JPS60150112A - Insulated gate type field effect semiconductor device - Google Patents

Insulated gate type field effect semiconductor device

Info

Publication number
JPS60150112A
JPS60150112A JP24952584A JP24952584A JPS60150112A JP S60150112 A JPS60150112 A JP S60150112A JP 24952584 A JP24952584 A JP 24952584A JP 24952584 A JP24952584 A JP 24952584A JP S60150112 A JPS60150112 A JP S60150112A
Authority
JP
Japan
Prior art keywords
misfet
voltage
gate
gate electrode
field effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24952584A
Other languages
Japanese (ja)
Inventor
Kanji Yo
陽 完治
Osamu Yamashiro
山城 治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24952584A priority Critical patent/JPS60150112A/en
Publication of JPS60150112A publication Critical patent/JPS60150112A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/24Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the field-effect type only
    • G05F3/242Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the field-effect type only with compensation for device parameters, e.g. channel width modulation, threshold voltage, processing, or external variations, e.g. temperature, loading, supply voltage
    • G05F3/245Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the field-effect type only with compensation for device parameters, e.g. channel width modulation, threshold voltage, processing, or external variations, e.g. temperature, loading, supply voltage producing a voltage or current as a predetermined function of the temperature

Abstract

PURPOSE:To obtain the constant voltage of high accuracy by deciding the threshold voltage of a MISFET with a gate electrode containing no impurity. CONSTITUTION:Equations I and II show the threshold voltage of a MISFET having a gate electrode which contains n and p type impurities. While an equation IIIshows the threshold voltage with the gate electrode including no impurity. An equation IV is satisfied among these threshold values. The MISFETs Q1 and Q2 contain a pinip and pipip type gate electrodes respectively and connected in series. The threshold values of the FETs Q1 and Q2 are shown by equations Vand VI from the equation IV. Then the difference is obtained between the threshold values of FETs Q1 and Q2 to obtain the voltage corresponding to a silicon energy gap, i.e., the difference of the work function among an n<+> gate electrode of the FETQ1, an (i) electrode of the FETQ2 and each substrate. This energy gap has an extremely small level of dependence on the production conditions and the ambient temperature conditions. Thus the constant voltage can be obtained with high accuracy.

Description

【発明の詳細な説明】 この発明は、絶縁ゲート型電界効果半導体装置に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an insulated gate field effect semiconductor device.

−えば、異なるIK、4;filメ料のゲート電極を有
する八41 S I−’ E i’ (絶縁ゲート型電
界効果トランジスタ)は特開昭517149780号に
開示さ才1ている。
For example, an insulated gate field effect transistor (insulated gate field effect transistor) having a gate electrode of a different IK, 4;

この発明の目的は、製造上のバラツキ及び温度条件の影
響を受けにくい高精度の定電圧が得られ、かつ、MIS
FETで構成される絶縁ゲート型電界効果半導体装置を
提供することにある。
An object of the present invention is to obtain a highly accurate constant voltage that is less susceptible to manufacturing variations and temperature conditions, and to
An object of the present invention is to provide an insulated gate field effect semiconductor device composed of FETs.

・ この発明は、シリコンにおけるエネルギーギャップ
が製造条件及び周囲温度条件の依存性が棲めて少ないこ
とに着目し、これを利用して定電圧を得ようとするもの
である。
- This invention focuses on the fact that the energy gap in silicon has little dependence on manufacturing conditions and ambient temperature conditions, and uses this to obtain a constant voltage.

まず、本発明者が考えたpt n型の電極をもつMI 
5FETについて説明する。
First, an MI with a pt n-type electrode devised by the present inventor
The 5FET will be explained.

