JPH0245837Y2 - - Google Patents
Info
- Publication number
- JPH0245837Y2 JPH0245837Y2 JP1988028434U JP2843488U JPH0245837Y2 JP H0245837 Y2 JPH0245837 Y2 JP H0245837Y2 JP 1988028434 U JP1988028434 U JP 1988028434U JP 2843488 U JP2843488 U JP 2843488U JP H0245837 Y2 JPH0245837 Y2 JP H0245837Y2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- signal
- rate adjustment
- circuit
- circuit section
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000013078 crystal Substances 0.000 claims description 30
- 238000009529 body temperature measurement Methods 0.000 claims description 11
- 230000010355 oscillation Effects 0.000 claims description 9
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 claims description 4
- 239000003990 capacitor Substances 0.000 description 14
- 238000010586 diagram Methods 0.000 description 12
- 238000000034 method Methods 0.000 description 6
- 238000001514 detection method Methods 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 208000019901 Anxiety disease Diseases 0.000 description 1
- 101000878457 Macrocallista nimbosa FMRFamide Proteins 0.000 description 1
- 230000036506 anxiety Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
Landscapes
- Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
- Electric Clocks (AREA)
- Oscillators With Electromechanical Resonators (AREA)
Description
本考案は、水晶発振器の周波数温度特性を補償
した電子時計に関する。
従来、電子時計の周波数温度特性(以下簡単に
温度特性と略記する)の補償については、種々の
方法があるが大別して、温度特性の異なる部品を
組合せる方法及び温度特性の優れた水晶振動子を
用いる方法がある。前者については、水晶振動子
を2本並列に用いる方法、感温抵抗及びコンデン
サを用いる方法等があるが、いずれも構成部品が
増加すること、及び良好な温度特性を得るために
必要な素子を組合せが難しいために、量産性に乏
しくコスト高まはぬがれない。又後者について
は、たとえば、周波数温度特性のフラツトな温度
範囲が広範で、しかも長期安定性の良い水晶振動
子としてATカツト、GTカツト水晶振動子が存
在するが、両者とも発振周波数がメガHz〜数百K
Hzと高いために消費電力が大きく、電子時計の長
寿命化はむずかしい欠点がある。
本考案の目的は、上記欠点を改善するもので、
時計体の温度をICに内蔵した検温回路により検
出し、温度補償信号を作成し、この温度補償信号
と、従来の論理的歩度調整回路を用いて温度補償
と共に歩度調整を行う電子時計を得ることにあ
る。さらに、本考案の別の目的は温度補償動作を
選択的に不動作として、正確にしかも信頼性良く
歩度調整を行う電子時計を得ることにある。
本考案によれば、時間標準信号源にIC、水晶
振動子、トリマコンデンサ以外には、特別な構成
素子を必要としない。さらに温度特性の作に込み
に際して、特に面倒な組合せを必要とせずに良好
な時間精度を可能にする。
以下、図面により本考案の内容を説明する。
第1図に従来の温度補償付電子時計の内、チタ
バリコンデンサ等の感温コンデンサを用いた電子
時計が有する時間標準源の回路構成を示す。図中
の各構成部位の名称は、11,12は抵抗、13
は水晶振動子、14は温度補償用コンデンサ、1
5は固定コンデンサ(IC内蔵)、16はトリマコ
ンデンサ、17はC−MOSインバータ、18は
分周回路、19は時刻表示手段である。
該温度補償付水晶発振回路の温度特性は、第2
図曲線22となる。曲線20は水晶振動子の温度
特性である。又、21はチタバリコンデンサの容
量変化とICと水晶振動子で決まる負荷容量対周
波数特性曲線より合成される実効的な補償温度特
性曲線である。補償特性22は、20と21の和で与
えられる。しかし、この補償特性22は水晶振動
子の特性曲線の頂点θ0とチタバリコンデンサの容
量変化の頂点CPの一致程度及び容量15,16
の値によつても、例えば23のように変化し、補
償特性を低下させる。これは温度特性を決定する
要因が、IC、チタバリコンデンサ、水晶振動子
の三者の諸特性が複雑にからんでいるためであ
り、この温度特性のバラツキはさけがたい。また
容量16は歩度調整に用いられるので、歩度調整
によつても温度特性が変化してしまい正確な補償
はむずかしい。
第3図は、本考案による電子時計の時間標準源
の構成であり、図中、13は水晶振動子、16は
トリマコンデンサ、30は1チツプIC、303
はIC中の検温回路部、302は補正信号作成論
理回路部、301は発振、分周駆動回路部、31
は歩度調整用設定端子、40は時刻表示部、5は
システムリセツトスイツチである。まず、第3図
による該電子時計の通常の計時動作は、リセツト
スイツチ5がOFF状態で行われ、時計体の温度
が検温回路部303で2進数の温度補償信号に変
換され、302の補正信号作成論理回路部に入力
する。又、これと独立に設定する水晶発振器の論
理的手段による周波数調整(以下、簡単に論理周
波数調整と略記する。)のための歩度調整信号は、
固定メモリ等の歩度調整用設定端子31より30
2に入力し加減算され、結果の2進数データが3
01の発振、分周駆動回路部の分周器を制御し
て、水晶発振器の温度補償と歩度調整を同時に行
う。
一方、システムリセツトスイツチ5が電子時計
の巻真を2段引き出す等によつてON状態になつ
た際には、検温回路部は無補償状態となり、31
に設定されたデータによる論理的歩度調整のみが
