡散
率を求めるものであり、定常法に較べて一般的に測定時
間が短く、また温度だけを時間の関数として測定すれば
良いという特徴がある。
The characteristic of measuring thermal diffusivity using the unsteady method is that it forces a thermally non-equilibrium state within the sample and measures the change in temperature distribution of the sample that occurs as the force relaxes. This method generally requires a shorter measurement time than the steady-state method, and is characterized in that only the temperature needs to be measured as a function of time.

非定常法の代表的なものとしては、オングストローム法
、フラッシュ法がある。オングストローム法とはその長
さに較べて断面積が充分小さいロッド状の試料の一端を
周期的に加熱、冷却を行う熱源に接触させることにより
、試料の一″ 端に周期的な温度変化を起こさせ、結果
的に試料内に温度の波動を起こし、この温度の波動が試
料内を伝播する状態を波動の伝播方向に対して加熱点よ
りの距離の異なつた2点以上の測定点において温度を測
定することにより観測し、各測定点で、得られる温度の
波動の振幅と位相を用いて熱拡散率を算出するものであ
る。この方法は、試料をロッド状に成型する必要があ枦
試料物質が大量に必要であり、試料表面からの熱損失を
最小に押えるための断熱系の整備のために装置が大がか
Dになる。また、測定に比較的長時間を要し、温度測定
が温度検出素子を試料に接触させて行われるため、試料
とセンサーの間の接触抵抗および加熱熱源と試料との間
の接触抵抗が誤差要因となること、また測定対象が比較
的熱拡散率の大きい物質に限られる等の難点がある。一
方、フラツシユ法は平面板の試料の一方の表面に光吸収
層を設け、例えばこれにXeアークフラツシユ、あるい
はレーザーパルス等を照射して光吸収による瞬間的な加
熱を行い、この時起こる吸収層での温度上昇が試料の厚
さ方向に伝播されて照射面と反対側の試料表面に起こす
温度変化をフラツシユ照射後の時間の関数として測定し
、この時得られる温度一時間曲線より熱拡散率を算出す
るものである。この方法でもやはジ温度の測定は温度検
出素子と試料の接触によるものであ如、この時の接触抵
抗が誤差要因となる。また熱拡散率の算出は、測定が短
時間であるため熱損失を考慮しないで良いという仮定の
もとになされて卦b、金属等の熱伝播率の大きなもので
はこの仮定を良く満たすが、高分子フイルム等熱拡散率
の小さなものになるほど誤差が大きくなるという欠点が
ある。このように従来の非定常法による熱拡散率測定法
に}いては、接触抵抗による誤差要因と断熱条件の設定
の困難さが欠点となつていた。この発明は上記欠点を除
去するためになされたもので、被測定層と入射電磁波を
効率よく吸収する薄い吸収層からなる二重層を試料とし
、この試料を気体(以下バツクグラウンドガスと称する
)を封じた密封容器に被測定層がバツクグラウンドガス
に接する向きでしかも密封容器の壁面の一部を構成する
ように設置し、この試料に変調された電磁波を照射して
その時に発生する圧力波の振幅と、あらかじめ吸収層の
みで同様に測定された圧力波の振幅の比をとシ、この値
の電磁波の変調周波数の平方根に対する勾配より熱拡散
率を求めるものである。
Typical unsteady methods include the Angstrom method and the Flash method. The Angstrom method involves bringing one end of a rod-shaped sample, which has a sufficiently small cross-sectional area compared to its length, into contact with a heat source that periodically heats and cools it, thereby causing periodic temperature changes at one end of the sample. As a result, a temperature wave is generated within the sample, and the state in which this temperature wave propagates within the sample is determined by measuring the temperature at two or more measurement points at different distances from the heating point in the direction of wave propagation. Thermal diffusivity is calculated using the amplitude and phase of the temperature waves obtained at each measurement point.This method requires forming the sample into a rod shape. A large amount of material is required, and the equipment requires a large amount of equipment due to the provision of an insulation system to minimize heat loss from the sample surface.In addition, it takes a relatively long time to measure, and temperature measurement is difficult. Since the temperature detection element is brought into contact with the sample, the contact resistance between the sample and the sensor and the contact resistance between the heating source and the sample become error factors, and the measurement target has a relatively low thermal diffusivity. On the other hand, the flash method has the disadvantage that it is limited to large substances.On the other hand, the flash method provides a light absorption layer on one surface of a flat plate sample, and irradiates this with, for example, a Xe arc flash or a laser pulse to generate light absorption. Instant heating is performed, and the temperature rise in the absorption layer that occurs at this time is propagated in the thickness direction of the sample, and the temperature change that occurs on the sample surface opposite to the irradiated surface is measured as a function of time after flash irradiation. Thermal diffusivity is calculated from the temperature one-hour curve obtained at this time.In this method, the temperature is measured by contact between the temperature detection element and the sample, and the contact resistance at this time is the cause of error. In addition, the thermal diffusivity is calculated based on the assumption that heat loss does not need to be taken into account because the measurement time is short. However, the disadvantage is that the smaller the thermal diffusivity is, such as a polymer film, the larger the error becomes.In this way, in the conventional unsteady method of measuring thermal diffusivity, the error factors due to contact resistance and the thermal insulation Difficulty in setting conditions was a drawback.This invention was made to eliminate the above-mentioned drawbacks. This sample is placed in a sealed container filled with gas (hereinafter referred to as background gas) so that the layer to be measured is in contact with the background gas and forms part of the wall of the sealed container. The ratio of the amplitude of the pressure wave generated at that time by irradiation with electromagnetic waves and the amplitude of the pressure wave previously measured in the same way only on the absorption layer is determined, and the slope of this value with respect to the square root of the modulation frequency of the electromagnetic wave is used to determine thermal diffusion. This is to find the rate.