第1図は、シリコンのエネルギーギャップを電圧信号と
して取り出すための一実施例を示す素子構造断面図であ
る。ここに示す素子は、n型半導、体基板(1)上に形
成したエンハンスメント型pチャンネルMISFET(
Q+ )と(Q、)であって、それぞれのゲート電極は
ポリシリコン層に異なる導電型の半一体不純物を含ませ
て構成された導体層を用いるシのである。すなわち、同
図に示すように、n型半導体基板(1)上に選択的にM
ISFETのソース、ドレイ、ンを構成するp十型半導
体領域(4,5)を形成し、この対向するソース、ドレ
イン領域(4,5)間の半導体基板表面にゲート絶縁膜
(5)及びこのゲート絶縁膜(5)上にポリシリコン(
多結晶シリコン)層を形成するとともK、一方のMIS
FET(QI )のゲー)(6’)を構成するためのポ
リシリコン層には基板と同一導電型の半導体不純物(n
型)を含ませて、他方のMISFET’(Qt)のゲー
ト(6)を構成するためのポリシリコン層には基板と逆
導電型の半導体不純物(p型)を含ませてMI 5FE
T (QI −Qt )を構成するものである。
FIG. 1 is a cross-sectional view of an element structure showing an embodiment for extracting the energy gap of silicon as a voltage signal. The device shown here is an enhancement type p-channel MISFET (1) formed on an n-type semiconductor body substrate (1).
Q+) and (Q,), each of which uses a conductor layer composed of a polysilicon layer containing semi-integral impurities of different conductivity types. That is, as shown in the figure, M is selectively deposited on the n-type semiconductor substrate (1).
P-type semiconductor regions (4, 5) constituting the source, drain, and gate of the ISFET are formed, and a gate insulating film (5) and this Polysilicon (
When forming a polycrystalline silicon (polycrystalline silicon) layer, one MIS
A semiconductor impurity (n
The polysilicon layer for forming the gate (6) of the other MISFET' (Qt) contains a semiconductor impurity (p type) of the conductivity type opposite to that of the substrate.
T (QI - Qt).

上記構成のMISFET(Ql 、Qt )のそれぞれ
のしきい値電圧(Vthq、 ・VthQt )は・次
式(11、(21よりめられる。
The respective threshold voltages (Vthq, .VthQt) of the MISFETs (Ql, Qt) having the above configuration can be calculated from the following equations (11 and (21).

ここで、φMntφMpは、それぞれのMISFET(
Ql 、Qt )のゲートと基板との間の仕事関数であ
り、COXは、単位面積当りのゲート容量、Qssは表
面電荷、QDは基板空乏層の電荷”である。
Here, φMntφMp is each MISFET (
Ql , Qt ) is the work function between the gate and the substrate, COX is the gate capacitance per unit area, Qss is the surface charge, and QD is the charge in the substrate depletion layer.

上記両MISFET(QI 、Qt )のしきい値電圧
の差をめると、式(11、(2)の右辺の第1項である
仕事関数の差(φMp−φMJI )となり、シリコン
のエネルギーギャップに相当する電圧として取り出すこ
とができる。この電圧は、シリコンのエネルギーギャッ
プで規定される電圧となるので、製造上のバラツキもな
く、かつ、温度依存性が極めて少ない。なお、MISF
ETのしきい値電圧にバラツキが大きい理由は、式(I
)、 (2+の右辺第2項(Qss/Cox ) 、第
3項(QD/C0X)が製造条件により変動するためで
ある。この実施例において、上記M I S F E 
T (QI、Qt )を同一条件の下に製造することに
より、式(11、+21の右辺第2項、第3項を略同−
とし、その差をめることにより、これらを相殺させ、上
記エネルギーギャップ相当分を出力電圧として用いよう
とするものである。
If we calculate the difference in the threshold voltages of both MISFETs (QI, Qt), we get the difference in work function (φMp−φMJI), which is the first term on the right side of equations (11 and (2)), which is the energy gap of silicon. This voltage can be extracted as a voltage corresponding to the energy gap of silicon, so there is no manufacturing variation and there is extremely little temperature dependence.
The reason for the large variation in the threshold voltage of ET is given by the formula (I
), (This is because the second term (Qss/Cox) and the third term (QD/C0X) on the right side of 2+ vary depending on the manufacturing conditions. In this example, the above M I S F E
By manufacturing T (QI, Qt) under the same conditions, the second and third terms on the right side of equation (11, +21) are approximately the same as -
By calculating the difference, these are offset and the amount equivalent to the energy gap is used as the output voltage.