行われる。
このように、システムリセツトスイツチ5の操
作に応じて論理的歩度調整のみが行えることによ
る利点は次のようなことである。すなわち、電子
時計を使用中に落下させたりすると、その衝撃に
より時間標準である水晶振動子の歩度がズレてし
まうことが起こり、これを修正するため常温にお
ける歩度を零に再調整する必要が生ずる。この
時、同時に温度補償動作が作動していると、第6
図に示すように補償特性が不連続なため、温度の
変動に応じて時計歩度指示値が一定せず調整者に
不安感を与えてしまう。しかし、このような場
合、温度補償動作が不動作となつていれば時計歩
度指示値が一定となり、調整者は常に正確に信頼
性良く歩度調整用のトリマコンデンサまたは論理
的歩度調整を行うことができるのである。
さらに、電子時計の出荷検査時において論理的
歩度補正状態と、論理的歩度補正及び温度補償状
態との2状態を、システムリセツトスイツチとな
る例えば巻真の操作一つで設定して、両状態を独
立に調整及び検査することができ、電子時計の高
信頼性が達成できるのである。
第4図aは、モータ4のコイルへの駆動信号
で、システムリセツトスイツチ5のリセツト信号
423がロウレベルでは1秒毎に逆向きの電流が
流れ、モータが回転する。一方、リセツト信号が
ハイレベルとされたリセツト状態では、同一の周
期の信号が出力するが、パルス幅W2が1〜
2msecと小さいために、モータは停止する。この
際、節電ができるばかりでなく、該信号を用いて
論理周波数調整された電子時計の歩度を測定する
ことができる。
第4図bは、これを実現するための回路ブロツ
クの実施例で、2種類のクロツク421,422
の周波数は各々1/W1、1/W2であり、これが
切換回路42で二者択一的に選択され41へ入力
され、411の計時信号より駆動、歩度測定信号
を作り出す。43は駆動用バツフアインバータで
ある。
次に、第3図による電子時計が実現する温度特
性について詳述する。
第5図は、第3図の構成の電子時計が実現する
温度特性を示す図であり、20は水晶振動子の補
償前の温度特性であり、510は温度補償後の温
度特性である。511は一般的な使用状態(温度
変動が生じている状態)における平均温度特性を
表わしている。
又、第6図は、この温度特性を実現するために
温度補償付IC30が作り出す補償特性を示す図
であり、610が補償特性曲線を表わしている。
この補償特性曲線610は、第5図20の水晶振
動子の温度特性曲線と合成されて、第5図510
が得られる。
該ICの補償特性は、第3図のIC30中の検温
回路部303で時計体の温度を検出し、温度間隔
△X℃の切換温度点毎に異なる2進数を得て、さ
らに該2進数を水晶振動子の頂点温度と一致する
切換温度点の一つに於いて左右対称な2進数に変
換して得られる。これを論理的周波数調整回路部
302の入力データとする(第6図の実施例にお
ける補償特性は第3表a欄に示された値となる)。
電子時計の温度補償後の特性Pは次式で与えられ
るものとする。
P=P0−J(J+1)・β・(△X)2 …(1)
ここでP0は無補償水晶発振回路の温度特性で
P0=β(T−θ0)2−r(T−θ0)3
β;2次温度係数(負値)
r;3次温度係数
θ0;水晶振動子の零温度係数温度
T;温度
又、J=〔|T−X0|〕/△X
(J=0,1,2…の整数)
△X;IC検温回路部の温度間隔
X0;IC検温回路部の中心温度
〔 〕;切捨てによる整数化信号
ここで△P=−2β(△X)2とすると
P=P0+1/2J(J+1)△P …(2)
式(2)により実現する温度特性が第5図510で
あり、式(2)の第1項が第5図20であり第2項が
第6図610である。△Pは補償量の最小単位で
あり、水晶発振器の周波数が32.768KHzの場合に
は、10秒に1回補償を行うとすると、その分解能
は1日のうちの10秒の数を32.768KHzの周波数で
割つて得られる0.263S/Dとなる。そこで△P=
0.263とし、β=−2.85×10-3とすれば△Xは6.8
℃以上でなければならない。式(1)による補償温度
特性は、次の特徴を有する。まず、Pが不連続と
なる温度に於いての補償量は、無補償の温度特性
の遅れ分J・β・(△X)2の2倍であるため不連
続点の前後における誤差の絶対値は等量となり、
温度が連続的に変化した場合に不連続点の前後で
誤差が相殺される。さらに該補償量は、温度差|
T−X0|に比例して両側に増加する。以上の特
徴により、当該電子時計の携帯精度は常温(10〜
30℃)で時間誤差が少なく、又、温度変動により
平均的な温度特性511(第5図)が実現できる
ことより良好である。
第5図の無補償温度領域θ0±△Xは電子時計の
歩度測定時に特別な操作をさせずに水晶振動子の
歩度測定ができる様に、少なくとも△X=6〜10
℃で広いことが好ましく、又一方、△Xは小さい
方が、携帯精度が高くなると考えられる。この両
者を満足させるため、第7図700の様な補償特
性が有効である。この特性は、補償式(1)で、温度
|T−θ0|<n△XでJ=0、T=θ0±n△Xで
J=n、|T−θ0|>n△Xで(J=n+1,n
+2……)を与えることにより得ることができ
る。
次に、第3図のブロツク図で示した電子時計の
具体的回路の実施例を第8図に示す。又、第9図
は、第8図中の主要部位の信号のタイムチヤート
である。
第8図各部位の構成は、80は水晶発振回路、
81,82は分周回路、830,831はD型フ
リツプフロツプ、85はNOR回路、86はラツ
チ回路、87はR−Sフリツプフロツプ、88は
スイツチ回路、41は駆動、歩度測定信号作成回
路部、40は時刻表示部で、43は駆動用バツフ
ア回路、42は切換回路、303は検温回路部、
302は全加算回路よりなる補正信号作成論理回
路部、31は歩度調整用設定端子、89はシステ
ムリセツト端子、304は歩度調整回路部で84
はAND回路である。
303は前述の検温回路部で2進の温度補償信
号Cを出力する。但し、リセツト状態ではC=0
値にクリアされる。温度補償信号Cはスイツチ回
路88でCEのハイレベルで定期的に、例えば10
秒毎に全加算器よりなる補正信号作成論理回路部
302に入力される。CEがロウレベルでは、8
8の出力は0(零)値に保持される。
つまり、システムリセツトスイツチとしてのシ
ステムリセツト端子89からリセツト信号が入力
されると、このリセツト信号に基づいて、温度補
償信号Cが補正信号作成論理回路部302に供給
されることを禁止することとなり、歩度調整信号
Dのみから構成される補正信号Fが歩度調整回路
部304へ出力され、検温回路部303を無補償
状態とするのである。この時、この無補償状態と
するために働くのは、歩度調整用設定端子31、
スイツチ回路88、システムリセツト端子89、
補正信号作成論理回路部302及び検温回路部3
03である。これにより、周囲の温度環境に影響
されずに、論理的な歩度調整のみが行えるのであ
る。これは、前述した電子時計を使用中に落下さ
せた後の論理的歩度の再調整や、電子時計の出荷
検査時の論理的歩度の調整において、極めて論理
