JPS6015037B2 - crystal clock - Google Patents

crystal clock

Info

Publication number
JPS6015037B2
JPS6015037B2 JP8267777A JP8267777A JPS6015037B2 JP S6015037 B2 JPS6015037 B2 JP S6015037B2 JP 8267777 A JP8267777 A JP 8267777A JP 8267777 A JP8267777 A JP 8267777A JP S6015037 B2 JPS6015037 B2 JP S6015037B2
Authority
JP
Japan
Prior art keywords
oscillator
temperature detection
temperature
crystal
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8267777A
Other languages
Japanese (ja)
Other versions
JPS5417880A (en
Inventor
紀久雄 小口
正雄 赤羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suwa Seikosha KK
Original Assignee
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suwa Seikosha KK filed Critical Suwa Seikosha KK
Priority to JP8267777A priority Critical patent/JPS6015037B2/en
Publication of JPS5417880A publication Critical patent/JPS5417880A/en
Publication of JPS6015037B2 publication Critical patent/JPS6015037B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Electric Clocks (AREA)
  • Oscillators With Electromechanical Resonators (AREA)

Description

【発明の詳細な説明】 本発明は歩度の温度による変化を補償された水晶時計に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a quartz watch that is compensated for temperature-induced changes in rate.

本発明の目的は水晶時計の時間精度の向上にある。An object of the present invention is to improve the time accuracy of a crystal clock.

現在実用されている水晶時計の時間標準としては十50
×カット系の水晶振動子が多く用いられている。
The time standard for crystal clocks currently in use is 150.
×Cut type crystal units are often used.

この水晶振動子の振動周波数の温度特性は良く知られて
いるように温度に対して放物線特性を持っており、温度
により時計の歩度が変化する欠点を有している。この欠
点を取除く、すなわち温度特性を補償する方法の一つに
次に説明するように温度検出発振器を用いて論理回路に
よって補正を行う方法がある。しかし、この方法は電源
電圧の変動によって時計の歩度が変化する欠点がある。
本発明はこの欠点を取除くものである。第1図は従来の
温度補償された水晶時計の系統図である。図において1
は水晶発振器、2は分周器、3は時刻表示器、4は温度
検出発振器、5は差周波数発生器、6は二乗計算器であ
る。水晶発振器の振動子に十50×カット系の屈曲水晶
振動子を用いれば水晶発振器の発振周波数fは次式のよ
うに表わせる。f=b{1一a(t−to)2} ただし、tは時計の温度、妙ま水晶発振器発振周波数の
変曲点温度で通常25o0位が選ばれる。
As is well known, the temperature characteristic of the vibration frequency of this crystal resonator has a parabolic characteristic with respect to temperature, which has the disadvantage that the rate of the clock changes depending on the temperature. One method of eliminating this drawback, that is, compensating for the temperature characteristics, is to perform correction using a logic circuit using a temperature detection oscillator, as described below. However, this method has the disadvantage that the rate of the clock changes due to fluctuations in the power supply voltage.
The present invention obviates this drawback. FIG. 1 is a system diagram of a conventional temperature compensated crystal clock. In the figure 1
is a crystal oscillator, 2 is a frequency divider, 3 is a time display, 4 is a temperature detection oscillator, 5 is a difference frequency generator, and 6 is a square calculator. If a bent crystal resonator of 150× cut type is used as the resonator of the crystal oscillator, the oscillation frequency f of the crystal oscillator can be expressed as follows. f=b{11a(t-to)2} However, t is the temperature of the watch, the inflection point temperature of the oscillation frequency of the crystal oscillator, and is usually selected to be around 25o0.