次に本発明の実施例である第2図は不純物を含まないゲ
ート電極によってしきい値電圧が決まるMI 5FET
を用いて、n型およびi型のゲート電極とそれぞれの基
板との間の仕事関数の差であるシリコンエネルギーギャ
ップに相当する電圧を取り出すものである。p型および
n型の不純物を含むゲート電極を有するMISFETの
しきい値電圧は、式(1) 、 (21から となる。同様にゲート電極に不純物を含まないMISF
ET17)Lきい値電圧Vth(i))Lとなり、φM
iはゲート電極に不純物を含まないMISFETのゲー
トと基板との間の仕事関数である。ここで、各しきい値
電圧の間には、Vth(p) <Vth(i) <Vt
b(。)・・曲・・曲・・曲(6)の関係がある。さら
に第2図のMISFET(Ql。
Next, FIG. 2, which is an embodiment of the present invention, shows an MI 5FET whose threshold voltage is determined by a gate electrode that does not contain impurities.
is used to extract a voltage corresponding to the silicon energy gap, which is the difference in work function between the n-type and i-type gate electrodes and their respective substrates. The threshold voltage of a MISFET having a gate electrode containing p-type and n-type impurities is given by equations (1) and (21).Similarly, for a MISFET whose gate electrode does not contain impurities,
ET17)L threshold voltage Vth(i))L, and φM
i is the work function between the gate and substrate of a MISFET whose gate electrode does not contain impurities. Here, between each threshold voltage, Vth(p) <Vth(i) <Vt
There is a relationship between b(.)...song...song...song (6). Furthermore, the MISFET (Ql.

Q、)のしきい値電圧に関して考え才1ば、MISFE
T(Q、)はp、i、n、i、p型のゲート電極を有す
るMISFETを、またMISFIりT(Q、)は、p
+I+1)+l+p型のゲート電極を有するMISFE
Tをそれぞれ偵列に接続したものと1える。この場合M
ISFET(QI )とMISFET(QI )のしき
い値電圧は、直列接続されたMI 5FETの最もしき
い値電圧の太きいものによって決定される。式(6)の
関係よりMISFET(Q、)およびMISFET(Q
I )のしきい値電圧は、それぞれn型のゲート電極を
有するMISFETおよ・びi型のゲート電極を有する
MISFETのしきい値電圧によって決定される。ヨッ
テ第2図K オイ”’CV thQ+ + Vth Q
t &”J−1となる。
If you have a good idea about the threshold voltage of Q,), MISFE
T(Q,) is a MISFET with p, i, n, i, p type gate electrodes, and MISFET T(Q,) is p
+I+1)+l+MISFE with p-type gate electrode
Let T be connected to a rectangular array. In this case M
The threshold voltages of the ISFET (QI) and MISFET (QI) are determined by the one with the widest threshold voltage among the MISFETs connected in series. From the relationship of equation (6), MISFET (Q, ) and MISFET (Q
The threshold voltage of I) is determined by the threshold voltage of a MISFET having an n-type gate electrode and a MISFET having an i-type gate electrode, respectively. Yacht Figure 2 K Oi”'CV thQ+ + Vth Q
t&”J-1.