従つて、この発明は試料表面温度を直接測定しないため
従来の接触抵抗による誤差要因を完全に除いている。ま
た、断熱条件の完全さは前記圧力波の比の対数値が被測
定層の厚さに対して線形性を持つか否かにより確かめる
ことができ、被測定層の膜厚を適当に選択することによ
ジ、実際に断熱条件が充分に満たされた状態で測定する
ことが可能である。以下、この発明の一実施例を図面を
参照して説明する。まず、第1図に示すように、試料1
は被測定層1aと吸収層1bより成る。
Therefore, since the present invention does not directly measure the sample surface temperature, the conventional error factor caused by contact resistance is completely eliminated. In addition, the completeness of the insulation condition can be confirmed by checking whether the logarithm of the ratio of the pressure waves has linearity with respect to the thickness of the layer to be measured, and the thickness of the layer to be measured can be appropriately selected. In particular, it is possible to carry out measurements in a state where the adiabatic conditions are actually sufficiently satisfied. An embodiment of the present invention will be described below with reference to the drawings. First, as shown in Figure 1, sample 1
consists of a layer to be measured 1a and an absorption layer 1b.

吸収層1bは後に第4図で示すように変調された光ビー
ムを吸収し発熱し、被測定層1aの吸収層1bと接する
面に周期的な温度変化を起こさせる役割を持つ。この吸
収層1bは例えばカーボンの蒸着、芳香族炭化水素の燃
焼によるすすの付着、あるいはカーボンブラツクバイン
ダ一樹脂溶液の塗布等により作成される。試料1は第2
図に示される如く密封容器2の光入射窓3に両画テープ
等ではり付けられる。光人射窓3は、通常のOリング4
等によシ気密性を保つように設置されている。試料1が
入射光に対して透明な場合は第3図に示す如く、試料1
は光入射窓3と反対側の壁面に置いてもよい。第2図、
第3図に}いて、密封容器2には音圧検出素子としてマ
イクロホン5がやはり気密性を保つように装着されてい
る。この測定系は第4図に示す如く、例えば、キセノン
ランプ、タングステンランプ、あるいは各種レーザー等
の光源6、光の変調を行うためのチヨツパー7、試料1
とマイクロホン5を装着した前記第2図、第3図に示し
た密封容器2、マイクロホン5の出力を増幅するための
増幅器8、チヨツパー7からの参照信号Yを入力し、信
号の振幅と位相を測定するためのロツクインアンプ9卦
よびロツクインアンブ9の出力を記録するためのレコー
ダ(図示せず)よりなる。変調された光ビーム6/を試
料1に照射すると、吸収層1bが光を吸収し、吸収され
た光エネルギーは吸収層1b又で熱エネルギーに変換さ
れ、吸収層1bの温度上昇を引き起こす。今、試料1が
吸収層1bのみで構成されているとすると、この熱エネ
ルギーは吸収層1bと接するバツクグラウンドガスに熱
伝導により伝達され、ガスの周期的な温度上昇を引き起
こし、バツクグラウンドガスが一定体積のため、圧力波
を発生させる。入射光が角周波数ωで変調されていると
すると、吸収層1bがバツクグラウンドガスと接する側
の表面での温度の変動成分θ(t)は、θ(t)−θ0
c0s(ωt−ε) ・・・・・・・・・(1)
により表わされる。
The absorption layer 1b later absorbs the modulated light beam and generates heat as shown in FIG. 4, and has the role of causing periodic temperature changes on the surface of the layer 1a to be measured that is in contact with the absorption layer 1b. This absorption layer 1b is formed, for example, by vapor deposition of carbon, adhesion of soot by combustion of aromatic hydrocarbons, or application of a carbon black binder-resin solution. Sample 1 is the second