aは二次係数で約3.5×10‐8、bは変曲点温度に
おける発振周波数である。水晶発振器の出力は分周器に
よって周波数逓降されて通常1秒信号の出力となり時刻
表示器に加えられる。このままでは前式より明らかなよ
うに温度により時計の歩度が変化してしまう。そこで分
周器の途中段よりの出力周波数と温度検出発振器周波数
との葦周波数を差周波数発生器により得て、これを二乗
計算器により二乗して分周器入力に加え水晶発振器発振
周波数と加算せしむれば、温度検出発振器の発振周波数
が温度に関し、一次に変化し変化率が適当であり、変曲
点温度において分周器途中出力周波数と一致していれば
前式のaが関与する項は消去され、時計は温度に無関係
に一定の歩度を保たせることができる。図における分周
器途中段からの二乗計算器への出力は二乗計算の基礎時
間を決めるものであって、この時間中のみ温度検出発振
器の発振周波数が参照される。以上のように本例は原理
的には優れた方式であるが実際上は大きな難点を持って
いた。
a is a quadratic coefficient of approximately 3.5×10-8, and b is an oscillation frequency at the inflection point temperature. The output of the crystal oscillator is frequency-downgraded by a frequency divider to produce a normally one-second signal output that is applied to a time display. If this continues, the rate of the clock will change depending on the temperature, as is clear from the previous equation. Therefore, the difference frequency between the output frequency from the middle stage of the frequency divider and the temperature detection oscillator frequency is obtained by a difference frequency generator, squared by a square calculator, and added to the frequency divider input and added to the crystal oscillator oscillation frequency. In other words, if the oscillation frequency of the temperature detection oscillator changes linearly with respect to temperature, the rate of change is appropriate, and it matches the intermediate output frequency of the frequency divider at the inflection point temperature, then a in the previous equation is involved. The term is eliminated, allowing the clock to maintain a constant rate regardless of temperature. The output from the middle stage of the frequency divider to the square calculator in the figure determines the basic time for square calculation, and the oscillation frequency of the temperature detection oscillator is referenced only during this time. As described above, although this example is an excellent method in principle, it has major drawbacks in practice.

最も大きな難点は、温度検出発振器としては通常CR発
振器あるいはLC発振器が用いられるが、これらは水晶
発振器に比較して格段に電圧特性が悪く、このような温
度検出開発振器を用いて水晶発振器の発振周波数を補正
した場合には、補正後の周波数は、温度検出用発振器の
電圧特性に従って、電圧駆動に大きく影響を受けること
である。特に、時刻表示器として針表示機構を利用する
場合には変換器として針駆動用モーターを用いることに
なり、このモーターには1秒毎に瞬間的に大電流が流れ
るため間欠的に電池電圧が大きく低下し、温度検出発振
器の発振周波数も大きく変化してしまう。このため水晶
発振器の温度特性の補償量も変動してしまい高精度な時
計が得られない。この変動量、言い換えれば電池電圧の
低下量は電池容量の残存量・周囲温度などの要因により
大きく変り、これらを見込んで補償量を調整することは
不可能である。本発明は温度検出発振器の電源電圧を安
定化させることによって水晶発振器の温度特性の補償を
安定に行なうことを可能にすると共に該定電圧電源を温
度検出発振器の発振周波数を参照する期間のみ動作させ
ることによって消費電流の増大を押えたものである。
The biggest drawback is that CR oscillators or LC oscillators are usually used as temperature detection oscillators, but these have much worse voltage characteristics than crystal oscillators. When the frequency is corrected, the corrected frequency is largely influenced by voltage driving according to the voltage characteristics of the temperature detection oscillator. In particular, when using a hand display mechanism as a time display, a hand drive motor is used as a converter, and because a large current flows momentarily through this motor every second, the battery voltage is intermittently reduced. This results in a large decrease in the temperature detection oscillator's oscillation frequency, and the oscillation frequency of the temperature detection oscillator also changes significantly. For this reason, the amount of compensation for the temperature characteristics of the crystal oscillator also fluctuates, making it impossible to obtain a highly accurate timepiece. The amount of this fluctuation, in other words, the amount of decrease in battery voltage, varies greatly depending on factors such as remaining battery capacity and ambient temperature, and it is impossible to adjust the amount of compensation in anticipation of these factors. The present invention makes it possible to stably compensate for the temperature characteristics of the crystal oscillator by stabilizing the power supply voltage of the temperature detection oscillator, and also allows the constant voltage power supply to operate only during the period in which the oscillation frequency of the temperature detection oscillator is referenced. This suppresses the increase in current consumption.