さらに上記構成のMI S F ET (Ql ’−Q
!’ )のしきい値電圧の差を取ることにより、式(7
) 、 (8)の右辺の第2項、第3項は相殺され□、
差霜圧として残るのはMISFETQlのn+のゲート
電極と、MISFETQzのiのゲート電極とそれぞれ
の基板との仕事関数の差であるシリコンエネルギーギャ
ップに相当する電圧、略0.55Vが得られる。
Furthermore, MI S FET (Ql'-Q
! ) By taking the difference in threshold voltage of
), the second and third terms on the right side of (8) are canceled out, □,
What remains as the differential frost pressure is a voltage of approximately 0.55 V corresponding to the silicon energy gap, which is the difference in work function between the n+ gate electrode of MISFETQl, the i gate electrode of MISFETQz, and their respective substrates.

次に、上記41り成のMISFET(Ql 、Ql )
を用いた定知、圧発生回路を具体的に説明する。
Next, the MISFET (Ql, Ql) of the above 41 components
The detection and pressure generation circuit using the following will be explained in detail.

第3図は、この発明を適用する蛍1圧発生回路である。FIG. 3 shows a firefly 1 pressure generation circuit to which the present invention is applied.

基板とゲートを構成する導電層とが同一導電゛型半導体
不純物により構成されることにより仕事関数が小さい方
のM I S’F ET (Ql )のドレ、インとゲ
ートとを接続しで、負荷抵抗(R1)を介して電源電圧
に供給する。一方、基板とゲートを構成する導電層とが
反対導電型半導体不純物により構成されることにより仕
事関数が大きい方のMISFET (Qy )のゲート
を上記MISFET(Ql)のゲートと共通にし、上記
MISFET(Ql )のソースと、このMISFET
(Ql )のドレインとを接続し、また、ドレインには
負荷抵抗(R7)を設ける。そして、ソースは接地して
基準電圧を与える。この回路において、上記MISFE
T(Ql)のゲート(MISFETQ、のゲート)には
、MISFET(Qy )のしきい値電圧(VthQt
)で固定されるため、MISFET(Qt )のソース
には、上記MISFET(Qt )のしきい値電圧(V
thQ、)からMISFET(Qt )のしきい値電圧
(VthQI)を差し引イタ’rl圧cvthQ、Vt
hQI)が得られる。なお、上記条件とするためK、負
荷抵抗(Rt−Rオ)は、MISFET(Qt 、Ql
 )のオン抵抗に比べ十分大きくする。
Since the conductive layer constituting the substrate and the gate are made of the same conductivity type semiconductor impurity, the drain, in, and gate of the MI S'FET (Ql) with the smaller work function are connected, and the load is It is supplied to the power supply voltage via a resistor (R1). On the other hand, since the substrate and the conductive layer constituting the gate are composed of semiconductor impurities of opposite conductivity type, the gate of the MISFET (Qy), which has a larger work function, is made common to the gate of the MISFET (Ql), and the MISFET ( Ql ) source and this MISFET
(Ql) is connected to the drain, and a load resistor (R7) is provided to the drain. The source is grounded to provide a reference voltage. In this circuit, the above MISFE
The gate of T(Ql) (gate of MISFETQ) has the threshold voltage (VthQt) of MISFET(Qy).
), the source of the MISFET (Qt) has the threshold voltage (V
thQ, ) minus the threshold voltage (VthQI) of MISFET (Qt)
hQI) is obtained. Note that in order to meet the above conditions, K and load resistance (Rt-R) are MISFETs (Qt, Ql
) should be sufficiently larger than the on-resistance of

この実施例回路において、MISFET(Qりのドレイ
ン電流は、MfSFET(Ql )から供給されるため
、第4図に示すように゛、負荷抵抗(R1)を省略する
ものとしてもよい。
In this embodiment circuit, since the drain current of MISFET (Q) is supplied from MfSFET (Ql), the load resistor (R1) may be omitted as shown in FIG.