As shown in the figure, it is attached to the light entrance window 3 of the sealed container 2 with double-sided tape or the like. The light radiation window 3 is a normal O-ring 4
etc., to maintain airtightness. If the sample 1 is transparent to the incident light, as shown in Figure 3, the sample 1
may be placed on the wall opposite to the light entrance window 3. Figure 2,
In FIG. 3, a microphone 5 as a sound pressure detection element is mounted on the sealed container 2 so as to maintain airtightness. As shown in FIG. 4, this measurement system includes a light source 6 such as a xenon lamp, tungsten lamp, or various lasers, a chopper 7 for modulating light, and a sample 1.
Input the reference signal Y from the sealed container 2 shown in FIGS. 2 and 3 with the microphone 5 attached, the amplifier 8 for amplifying the output of the microphone 5, and the chopper 7, and calculate the amplitude and phase of the signal. It consists of a lock-in amplifier 9 for measurement and a recorder (not shown) for recording the output of the lock-in amplifier 9. When the sample 1 is irradiated with the modulated light beam 6/, the absorption layer 1b absorbs the light, and the absorbed optical energy is converted into thermal energy in the absorption layer 1b, causing an increase in the temperature of the absorption layer 1b. Now, assuming that sample 1 is composed of only the absorption layer 1b, this thermal energy is transferred to the background gas in contact with the absorption layer 1b by thermal conduction, causing a periodic temperature rise of the gas, and the background gas increases. Because of the constant volume, it generates pressure waves. Assuming that the incident light is modulated at the angular frequency ω, the temperature fluctuation component θ(t) on the surface of the absorption layer 1b in contact with the background gas is θ(t)−θ0
c0s(ωt-ε) ・・・・・・・・・(1)
It is represented by

ここで、θoは吸収層1bの吸収係数が充分大きければ
吸収層1b自身の熱伝導率と比熱によつて決まる値であ
る。またεは、初期位相角である。また吸収層表面温度
の変動成分の振幅θ。と密封容器2内の圧力変動の振幅
Qとの間には、Q−γPOθ。
Here, θo is a value determined by the thermal conductivity and specific heat of the absorption layer 1b itself, if the absorption coefficient of the absorption layer 1b is sufficiently large. Further, ε is the initial phase angle. Also, the amplitude θ of the fluctuation component of the absorption layer surface temperature. and the amplitude Q of the pressure fluctuation inside the sealed container 2 is Q-γPOθ.