第2図は本発明の水晶時計の一具体例の系統図である。FIG. 2 is a system diagram of a specific example of the quartz watch of the present invention.

図において、7は水晶発振器、8は分筒器、9は時刻表
示器、1川ま温度検出発振器、11は差周波数発生器、
12は二乗計算器、13は定電圧回路である。大略の動
作は第1図の例と同一であるが、次の点において大きく
異なる。すなわち本例においては分周器内部で合成され
た分周器からの出力が二乗計算器に加えられ二乗計算の
基礎時間を定めると共に定電圧回路を間欠的に動作させ
、更に定電圧回路はその出力を温度検出発振器に供聯合
している。第3図は本発明に用いられる定電圧回路の例
である。
In the figure, 7 is a crystal oscillator, 8 is a cylinder divider, 9 is a time display, 1 is a temperature detection oscillator, 11 is a difference frequency generator,
12 is a square calculator, and 13 is a constant voltage circuit. Although the general operation is the same as the example shown in FIG. 1, there are major differences in the following points. That is, in this example, the output from the frequency divider that is synthesized inside the frequency divider is added to the square calculator to determine the basic time for square calculation, and the constant voltage circuit is operated intermittently. The output is coupled to a temperature detection oscillator. FIG. 3 is an example of a constant voltage circuit used in the present invention.

図の回路はCMOS回路で構成された例であって、電圧
入力端子14から供給された電圧は制御端子15の制御
電圧に従って電圧出力端子16から出力される。すなわ
ち制御電圧が低電位にあるとき出力の電圧は定電圧化さ
れるので、これに接続された温度検出用発振器は時計の
温度以外の環境に対して安定に発振する。この定電圧の
値はトランジスタ17,18の闘値を変えることにより
変更することができる。一方、制御電圧が高電位にある
ときは第3図の回路には電流が流れない状態になると共
に、出力には電圧が表れない。したがって、温度検出用
発振器は、定電圧回路の出力に従って間欠的に動作させ
るため消費電力を減少させることができる。以上の構成
により本発明は次の効果を有する。
The illustrated circuit is an example constructed of a CMOS circuit, and the voltage supplied from the voltage input terminal 14 is output from the voltage output terminal 16 in accordance with the control voltage of the control terminal 15. That is, when the control voltage is at a low potential, the output voltage is made constant, so the temperature detection oscillator connected thereto oscillates stably with respect to the environment other than the temperature of the watch. The value of this constant voltage can be changed by changing the threshold values of transistors 17 and 18. On the other hand, when the control voltage is at a high potential, no current flows through the circuit of FIG. 3, and no voltage appears at the output. Therefore, since the temperature detection oscillator is operated intermittently according to the output of the constant voltage circuit, power consumption can be reduced. With the above configuration, the present invention has the following effects.

1 時刻表示器の消費電力、電池容量の残存量等に影響
されずに温度検出発振器の温度検出精度が上り、時計の
時間精度が向上する。
1. The temperature detection accuracy of the temperature detection oscillator is improved without being affected by the power consumption of the time indicator, the remaining battery capacity, etc., and the time accuracy of the clock is improved.

2 一般に電力効率の悪い定電圧回路を必要時間のみ、
すなわち温度検出発振器の発振周波数が参照されるのみ
動作させるので消費電流の増加は低い値に押えることが
できる。
2. Constant voltage circuits, which generally have poor power efficiency, can be used for only the necessary time.
That is, since the temperature detection oscillator is operated only when its oscillation frequency is referenced, the increase in current consumption can be suppressed to a low value.