的歩度の調整がし易いという効果がある。
また、31の設定端子より0302に入力する
歩度調整信号Dは、論理周波数調整用で第1表に
示されるような2進数で表わされる。この時遅れ
側は2の補数値で設定される。例えばデータの設
定が5bitの場合には、−1は11111、−3は11101等
となる。遅れ側は最上位ビツトが1であり、進み
側は0である。こうすれば時計歩度の遅れ進みの
調整が可能である。302は5bitの全加算器で構
成されるが、5bit全加算の結果、F=C+Dのキ
ヤリーは無視する。F4の出力値1又は0により
時計歩度の遅れ進みをコントロールする。全加算
器よりなる302の出力F0〜F3は補正信号とし
て304の歩度調整回路部に入力され、850R,
830D型フリツプフロツプで構成される4bitプリ
セツタブルのアツプカウンタの周期的な初期設定
データとなる。これらによる論理的歩度調整及び
温度補償の行われ方は、前記カウンタのDフリツ
プフロツプ830の2進の0(ゼロ)状態を4入
力AND回路90が検出し(信号)、TFの周期
で発生する論理周波数調整を可能とする信号と
のANDをとつて前記4bitプリセツトカウンタの
プリセツト信号とする。プリセツトはクロツク信
号の半周期で行われ、プリセツトカウンタの各
Dフリツプフロツプ830の状態は0状態より
F0〜F4で指定される状態にとぶ。歩度が進む場
合は841,842のAND,NAND回路よりケ
タ上げパルスが1個発生し、かつ指定状態にと
ぶ。遅れの場合にはプリセツトカウンタはケタ上
げせずF0〜F4の状態にとぶ。この様子を示す真
理値表を第2表に示す。温度補償がさらに加わる
場合は、F=C+Dがプリセツトされる。この様
子を示す真理値表を第3表bに示す。第8図各部
位の信号波形のタイムチヤートを第9図に示す。
該回路構成で実現する時計の補償量PCを式で記
述すると、次式となる。
PC=(C/fin・Tc)×86400
+(D/fin・TF)×86400(S/D) …(2)
上式第1項は温度補償量、第2項は論理歩度調
整量である。finはプリセツトカウンタの入力ク
ロツク(信号)の周波数、TCは温度補償を行
う周期、又TFは論理周波数調整を行う周期であ
る。
以上説明した通り、1チツプIC内に内蔵した
検温回路と第8図の回路構成で、温度補償と論理
歩度調整を同じ回路で行うことができるため、今
後多大のメリツトが期待できる。
The present invention relates to an electronic timepiece that compensates for the frequency-temperature characteristics of a crystal oscillator. Conventionally, there are various methods for compensating the frequency-temperature characteristics (hereinafter simply abbreviated as temperature characteristics) of electronic watches, but they can be roughly divided into methods that combine components with different temperature characteristics, methods that combine components with different temperature characteristics, and methods that use crystal oscillators with excellent temperature characteristics. There is a method using For the former, there are methods such as using two crystal oscillators in parallel, and using temperature-sensitive resistors and capacitors, but both of them increase the number of components and require the necessary elements to obtain good temperature characteristics. Because it is difficult to combine, mass production is poor and costs are inevitably high. Regarding the latter, for example, AT-cut and GT-cut crystal resonators exist as crystal resonators that have a flat frequency-temperature characteristic over a wide temperature range and have good long-term stability, but both have oscillation frequencies ranging from megaHz to Several hundred kilograms
Due to its high frequency (Hz), it consumes a lot of power, making it difficult to extend the lifespan of electronic watches. The purpose of this invention is to improve the above drawbacks,
To obtain an electronic watch that detects the temperature of a watch body using a temperature measurement circuit built into an IC, creates a temperature compensation signal, and performs temperature compensation and rate adjustment using this temperature compensation signal and a conventional logical rate adjustment circuit. It is in. Furthermore, another object of the present invention is to provide an electronic timepiece that selectively disables the temperature compensation operation and adjusts the rate accurately and reliably. According