/AlgagTO・・・・・・・・・(2)なる関係が
ある。ここにT。,POはそれぞれ密封容器2内の温度
と圧力であり、γ,Agはそれぞれバツクグラウンドガ
スの定圧比熱と定容比熱の比訃よび熱拡散率であ楓 1
gは密封容器2の試料面に垂直方向の長さである。第(
2)式より密封容器2内の条件が定まると試料表面温度
と圧力波のそれぞれの振幅が比例関係にあることがわか
る。さて、試料1が被測定層1aと吸収層1bの2層よ
りなる場合を与える。被測定層1aと吸収層1bが接し
ているため、被測定層1aの吸収層1b側の表面温度は
やはシ第(1)式により示される。この温度の波動は、
被測定層1a内を伝播し、吸収層1b側と反対側の表面
でバツクグラウンドガスを加熱し、試料1が吸収層1b
のみの時と同様に密封容器2内に圧力波を生じさせる。
この時バツクグラウンドガスと接する試料表面の温度θ
8(X,t)は、被測定層1aの厚さをxとし、熱拡散
係数をA8とすると次のような条件、すなわち、熱流が
完全に試料1面に対して垂直な方向にのみ起こり一次元
の問題と考え得る、被測定層1aと吸収層1bが接する
面をZとし、被測定層1aの厚さの方向で、第1図の紙
面の左から右への向きを正とし、この正の向きと反対の
向きを負とするとき、正負の方向に対して温度分布が常
に対称であるという条件が満たされている時には、θ8
(X,t)=θ。Exp(−A8x)COs(ωt−A
sx−ε)゛゜゜゜゜゛゜゜(3)の形に表わされる。
/AlgagTO (2) There is a relationship. T here. , PO are the temperature and pressure inside the sealed container 2, respectively, and γ and Ag are the ratio of constant pressure specific heat to constant volume specific heat and thermal diffusivity of the background gas, respectively.
g is the length of the sealed container 2 in the direction perpendicular to the sample surface. No. (
From equation 2), it can be seen that when the conditions inside the sealed container 2 are determined, there is a proportional relationship between the sample surface temperature and the amplitude of each pressure wave. Now, let us consider the case where the sample 1 consists of two layers, the layer to be measured 1a and the absorption layer 1b. Since the layer to be measured 1a and the absorbing layer 1b are in contact with each other, the surface temperature of the layer to be measured 1a on the absorbing layer 1b side is expressed by equation (1). This temperature wave is
The sample 1 propagates through the layer to be measured 1a and heats the background gas on the surface opposite to the absorbing layer 1b.
Pressure waves are generated within the sealed container 2 in the same way as when the chisel is used.
At this time, the temperature θ of the sample surface in contact with the background gas
8(X, t) is calculated under the following conditions, where the thickness of the layer 1a to be measured is x and the thermal diffusion coefficient is A8, that is, the heat flow occurs completely only in the direction perpendicular to the surface of the sample. The surface where the layer to be measured 1a and the absorbing layer 1b are in contact is Z, which can be considered as a one-dimensional problem, and the direction from left to right in the paper of FIG. 1 in the direction of the thickness of the layer to be measured 1a is positive. When the opposite direction to this positive direction is considered negative, when the condition that the temperature distribution is always symmetrical with respect to the positive and negative directions is satisfied, θ8
(X, t)=θ. Exp(-A8x)COs(ωt-A
sx−ε)゛゜゜゜゜゛゜゜゜(3).

な卦、Asは熱拡散率α8によりA8−(ω/2α8)
+で定義される。このことから第(1)式および第(3
)式と比較することによりθs(X,t)とθ(t)の
振幅の比、R=θ8(X,t)/θ(t) の対数値は、 1nR=A−A8x で示される。
Hexagram, As is A8-(ω/2α8) due to thermal diffusivity α8
Defined by +. From this, equation (1) and equation (3)
), the ratio of the amplitudes of θs(X, t) and θ(t), R=θ8(X, t)/θ(t), is expressed as follows: 1nR=A−A8x.

ここに、 である。Here, It is.

また両波動の位相差は、になる。Also, the phase difference between the two waves is:

この測定法は原理的には第(4)式あるいは第(5)式
の関係を使うものであるが、実際の測定上次に述べるよ
うな問題点があり、直ちに第(4)、(5)式を使用す
るわけにはいかない。すなわち、試料1が実際に密封容
器2に設置され吸収層1bが光吸収により加熱され周期
的な温度変化を起こした場合に、被測定層1aの吸収層
1bと接する面をZととした時に正負の方向に対して温
度分布が対称にならないからである。このような一次元
の熱伝導の問題は一般的には古くから解が求められてい
るが、その解は各種のパラメーターを導入して非常に複
雑な形となるが、熱伝導の正負方向の大きさの比較であ
る熱損失パラメーターを適当に選べば、前述の振幅比R
がある角周波数範囲と試料層の厚?の範囲で第(4)式
に従うことが知られている。発明者らはこのRとω+の
線形性の成ジ立つ条件を試料層の厚さを変化させること
により実験的に求め得ることを見出した。すなわち、カ
ーボンブラツク35%を、バインダー樹脂ポリビニルブ
チラール65%とともにエチルアルコール適量に溶解し
、5時間以上ボールミルで攪拌した塗料を膜厚6μm、
10μm、19μm、24μm、30μm、34μmの
ポリ塩化ビニル樹脂に塗布し、カーボン−ブチラール樹
脂層を吸収層1bとし、ポリ塩化ビニル樹脂層を被測定
層1aとした二重層の試料1を作成した。吸収層1bの
厚さは5〜10μmである。この試料1を第3図に示す
ように設置し、光源をキセノンランプとして白色光を入
射し、圧力波の振幅の膜厚依存性を周波数をパラメータ
ーとして測定した。この値をあらかじめ吸収層1bのみ
で得られた振幅で徐することにより求めたR値の膜厚依
存性を第5図に示す。この図かられかるようにR値は実
験式として、1nR−A−A,Ox−A8,x2・・・
・・・・・・(6)のようにXの高次の項を含むことが
わかつた。しかし、膜厚が小さい範囲では、1nR11
ixに対して直線関係を示すことよジ塩化ビニル樹脂等
の熱拡散率の小さい物質は膜厚を5〜20μmの範囲に
することにより第(4)式を満たす条件が充分整つてい
ることがわかつた。次に、第6図にR値のωの平方根に
対する依存性を示す。
In principle, this measurement method uses the relationship of equation (4) or (5), but in actual measurement there are problems as described below, so ) expression cannot be used. That is, when the sample 1 is actually placed in the sealed container 2 and the absorption layer 1b is heated by light absorption and causes periodic temperature changes, when the surface of the layer 1a to be measured that is in contact with the absorption layer 1b is Z, This is because the temperature distribution is not symmetrical in the positive and negative directions. Solutions to such one-dimensional heat conduction problems have generally been sought for a long time, but the solution requires introducing various parameters and becomes extremely complex. If the heat loss parameter, which is a size comparison, is selected appropriately, the above-mentioned amplitude ratio R
What is the angular frequency range and sample layer thickness? It is known that Equation (4) is followed within the range of . The inventors have discovered that the conditions for establishing the linearity of R and ω+ can be determined experimentally by changing the thickness of the sample layer. That is, 35% carbon black was dissolved in an appropriate amount of ethyl alcohol along with 65% polyvinyl butyral binder resin, and the mixture was stirred in a ball mill for more than 5 hours to form a coating with a film thickness of 6 μm.
A double layer sample 1 was prepared by coating polyvinyl chloride resin of 10 μm, 19 μm, 24 μm, 30 μm, and 34 μm, with the carbon-butyral resin layer serving as the absorbing layer 1b and the polyvinyl chloride resin layer serving as the layer to be measured 1a. The thickness of the absorption layer 1b is 5 to 10 μm. This sample 1 was installed as shown in FIG. 3, a xenon lamp was used as a light source, and white light was incident thereon, and the dependence of the amplitude of the pressure wave on the film thickness was measured using the frequency as a parameter. FIG. 5 shows the dependence of the R value on the film thickness, which was obtained by dividing this value by the amplitude previously obtained only for the absorption layer 1b. As can be seen from this figure, the R value is expressed as an experimental formula: 1nR-A-A, Ox-A8, x2...
It was found that it contains a higher-order term of X as shown in (6). However, in a range where the film thickness is small, 1nR11
By showing a linear relationship with respect to ix, it is clear that for substances with low thermal diffusivity such as divinyl chloride resin, the conditions for satisfying equation (4) are sufficiently established by setting the film thickness in the range of 5 to 20 μm. I understand. Next, FIG. 6 shows the dependence of the R value on the square root of ω.