このように、本発明は温度検出発振器の発振周波数によ
って温度補償を行う水晶時計において、温度検出発振器
の発振周波数が参照される期間のみ前記発振器を定電圧
回路を介して動作させるようにしたもので高精度、低消
費電力の時計の実用化に役立つものである。
As described above, the present invention is a crystal clock that performs temperature compensation using the oscillation frequency of a temperature detection oscillator, in which the oscillator is operated via a constant voltage circuit only during the period when the oscillation frequency of the temperature detection oscillator is referenced. This will be useful for the practical application of high-precision, low-power consumption clocks.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従釆の温度補償された水晶時計の系統図、第2
図は本発明の一具体例の系統図、第3図は本発明に用い
られる定電圧回路例である。 7・・・・・・水晶発振器、13・・・・・・定電圧回
路、10・・・・・・温度検出発振器、12・・・・・
・二乗計算器。 ブー図ブ2図 オ3図
Figure 1 is a system diagram of a secondary temperature-compensated quartz clock, Figure 2
The figure is a system diagram of a specific example of the present invention, and FIG. 3 is an example of a constant voltage circuit used in the present invention. 7... Crystal oscillator, 13... Constant voltage circuit, 10... Temperature detection oscillator, 12...
- Square calculator. Boo diagram Bu 2 diagram O 3 diagram

Claims (1)

【特許請求の範囲】[Claims] 1 水晶発振器、分周回路及び時刻表示装置よりなる水
晶時計において、温度検出発振器、前記温度検出発振器
の発振周波数を用いて前記水晶発振器の温度特性を補償
する手段及び前記温度検出発振器を駆動するための定電
圧回路を設け、前記定電圧回路は、電圧入力端子、制御
端子及び前記制御端子の電圧に従って定電圧を出力する
電圧出力端子を有し、前記制御端子には前記温度検出発
振器を間欠的に駆動するために前記分周回路の出力信号
が入力されることを特徴とする水晶時計。
1. In a crystal clock consisting of a crystal oscillator, a frequency dividing circuit, and a time display device, a temperature detection oscillator, means for compensating the temperature characteristics of the crystal oscillator using the oscillation frequency of the temperature detection oscillator, and for driving the temperature detection oscillator. The constant voltage circuit has a voltage input terminal, a control terminal, and a voltage output terminal that outputs a constant voltage according to the voltage of the control terminal, and the temperature detection oscillator is connected to the control terminal intermittently. A crystal clock, characterized in that an output signal of the frequency dividing circuit is inputted to drive the clock.
JP8267777A 1977-07-11 1977-07-11 crystal clock Expired JPS6015037B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8267777A JPS6015037B2 (en) 1977-07-11 1977-07-11 crystal clock

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8267777A JPS6015037B2 (en) 1977-07-11 1977-07-11 crystal clock

Publications (2)

Publication Number Publication Date
JPS5417880A JPS5417880A (en) 1979-02-09
JPS6015037B2 true JPS6015037B2 (en) 1985-04-17

Family

ID=13781035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8267777A Expired JPS6015037B2 (en) 1977-07-11 1977-07-11 crystal clock

Country Status (1)

Country Link
JP (1) JPS6015037B2 (en)

Also Published As

Publication number Publication date
JPS5417880A (en) 1979-02-09

Similar Documents

Publication Publication Date Title
JP4561829B2 (en) Clock signal output device and control method thereof, electronic device and control method thereof
US4344046A (en) Signal generator including high and low frequency oscillators
US4148184A (en) Electronic timepiece utilizing main oscillator circuit and secondary oscillator circuit
US4223524A (en) Quartz oscillation circuit for electronic timepieces
US4009445A (en) Divider for an electronic timepiece
JPS6015037B2 (en) crystal clock
JPS61154206A (en) Piezoelectric oscillator
US4453105A (en) Mode coupled quartz crystal tuning fork
JPS5840155B2 (en) densid cay
US4730286A (en) Circuit and method for correcting the rate of an electronic timepiece
JP2004205244A (en) Electronic timepiece and its control method
JP4771280B2 (en) Temperature compensation method, correction value determination circuit, and temperature compensation oscillation circuit
JPS5841379A (en) Electronic time piece with temperature compensation
JP3027021B2 (en) Electronic clock with temperature compensation
JPH0346408A (en) Clock
JPS58168988A (en) Electronic timepiece with temperature compensating function
JPH0245837Y2 (en)
JPS60179685A (en) Electronic timepiece
JPS622557Y2 (en)
JP2003106906A (en) Temperature measuring method
JPH0352590B2 (en)
JPH0518286B2 (en)
JPS58166285A (en) Electronic timepiece provided with temperature compensation
JPS5816364B2 (en) time standard
JPS59162478A (en) Electronic timepiece with temperature compensation