to the present invention, the time standard signal source does not require any special components other than an IC, a crystal oscillator, and a trimmer capacitor. Furthermore, when calculating the temperature characteristics, good time accuracy can be achieved without the need for particularly troublesome combinations. Hereinafter, the content of the present invention will be explained with reference to the drawings. FIG. 1 shows the circuit configuration of a time standard source included in a conventional temperature-compensated electronic timepiece that uses a temperature-sensitive capacitor such as a Chitavari capacitor. The names of each component in the diagram are 11 and 12 resistors, 13
is a crystal resonator, 14 is a temperature compensation capacitor, 1
5 is a fixed capacitor (IC built-in), 16 is a trimmer capacitor, 17 is a C-MOS inverter, 18 is a frequency dividing circuit, and 19 is a time display means. The temperature characteristics of the temperature compensated crystal oscillation circuit are as follows:
The figure becomes curve 22. Curve 20 is the temperature characteristic of the crystal resonator. Further, 21 is an effective compensation temperature characteristic curve synthesized from the capacitance change of the Chitavari capacitor and the load capacitance versus frequency characteristic curve determined by the IC and the crystal resonator. Compensation characteristic 22 is given by the sum of 20 and 21. However, this compensation characteristic 22 depends on the degree of coincidence between the peak θ 0 of the characteristic curve of the crystal resonator and the peak C P of the capacitance change of the Chitavari capacitor, and the capacitance 15, 16
It also changes depending on the value of, for example, 23, which deteriorates the compensation characteristics. This is because the factors that determine temperature characteristics are complexly intertwined with the characteristics of the IC, Chitavari capacitor, and crystal resonator, and variations in these temperature characteristics are unavoidable. Furthermore, since the capacitor 16 is used for rate adjustment, temperature characteristics change even with rate adjustment, making accurate compensation difficult. FIG. 3 shows the configuration of a time standard source for an electronic watch according to the present invention. In the figure, 13 is a crystal oscillator, 16 is a trimmer capacitor, 30 is a 1-chip IC,
302 is a temperature detection circuit section in the IC, 302 is a correction signal creation logic circuit section, 301 is an oscillation and frequency division drive circuit section, 31
40 is a time display section, and 5 is a system reset switch. First, the normal timekeeping operation of the electronic watch shown in FIG. Input to the creation logic circuit section. Also, the rate adjustment signal for frequency adjustment by logical means of the crystal oscillator (hereinafter simply abbreviated as logical frequency adjustment), which is set independently from this, is as follows:
Setting terminals 31 to 30 for rate adjustment of fixed memory, etc.