R値はんと良く直線関係を示し、この勾配は第(4)式
よV)(1/2α)+xである。この直線の勾配よりポ
リ塩化ビニルの熱拡散率を求め−3 −する
と、αこ1.07×10(7i1・SeCとなり、今ま
で発表された値が0.9〜2.4×10−3d−Sec
−1であることから充分妥当な値であることがわかる。
The R value shows a very good linear relationship, and the slope of this is V)(1/2α)+x according to equation (4). Calculating the thermal diffusivity of polyvinyl chloride from the slope of this straight line, α becomes 1.07 x 10 (7i1 SeC), which is 0.9 to 2.4 x 10 -3 d. -Sec
Since it is -1, it can be seen that it is a sufficiently reasonable value.

な卦、変調周波数は20〜2000Hzの範囲のものを
使用する。熱拡散率の大きい試料として銅を選び、0,
15mmの厚さの銅板を用いてポリ塩化ビニル樹脂の場
合と同様にして熱拡散率の値を求めた。
Furthermore, the modulation frequency used is in the range of 20 to 2000 Hz. Copper was selected as a sample with a large thermal diffusivity, and 0,
The value of thermal diffusivity was determined in the same manner as in the case of polyvinyl chloride resin using a copper plate with a thickness of 15 mm.

得られた値は、1.38CTI1−Sec−1で、例え
ば化学便覧に記載されている熱伝導率と比熱を参照して
計算された熱拡散率の値1.14〜・Sec−1とかな
う良い一致が見られている。熱拡散率の大きな物質につ
いては、被測定層としての測定可能な膜厚は大きくなる
ことが知られる。それ故、熱拡散率の大きい物質ほど被
測定層としての膜厚は大きくて良く、より測定が容易で
ある傾向は有するものの、この発明に卦いては試料層の
膜厚条件さえ整えば、熱拡散率の小さなもの、通常断熱
材といわれる物質の測定値についても充分な信頼性を保
証し得るものである。な訃、被測定層1aとしては、膜
厚が20ttm〜0.5mmの金属等の導電体を用いる
こともできる。
The obtained value is 1.38 CTI1-Sec-1, which matches the thermal diffusivity value of 1.14-Sec-1 calculated with reference to the thermal conductivity and specific heat described in the chemical handbook, for example. Good agreement is seen. It is known that for substances with a large thermal diffusivity, the measurable thickness of the layer to be measured becomes large. Therefore, although there is a tendency that the larger the thermal diffusivity of a material, the larger the thickness of the layer to be measured is required and the easier measurement, in this invention, as long as the thickness conditions of the sample layer are set, Sufficient reliability can be guaranteed even for measured values of substances with a small diffusivity, which are commonly called heat insulating materials. However, as the layer to be measured 1a, a conductive material such as metal having a film thickness of 20 ttm to 0.5 mm can also be used.

また、密封容器を圧力ー電気変換材料で構成することに
よ奴音圧検出器を兼ねるようにしてもよい。以上は熱拡
散率の絶対値を測定する方法に関するものであるが、例
えば断熱材の優劣評価あるいは熱伝導材の評価のように
熱拡散率の相対的な大小を問う場合は、この発明による
方法によればより迅速かつ簡易な測定法となジ得る。
Furthermore, the sealed container may be made of a pressure-electricity converting material so that it also serves as a sound pressure detector. The above is a method for measuring the absolute value of thermal diffusivity. However, when the relative magnitude of thermal diffusivity is to be investigated, for example, when evaluating the superiority or inferiority of heat insulating materials or thermally conductive materials, the method according to the present invention can be used. According to this method, a faster and simpler measurement method can be obtained.

すなわち、測定条件として、被測定層の膜厚、入射エネ
ルギー変調周波数その他が同一であれば、測定される信
号強度は被測定層内の温度の波動の減衰の程度のみによ
り決まることとな力、信号強度の犬小と熱拡散率の大小
が対応している。それ故、適当な膜厚を選定しさえすれ
ば、吸収層を取ジ付けるだけで迅速かつ簡易に熱拡散率
の相対的評価を行うことができる。以上説明したように
この発明によれば、被測定層の一方の面に吸収層を設け
、この吸収層に変調された光を照射し、その結果発熱を
起こさせて被測定層の一方の面に温度の波動を発生させ
、この温度の波動がもう一方の面に伝播される時に起こ
る振幅の減衰の大きさが熱拡散率と波動伝播の距離と周
波数に依存することよジ周波数を変化させ、被測定層の
厚さより熱拡散率を求めることができる。
In other words, if the measurement conditions are the same, such as the thickness of the layer to be measured and the incident energy modulation frequency, the measured signal strength is determined only by the degree of attenuation of the temperature wave within the layer to be measured. The magnitude of the signal strength corresponds to the magnitude of the thermal diffusivity. Therefore, as long as an appropriate film thickness is selected, relative evaluation of thermal diffusivity can be performed quickly and simply by simply attaching the absorbing layer. As explained above, according to the present invention, an absorbing layer is provided on one surface of the layer to be measured, and the absorbing layer is irradiated with modulated light, thereby causing heat to be generated on one surface of the layer to be measured. A temperature wave is generated on one surface, and the magnitude of the amplitude attenuation that occurs when this temperature wave is propagated to the other surface depends on the thermal diffusivity and the distance and frequency of wave propagation. , the thermal diffusivity can be determined from the thickness of the layer to be measured.