□ また、M I’S F E”T’(Ql )のソー
ス電位は、上記出力電E (Vout )となるため、
ソースと基板とが同111位でlx (なり、いわゆる
基板効果が生ずる。そこで、この基板効果による出力電
圧への影響ヲ除くタメ、上il<MI Sv’E T、
(Ql −Q、* )を、半導体基板上に形成したウェ
ル領域内に構成することにより、第4図に示すように各
々のMISFET(Ql 、Qt )のソースとチャン
ネル領域とを同電位にするようにすることが好ましい。
□ Also, since the source potential of MI'SF E"T' (Ql) becomes the above output voltage E (Vout),
When the source and the substrate are at the same position of 111, lx (the so-called substrate effect occurs. Therefore, in order to eliminate the influence of this substrate effect on the output voltage, the above il<MI Sv'ET,
By configuring (Ql - Q, *) in a well region formed on a semiconductor substrate, the source and channel region of each MISFET (Ql, Qt) are made to have the same potential as shown in Fig. 4. It is preferable to do so.

この構成のM I S F E T (Ql 、Ql 
)を第3図の回路に適用してもよいことはいうまでもな
いであろう。
M I S F E T (Ql , Ql
) may be applied to the circuit shown in FIG.

なお、例えば、半導体基板がn型半導体により構成され
たものであるときは、ウェルをp型半導体領域とするも
のであるから、この領域内に形成するのは、前記第2図
に示す実施例とは逆のnチャンネル型MI 5FET 
(Ql 、Ql )により、回路を構成するものとなる
For example, when the semiconductor substrate is made of an n-type semiconductor, the well is to be a p-type semiconductor region, so the embodiment shown in FIG. 2 is formed in this region. N-channel type MI 5FET opposite to
(Ql, Ql) constitutes a circuit.

この実施例は、より精度の高い定電圧出力を得る場合に
有段であり、前述したように出力定電圧が略0.55V
程度テアルノテM、I S F E T (Qt )に
おける基板効果は小さく、したがって、第3図の回路に
よっても実用上問題にはならない高い精度の定電圧中力
が得ら第1る。
This embodiment is stepped when obtaining a constant voltage output with higher accuracy, and as mentioned above, the output constant voltage is approximately 0.55V.
The substrate effect in the degree M, I S F ET (Qt) is small, and therefore, the circuit of FIG. 3 can also provide a constant voltage neutral force with high accuracy, which is not a problem in practice.

第4図は、ダイナミック型の定−□正出力回路の一実施
例を示す回路図である、 この回路は、それぞれゲートとドレインとを接続し、負
荷抵抗(R,、R1)を介してバイアスされるMI 5
FET(Ql −Qt )の上記ゲート。
FIG. 4 is a circuit diagram showing an example of a dynamic type constant-□positive output circuit. This circuit connects the gate and drain, and biases it through load resistors (R, , R1). MI 5
The above gate of FET (Ql - Qt).

ドレイン端子間にコンデンサ(C)を設け、上記MIS
FET(Qs = Qt )のしきい値電圧の差分なコ
ンデンサに蓄積して出力を得ようとするものである。す
なわち、しきい値電圧の小さい方のMISFET(Qt
 )のゲート、ソース間にクロックパルス(φ)で駆動
されるMISFET(Q、)を設け、上記MI S F
 E T (、、Ql 9.Qt )のオン抵抗に対し
て、それぞれの負荷抵抗(R,、R,)を十分大きくし
、かつ、上記MI5FET(Ql −Q、)のオン抵抗
に対し【、MISFET(Ql)のオン抵抗を十分小さ
くすることにより、第6図に示す動作波形図のように、
クロックパルスがローレベルとなってMISFET(Q
s )がオンしたとき、両MI 5FET (Qt 、
Qt )のドレイ711i2圧(しきい値電圧vthQ
、、VthQ、)ノ差−(VthQ、1VthQ、)が
ニア 7テ7? (C) (1’)他端であるMI S
 FET (Qt )のドレインより得られる。このタ
イミング(φ)でサンプリングするようにすることより
、前述の回路と同様な定電圧出力が得られる。
A capacitor (C) is provided between the drain terminals, and the above MIS
The purpose is to obtain an output by accumulating the difference in the threshold voltage of the FET (Qs = Qt) in a capacitor. In other words, the MISFET (Qt
A MISFET (Q, ) driven by a clock pulse (φ) is provided between the gate and source of the MISFET
The respective load resistances (R,, R,) are made sufficiently large for the on-resistance of E T (,,Ql 9.Qt ), and the on-resistance of the MI5FET (Ql -Q,) is set to [, By making the on-resistance of MISFET (Ql) sufficiently small, as shown in the operating waveform diagram shown in Figure 6,
The clock pulse becomes low level and the MISFET (Q
When s) is turned on, both MI 5FETs (Qt,
Qt ) drain 711i2 voltage (threshold voltage vthQ
,,VthQ,) difference - (VthQ, 1VthQ,) is near 7te7? (C) (1') MI S at the other end
Obtained from the drain of FET (Qt). By sampling at this timing (φ), a constant voltage output similar to that of the circuit described above can be obtained.