2 is added and subtracted, and the resulting binary data is 3.
The frequency divider of the 01 oscillation and frequency division drive circuit section is controlled to simultaneously perform temperature compensation and rate adjustment of the crystal oscillator. On the other hand, when the system reset switch 5 is turned on by, for example, pulling out the winding stem of the electronic clock two steps, the temperature measurement circuit section becomes an uncompensated state, and the
Only logical rate adjustments are made according to the data set in . The advantages of being able to perform only logical rate adjustment in accordance with the operation of the system reset switch 5 are as follows. In other words, if an electronic watch is dropped while in use, the impact will cause the rate of the crystal oscillator, which is the time standard, to deviate, and in order to correct this, the rate at room temperature must be readjusted to zero. . At this time, if the temperature compensation operation is activated at the same time, the sixth
As shown in the figure, since the compensation characteristics are discontinuous, the clock rate instruction value is not constant depending on temperature fluctuations, giving the adjuster a sense of anxiety. However, in such a case, if the temperature compensation operation is disabled, the clock rate indication value will remain constant, and the adjuster will always be able to accurately and reliably perform rate adjustment using the trimmer capacitor or logical rate adjustment. It can be done. Furthermore, at the time of shipping inspection of electronic watches, two states, a logical rate correction state and a logical rate correction and temperature compensation state, can be set with a single operation of a winding stem, which serves as a system reset switch, and both states can be set. It can be adjusted and tested independently, and high reliability of electronic watches can be achieved. FIG. 4a shows a drive signal to the coil of the motor 4. When the reset signal 423 of the system reset switch 5 is at a low level, a current flows in the opposite direction every second, causing the motor to rotate. On the other hand, in the reset state where the reset signal is set to high level, signals with the same period are output, but the pulse width W2 is 1 to 1.
The motor stops because it is as small as 2msec. At this time, not only can power be saved, but also the rate of an electronic clock whose logical frequency has been adjusted can be measured using the signal. FIG. 4b shows an example of a circuit block for realizing this, which includes two types of clocks 421 and 422.
The frequencies of are respectively 1/W 1 and 1/W 2 , which are selectively selected by the switching circuit 42 and inputted to the clock signal 41 , which generates a driving and rate measurement signal from the clock signal 411 . 43 is a driving buffer inverter. Next, the temperature characteristics realized by the electronic timepiece shown in FIG. 3 will be described in detail. FIG. 5 is a diagram showing the temperature characteristics realized by the electronic timepiece having the configuration shown in FIG. 3, where 20 is the temperature characteristic of the crystal resonator before compensation, and 510 is the temperature characteristic after temperature compensation. 511 represents the average temperature characteristic in a general usage state (a state where temperature fluctuations occur). Further, FIG. 6 is a diagram showing the compensation characteristic created by the temperature compensated IC 30 in order to realize this temperature characteristic, and 610 represents the compensation characteristic curve.
This compensation characteristic curve 610 is synthesized with the temperature characteristic curve of the crystal resonator shown in FIG.
is obtained. The compensation characteristics of the IC are as follows: The temperature of the watch body is detected by the temperature detection circuit 303 in the IC 30 shown in FIG. It is obtained by converting into a symmetrical binary number at one of the switching temperature points that coincides with the peak temperature of the crystal resonator. This is used as input data for the logical frequency adjustment circuit section 302 (the compensation characteristics in the embodiment of FIG. 6 have the values shown in column a of Table 3).
It is assumed that the characteristic P of the electronic watch after temperature compensation is given by the following equation. P=P 0 −J(J+1)・β・(△X) 2 …(1) Here, P 0 is the temperature characteristic of the uncompensated crystal oscillator circuit, and P 0 = β(T−θ 0 ) 2 −r(T -θ 0 ) 3 β: Secondary temperature coefficient (negative value) r: Tertiary temperature coefficient θ 0 ; Zero temperature coefficient temperature of crystal resonator T: Temperature Also, J = [|T-X 0 |]/△X (J = integer of 0, 1, 2...) △X; Temperature interval of IC temperature measurement circuit section ) 2 , then P=P 0 +1/2J(J+1)△P...(2) The temperature characteristic realized by equation (2) is shown in Fig. 5, 510, and the first term of equation (2) is shown in Fig. 5, 20. The second term is 610 in FIG. △P is the minimum unit of compensation amount, and if the frequency of the crystal oscillator is 32.768KHz, and compensation is performed once every 10 seconds, the resolution is the number of 10 seconds in a day at 32.768KHz. Dividing by the frequency gives 0.263S/D. So △P=
If 0.263 and β=-2.85×10 -3 , △X is 6.8
Must be above ℃. The compensated temperature characteristic according to equation (1) has the following characteristics. First, the amount of compensation at the temperature where P becomes discontinuous is twice the delay of the uncompensated temperature characteristic J・β・(△X) 2 , so the absolute value of the error before and after the point of discontinuity is are equal amounts,
When the temperature changes continuously, the errors cancel out before and after the point of discontinuity. Furthermore, the amount of compensation is the temperature difference |
It increases on both sides in proportion to T−X 0 |. Due to the above characteristics, the carrying accuracy of the electronic watch is at room temperature (10~
30° C.), the time error is small, and an average temperature characteristic 511 (FIG. 5) can be realized due to temperature fluctuations, which is better. The uncompensated temperature range θ 0 ±△X in Figure 5 is set at least △X = 6 to 10 so that the rate of the crystal resonator can be measured without special operations when measuring the rate of the electronic watch.