また、温度の測定は、被測定面が密封容器内のバツクグ
ラウンドガスに接してこのガスを加熱し、その結果起こ
る圧力変動を測定することによつて可能となり、従来法
に}いて常に問題となつていた欠点、すなわち、試料と
温度検出素子の接触抵抗による誤差要因を除去すること
ができる。また、被測定層の膜厚を適当に選択すること
により銅のような高い熱拡散率を持つものから、高分子
フイルムのように極めて小さな熱拡散率を持つものまで
、幅広い範囲で精度良く熱拡散率を測定することができ
る利点を有する。
Temperature can also be measured by heating this gas by bringing the surface to be measured into contact with the background gas in a sealed container and measuring the resulting pressure fluctuations, which has always been a problem with conventional methods. A common drawback, that is, an error factor due to contact resistance between the sample and the temperature detection element can be eliminated. In addition, by appropriately selecting the thickness of the layer to be measured, it is possible to accurately measure heat in a wide range of areas, from materials with high thermal diffusivity such as copper to materials with extremely low thermal diffusivity such as polymer films. It has the advantage of being able to measure the diffusivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第6図はこの発明の一実施例を示すもので、第
1図は試料の構成を示す側面図、第2図、第3図は密封
容器への試料の設置状態を示す断面図、第4図は測定系
の概念を示すプロツク図、第5図は吸収層一被測定層か
らの信号強度と吸収層のみの信号強度の比を被測定層の
膜厚に対して表わした特性図、第6図は第5図と同様の
値を変調角周波数の平方根に対して表わした特性図であ
る。
Figures 1 to 6 show an embodiment of the present invention, with Figure 1 being a side view showing the configuration of a sample, and Figures 2 and 3 being a cross section showing how the sample is placed in a sealed container. Figure 4 is a block diagram showing the concept of the measurement system, and Figure 5 shows the ratio of the signal intensity from the absorbing layer and the layer to be measured to the signal intensity from the absorbing layer alone, with respect to the film thickness of the layer to be measured. The characteristic diagram, FIG. 6, is a characteristic diagram in which values similar to those in FIG. 5 are expressed with respect to the square root of the modulation angular frequency.

Claims (1)