以上のような定電圧発生回路は、MI 5FETで構成
できるため、MISFETで構成された電子式早計り一
機あるいは、電子式時計等のモノリシック年積回路にお
ける各種の定市圧源として広く利用でき、例えば、第7
図に示すように、定電圧発生回路((L 、Qt 、R
)の出力を基準電圧として、電圧比較回路(7)の一方
に入力し、電源電圧(VDD)を分割抵抗(R,。、R
II)で分圧して他方の入力に印加することにより、電
池の寿命検出回路を得ることができるに の場合、電池電圧は、急激に低下するものではプIいの
で、定電圧発生回路9分圧回路、電圧比較回路は、クロ
ックパルスにより駆動して、消費常時定知、圧出力を必
要としない場合には、上述のように定電圧発生回路をク
ロック駆動するものとしてもよい。
Since the constant voltage generation circuit described above can be configured with MI 5FETs, it can be widely used as an electronic quick-clock device configured with MISFETs or as various constant voltage sources in monolithic annual circuits such as electronic watches. , for example, the seventh
As shown in the figure, a constant voltage generation circuit ((L, Qt, R
) is input as a reference voltage to one side of the voltage comparator circuit (7), and the power supply voltage (VDD) is connected to the dividing resistor (R, ., R
In the case of 2), a battery life detection circuit can be obtained by dividing the voltage in step II) and applying it to the other input.Since the battery voltage does not drop rapidly, the constant voltage generation circuit is The pressure circuit and the voltage comparison circuit may be driven by clock pulses, and if constant consumption and pressure output are not required, the constant voltage generation circuit may be clock-driven as described above.

この発明は、前記実施例に限定されず、前記構成のMI
 5FET (Qt −Qt )のしきい値電圧の差を
める回路は、種々変形でき、具体的回路は何んであって
もよい。
The present invention is not limited to the above embodiments, but can be applied to an MI of the above configuration.
The circuit that calculates the difference in threshold voltage of the 5FET (Qt - Qt) can be modified in various ways, and any specific circuit may be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明者が考えたpen型のゲート電極をも
つMISFET、第2図は、それぞれこの発明の一実施
例を示すMISFETの構造断面図、第3図〜第5図は
、それぞれこの発明を適用する定電圧発生回路の回路図
、第6図は、第5図の回路の動作波形図、第7図は、こ
の発明を電池寿命検出回路に適用した場合の一例を示す
回路図である。 (1)・・・半導体基板、(2)・・・ゲート絶縁膜、
(3)・・・フィールド絶縁膜、(4,5)・・・ソー
ス、ドレイン、(6、6’)・・・ゲート電極、(7)
・・・電圧比較回路。 第 1 図 第 2 図 第 3 図 第 4 図 第 5 図 第 6 図 第 7 図
Figure 1 shows a MISFET with a pen-type gate electrode devised by the present inventor, Figure 2 is a structural cross-sectional view of a MISFET showing one embodiment of the present invention, and Figures 3 to 5 respectively. A circuit diagram of a constant voltage generation circuit to which this invention is applied, FIG. 6 is an operating waveform diagram of the circuit of FIG. 5, and FIG. 7 is a circuit diagram showing an example of a case where this invention is applied to a battery life detection circuit. It is. (1)...Semiconductor substrate, (2)...Gate insulating film,
(3)...Field insulating film, (4,5)...Source, drain, (6,6')...Gate electrode, (7)
...Voltage comparison circuit. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7