It is preferable that ΔX is wide, and on the other hand, it is considered that the smaller ΔX is, the higher the carrying accuracy will be. In order to satisfy both of these requirements, a compensation characteristic as shown in FIG. 7 700 is effective. This characteristic is expressed by the compensation formula (1): J=0 at temperature |T-θ 0 |<n△X, J=n at T=θ 0 ±n△X, |T-θ 0 |>n△X (J=n+1, n
It can be obtained by giving +2...). Next, FIG. 8 shows an example of a specific circuit of the electronic timepiece shown in the block diagram of FIG. 3. Moreover, FIG. 9 is a time chart of the signals of the main parts in FIG. 8. The configuration of each part in Figure 8 is as follows: 80 is a crystal oscillation circuit;
81 and 82 are frequency dividing circuits, 830 and 831 are D-type flip-flops, 85 is a NOR circuit, 86 is a latch circuit, 87 is an R-S flip-flop, 88 is a switch circuit, 41 is a drive and rate measurement signal generation circuit section, 40 is a time display section, 43 is a drive buffer circuit, 42 is a switching circuit, 303 is a temperature measurement circuit section,
302 is a correction signal creation logic circuit section consisting of a full adder circuit, 31 is a setting terminal for rate adjustment, 89 is a system reset terminal, and 304 is a rate adjustment circuit section 84
is an AND circuit. Reference numeral 303 is the aforementioned temperature measurement circuit unit which outputs a binary temperature compensation signal C. However, in the reset state, C=0
Cleared to value. The temperature compensation signal C is sent to the switch circuit 88 periodically at the high level of CE, e.g.
The signal is inputted every second to a correction signal generation logic circuit section 302 consisting of a full adder. When CE is low level, 8
The output of 8 is held at a 0 (zero) value. In other words, when a reset signal is input from the system reset terminal 89 as a system reset switch, the temperature compensation signal C is prohibited from being supplied to the correction signal generation logic circuit section 302 based on this reset signal. A correction signal F consisting only of the rate adjustment signal D is output to the rate adjustment circuit section 304, and the temperature measurement circuit section 303 is brought into an uncompensated state. At this time, the rate adjustment setting terminal 31 operates to achieve this no-compensation state.
switch circuit 88, system reset terminal 89,
Correction signal creation logic circuit section 302 and temperature measurement circuit section 3
It is 03. This allows only logical rate adjustments to be made without being affected by the surrounding temperature environment. This has the effect of making it extremely easy to readjust the logical rate after the electronic watch is dropped while in use, or to adjust the logical rate at the time of shipping inspection of the electronic watch. be. The rate adjustment signal D inputted from the setting terminal 31 to 0302 is for logical frequency adjustment and is expressed in binary numbers as shown in Table 1. This time delay side is set as a two's complement value. For example, if the data setting is 5 bits, -1 is 11111, -3 is 11101, etc. The most significant bit on the lagging side is 1, and on the leading side it is 0. In this way, it is possible to adjust the delay or advance of the clock rate. 302 is composed of a 5-bit full adder, but as a result of the 5-bit full addition, the carry of F=C+D is ignored. The delay or advance of the clock rate is controlled by the output value 1 or 0 of F4 . The output F 0 to F 3 of 302 consisting of a full adder is inputted as a correction signal to the rate adjustment circuit section of 304, and 850R,
This is periodic initial setting data for a 4-bit presettable up counter consisting of an 830D flip-flop. The logical rate adjustment and temperature compensation are performed by the four-input AND circuit 90 detecting the binary 0 (zero) state of the D flip-flop 830 of the counter (signal), and generating the signal at a period of T F. A preset signal for the 4-bit preset counter is obtained by ANDing with a signal that enables logical frequency adjustment. The preset is performed in half a cycle of the clock signal, and the state of each D flip-flop 830 of the preset counter changes from the 0 state.