【特許請求の範囲】 1 少なくとも1つの電磁波入射窓あるいは試料取り付
け窓を有し、内部に音圧検出器を備えた密封容器と、前
記密封容器内に所要の気体を封じ込めるとともに、被測
定層と電磁波を吸収する薄い吸収層とからなる試料の前
記被測定層が必らず前記密封容器の壁面の一部をなす測
定系を用い、前記試料に変調周波数で変調を加えた電磁
波を照射し前記密封容器内に圧力波を起こさせ、この圧
力波の振幅と位相を含む出力を前記音圧検出器により測
定し、これを前記試料について前記変調周波数の範囲で
少なくとも2点以上前記変調周波数を変化させて行い、
前記密封容器内に発生する圧力波の音圧検出器の出力と
、あらかじめ吸収層のみからなる試料により同様に測定
された信号強度との比の対数値の前記変調周波数の平方
根に対する勾配から熱拡散率を測定することを特徴とす
る熱拡散率測定方法。 2 被測定層は、その膜厚が5〜20μmの範囲の高分
子フィルム、ガラス等の断熱性物質からなるものである
特許請求の範囲第1項記載の熱拡散率測定方法。
[Scope of Claims] 1. A sealed container having at least one electromagnetic wave entrance window or sample attachment window and equipped with a sound pressure detector inside; a required gas contained in the sealed container; Using a measurement system in which the layer to be measured of the sample consisting of a thin absorption layer that absorbs electromagnetic waves necessarily forms a part of the wall surface of the sealed container, the sample is irradiated with electromagnetic waves modulated at a modulation frequency. A pressure wave is generated in a sealed container, the output including the amplitude and phase of this pressure wave is measured by the sound pressure detector, and the modulation frequency is varied at least two points within the modulation frequency range for the sample. let me go,
Thermal diffusion is determined from the slope of the logarithm of the ratio of the output of the sound pressure detector of the pressure wave generated in the sealed container to the signal intensity previously measured in the same manner with a sample consisting only of an absorbing layer, with respect to the square root of the modulation frequency. A thermal diffusivity measurement method characterized by measuring the thermal diffusivity. 2. The thermal diffusivity measuring method according to claim 1, wherein the layer to be measured is made of a heat insulating material such as a polymer film or glass having a thickness in the range of 5 to 20 μm.
JP52156236A 1977-12-23 1977-12-23 Thermal diffusivity measurement method Expired JPS5925974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52156236A JPS5925974B2 (en) 1977-12-23 1977-12-23 Thermal diffusivity measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52156236A JPS5925974B2 (en) 1977-12-23 1977-12-23 Thermal diffusivity measurement method

Publications (2)

Publication Number Publication Date
JPS5487585A JPS5487585A (en) 1979-07-12
JPS5925974B2 true JPS5925974B2 (en) 1984-06-22

Family

ID=15623338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52156236A Expired JPS5925974B2 (en) 1977-12-23 1977-12-23 Thermal diffusivity measurement method

Country Status (1)

Country Link
JP (1) JPS5925974B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01502712A (en) * 1986-05-21 1989-09-14 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング electromechanical stator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017219338B3 (en) * 2017-10-27 2019-02-28 Humboldt-Universität Zu Berlin Photoacoustic sensor head and photoacoustic measuring device with improved noise suppression

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01502712A (en) * 1986-05-21 1989-09-14 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング electromechanical stator

Also Published As

Publication number Publication date
JPS5487585A (en) 1979-07-12

Similar Documents

Publication Publication Date Title
Adams et al. Thermal diffusivity and thickness measurements for solid samples utilising the optoacoustic effect
Chirtoc et al. Theory of the photopyroelectric method for investigation of optical and thermal materials properties
Mandelis Absolute optical absorption coefficient measurements using transverse photothermal deflection spectroscopy
US3826978A (en) Waveguide refractometer
Borroni-Bird et al. Single crystal adsorption microcalorimetry
US5713665A (en) Method and apparatus for thermal diffusivity measurement
Hatta Thermal diffusivity measurements of thin films and multilayered composites
Delenclos et al. Assessment of calibration procedures for accurate determination of thermal parameters of liquids and their temperature dependence using the photopyroelectric method
US4682897A (en) Light scattering measuring apparatus
US20090274191A1 (en) Single beam optical apparatus and method
JPS5925974B2 (en) Thermal diffusivity measurement method
Lima et al. Measurement of the thermal properties of liquids using a thermal wave interferometer
Wang et al. Purely thermal-wave photopyroelectric interferometry
JPS5946337B2 (en) Thermal diffusivity measurement method
JPS6138410B2 (en)
JPS601561B2 (en) Film thickness measurement method
JPS601562B2 (en) Film thickness measurement method
Moss et al. The absolute determination of near millimetre wave power in free space
US9194693B2 (en) Contactless method for determining the ray of a beam, corresponding system
Liu et al. Quantification of proton radiation damage in polyimide aerogel by cantilever-enhanced photoacoustic spectroscopy
RU2023237C1 (en) Method of determining layer thickness
Grigorova et al. Temperature measurement of plasma-facing surfaces in tokamaks by active pyrometry
Elwood et al. Gold nanoparticles encapsulated in a soda-lime glass substrate for plasmonic temperature sensing
Apparao et al. A new technique of measuring trace absorption of optical thin films
Kerr Surface and Coating Absorption Measurement With An Alphaphone