Claims (1)

【特許請求の範囲】 1 半導体基板表面にこの半導体基板と反対の導電型の
一〕つの21′樽休領域を有し、両生導体領域の間でか
つ半導体基板表面上に薄い?縁11ハを介してポリシリ
コンからt〔るゲート電極を有するMISIパ1・]′
1゛を有する絶縁ゲート型霜、界効果半導体装置におい
−(、前記Mt s Ft;: ’t’のしきい値電圧
は、不純、物を含んでいないゲート霜極によって決する
ことを特徴とする絶縁ゲート型雷、界効果半導体装置。
[Claims] 1. A semiconductor substrate having one 21' conductive region of a conductivity type opposite to that of the semiconductor substrate on the surface of the semiconductor substrate, and a thin conductive region between the two conductor regions and on the surface of the semiconductor substrate. MISI pad 1 with gate electrode extending from polysilicon via edge 11'
In an insulated gate type frost, field effect semiconductor device having a field effect semiconductor device having an insulated gate frost of 1゛, the threshold voltage of 't' is determined by the gate frost pole which does not contain impurities or substances. Insulated gate lightning, field effect semiconductor device.
JP24952584A 1984-11-28 1984-11-28 Insulated gate type field effect semiconductor device Pending JPS60150112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24952584A JPS60150112A (en) 1984-11-28 1984-11-28 Insulated gate type field effect semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24952584A JPS60150112A (en) 1984-11-28 1984-11-28 Insulated gate type field effect semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2544478A Division JPS54119653A (en) 1978-03-08 1978-03-08 Constant voltage generating circuit

Publications (1)

Publication Number Publication Date
JPS60150112A true JPS60150112A (en) 1985-08-07

Family

ID=17194274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24952584A Pending JPS60150112A (en) 1984-11-28 1984-11-28 Insulated gate type field effect semiconductor device

Country Status (1)

Country Link
JP (1) JPS60150112A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2361357A (en) * 1999-10-06 2001-10-17 Nec Corp Dynamic random access memory

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2361357A (en) * 1999-10-06 2001-10-17 Nec Corp Dynamic random access memory

Similar Documents

Publication Publication Date Title
US4377781A (en) Selectively adjustable voltage detection integrated circuit
JP3636736B2 (en) Voltage memory circuit
JPH0973331A (en) Semiconductor integrated circuit device
JP2005191821A (en) Comparator circuit and power supply circuit
JPH0152906B2 (en)
JPS60150112A (en) Insulated gate type field effect semiconductor device
JPS6038799A (en) Reading circuit for semiconductor non-volatile memory
US4072890A (en) Voltage regulator
JPS60150115A (en) Voltage detector
JPS60150114A (en) Semiconductor integrated circuit device
JPS60150116A (en) Constant voltage generating circuit device
JPS60150113A (en) Reference voltage generator
Yan et al. An auto-offset-removal circuit for chemical sensing based on the PG-ISFET
JPS636908A (en) Constant current source circuit
JPS6035627B2 (en) voltage detection circuit
JPS54119653A (en) Constant voltage generating circuit
JPH0263299B2 (en)
JPS5485662A (en) Semiconductor device
JP3551090B2 (en) Operational amplifier
JP3124730B2 (en) Chopper comparator circuit
JPS6216682Y2 (en)
JPH0421214B2 (en)
JPH06118152A (en) Integrated magnetic detector for self-compensating offset voltage
CN105807832A (en) Standard voltage stabilizing circuit
JPH0578847B2 (en)