Jump to the state specified by F 0 to F 4 . When the rate progresses, one increment pulse is generated from the AND and NAND circuits of 841 and 842, and the state jumps to the specified state. In the case of a delay, the preset counter does not increment and jumps to the states F0 to F4 . A truth table showing this situation is shown in Table 2. If temperature compensation is further added, F=C+D is preset. A truth table showing this situation is shown in Table 3b. FIG. 9 shows a time chart of signal waveforms at each location.
When the compensation amount PC of the watch realized by this circuit configuration is described by an equation, it becomes the following equation. PC = (C/fin・Tc)×86400 + (D/fin・T F )×86400 (S/D) …(2) The first term in the above equation is the temperature compensation amount, and the second term is the logical rate adjustment amount. be. fin is the frequency of the input clock (signal) of the preset counter, T C is the period for temperature compensation, and T F is the period for logical frequency adjustment. As explained above, by using the temperature measurement circuit built into a single chip IC and the circuit configuration shown in Figure 8, temperature compensation and logic rate adjustment can be performed in the same circuit, so we can expect great benefits in the future.
【表】【table】
【表】【table】
第1図は、従来のチタバリコンデンサを有する
時間標準源を用いた電子時計の回路構成を示す
図。第2図は、第1図の電子時計が有する周波数
対温度特性を示す図。第3図は、本考案になる電
子時計の回路構成を示すブロツク図、第4図は、
本考案になる電子時計のモータ駆動信号出力波形
を示す図aと、該信号を作成する回路ブロツク図
b。第5図は、第3図の電子時計が実現する周波
数対温度特性図。第6図は、第3図の電子時計の
温度補償回路部が作成する補償特性曲線を示す。
第7図は、本考案になる電子時計が示す周波数対
温度特性の他の実施例を示す図。第8図は、第3
図による電子時計の具体的回路の実施例を示す
図。第9図は、第8図回路の主要部位の信号波形
を示す図。
13……水晶振動子、303……検温回路部、
302……補償信号を作成する論理回路部、30
1……発振、分周駆動回路部、31……設定端
子、5……システムリセツトスイツチ、510…
…周波数温度特性、20……無温度補償水晶発振
器の周波数温度特性、80……水晶発振器、83
0……D型フリツプフロツプ回路、84……
AND回路、85……OR回路、86……ラツチ回
路、87……S−Rフリツプフロツプ回路、8
1,82……分周回路、88……スイツチ回路、
40……時刻表示部、304……歩度調整回路
部。
FIG. 1 is a diagram showing the circuit configuration of an electronic timepiece using a time standard source having a conventional Chitavari capacitor. FIG. 2 is a diagram showing frequency versus temperature characteristics of the electronic timepiece of FIG. 1. Figure 3 is a block diagram showing the circuit configuration of the electronic timepiece according to the present invention, and Figure 4 is:
Figure a shows the motor drive signal output waveform of the electronic timepiece according to the present invention, and Figure b shows a circuit block diagram for creating the signal. FIG. 5 is a frequency versus temperature characteristic diagram realized by the electronic timepiece of FIG. 3. FIG. 6 shows a compensation characteristic curve created by the temperature compensation circuit section of the electronic timepiece shown in FIG.
FIG. 7 is a diagram showing another example of frequency versus temperature characteristics exhibited by the electronic timepiece according to the present invention. Figure 8 shows the third
1 is a diagram showing an example of a specific circuit of an electronic timepiece; FIG. FIG. 9 is a diagram showing signal waveforms of main parts of the circuit of FIG. 8. 13...Crystal oscillator, 303...Temperature measurement circuit section,
302...Logic circuit section for creating a compensation signal, 30
1... Oscillation, frequency division drive circuit section, 31... Setting terminal, 5... System reset switch, 510...
...Frequency-temperature characteristics, 20...Frequency-temperature characteristics of non-temperature compensated crystal oscillator, 80...Crystal oscillator, 83
0...D-type flip-flop circuit, 84...
AND circuit, 85...OR circuit, 86...Latch circuit, 87...S-R flip-flop circuit, 8
1, 82... Frequency divider circuit, 88... Switch circuit,
40... Time display section, 304... Rate adjustment circuit section.
Claims (1)
分周する分周回路81,830、前記分周回路の
出力に基づいて時刻表示を行う時刻表示部40、
補正信号に基づいて歩度を調整する歩度調整回路
部304、論理的に歩度を調整する歩度調整信号
が設定される歩度調整用設定端子31、温度を測
定し、前記水晶発振回路の温度特性を補償するた
めの温度補償信号を形成する検温回路部303、
前記温度補償信号と前記歩度調整信号を加算して
前記補正信号を作成し、前記補正信号を前記歩度
調整回路部に供給する補正信号作成論理回路部3
02、選択的にリセツト信号を出力するシステム
リセツトスイツチ、前記システムリセツトスイツ
チから出力されるリセツト信号に基づいて、前記
温度補償信号が前記補正信号作成論理回路部に供
給されることを禁止することにより前記歩度調整
信号のみから構成される前記補正信号を前記歩度
調整回路部へ出力し、前記検温回路部を無補償状
態とする手段31,88,89,302,303
を有することを特徴とする電子時計。 a crystal oscillation circuit 80, frequency division circuits 81 and 830 that divide the output of the crystal oscillation circuit, a time display section 40 that displays time based on the output of the frequency division circuit;
A rate adjustment circuit unit 304 that adjusts the rate based on a correction signal, a rate adjustment setting terminal 31 to which a rate adjustment signal that logically adjusts the rate, and a rate adjustment setting terminal 31 that measures temperature and compensates for the temperature characteristics of the crystal oscillation circuit. a temperature measurement circuit section 303 that forms a temperature compensation signal for
a correction signal creation logic circuit section 3 that adds the temperature compensation signal and the rate adjustment signal to create the correction signal and supplies the correction signal to the rate adjustment circuit section;
02. A system reset switch that selectively outputs a reset signal, by prohibiting the temperature compensation signal from being supplied to the correction signal generation logic circuit section based on the reset signal output from the system reset switch. Means 31, 88, 89, 302, 303 for outputting the correction signal consisting only of the rate adjustment signal to the rate adjustment circuit section and bringing the temperature measurement circuit section into an uncompensated state.
An electronic watch characterized by having.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1988028434U JPH0245837Y2 (en) | 1988-03-03 | 1988-03-03 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1988028434U JPH0245837Y2 (en) | 1988-03-03 | 1988-03-03 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63174094U JPS63174094U (en) | 1988-11-11 |
JPH0245837Y2 true JPH0245837Y2 (en) | 1990-12-04 |
Family
ID=30831391
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1988028434U Expired JPH0245837Y2 (en) | 1988-03-03 | 1988-03-03 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0245837Y2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6138529B2 (en) * | 2013-03-14 | 2017-05-31 | シチズン時計株式会社 | Electronic clock |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS49123076A (en) * | 1973-03-27 | 1974-11-25 | ||
JPS5071362A (en) * | 1973-10-24 | 1975-06-13 | ||
JPS50104065A (en) * | 1974-01-18 | 1975-08-16 | ||
JPS522468A (en) * | 1975-06-23 | 1977-01-10 | Sharp Corp | Step adjustment means for electronic clock |
-
1988
- 1988-03-03 JP JP1988028434U patent/JPH0245837Y2/ja not_active Expired
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS49123076A (en) * | 1973-03-27 | 1974-11-25 | ||
JPS5071362A (en) * | 1973-10-24 | 1975-06-13 | ||
JPS50104065A (en) * | 1974-01-18 | 1975-08-16 | ||
JPS522468A (en) * | 1975-06-23 | 1977-01-10 | Sharp Corp | Step adjustment means for electronic clock |
Also Published As
Publication number | Publication date |
---|---|
JPS63174094U (en) | 1988-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100687230B1 (en) | Real time clock apparatus and the real time compensating method thereof | |
US4443116A (en) | Electronic timepiece | |
JP4561829B2 (en) | Clock signal output device and control method thereof, electronic device and control method thereof | |
JP2624176B2 (en) | Electronic clock and time correction method | |
US4159622A (en) | Electronic timepiece having a main oscillator circuitry and secondary oscillator circuitry | |
US6590376B1 (en) | Method of deriving a frequency of a pulse signal from alternate sources and method of calibrating same | |
EP2854294A1 (en) | Temperature compensated timing signal generator | |
JPH0245837Y2 (en) | ||
Bloch et al. | The microcomputer compensated crystal oscillator (MCXO) | |
US8896359B1 (en) | Temperature compensated timing signal generator | |
JPH0340356B2 (en) | ||
JPH0631731B2 (en) | Clock device with temperature compensation function | |
US4779248A (en) | Electronic timepiece | |
JP3027021B2 (en) | Electronic clock with temperature compensation | |
JPS5877684A (en) | Circuit for timepiece | |
US20080191808A9 (en) | Layout for a time base | |
US4128993A (en) | Zero adjustment in an electronic timepiece | |
US6049240A (en) | Logical delaying/advancing circuit used | |
Xiu et al. | A Cost-Effective TAF-DPS Syntonization Scheme of Improving Clock Frequency Accuracy and Long-Term Frequency Stability for Universal Applications | |
USRE31402E (en) | Electronic timepiece | |
JP2004184199A (en) | Electronic timepiece and control method of the same | |
JPS5890193A (en) | Electronic clock | |
JPH0241713B2 (en) | ||
JPH0518286B2 (en) | ||
JP2005069948A (en) | Electronic timepiece, its stepping compensation method, and recording time correction method therefor |