JPS60149985A - Optical distance measuring apparatus - Google Patents

Optical distance measuring apparatus

Info

Publication number
JPS60149985A
JPS60149985A JP59005469A JP546984A JPS60149985A JP S60149985 A JPS60149985 A JP S60149985A JP 59005469 A JP59005469 A JP 59005469A JP 546984 A JP546984 A JP 546984A JP S60149985 A JPS60149985 A JP S60149985A
Authority
JP
Japan
Prior art keywords
light
correction
emitting element
optical
shutter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59005469A
Other languages
Japanese (ja)
Other versions
JPH0378948B2 (en
Inventor
Koji Tsuda
浩二 津田
Shinichi Suzuki
新一 鈴木
Atsumi Kaneko
敦美 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentax Corp
Original Assignee
Asahi Kogaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kogaku Kogyo Co Ltd filed Critical Asahi Kogaku Kogyo Co Ltd
Priority to JP59005469A priority Critical patent/JPS60149985A/en
Publication of JPS60149985A publication Critical patent/JPS60149985A/en
Publication of JPH0378948B2 publication Critical patent/JPH0378948B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PURPOSE:To remove influence due to phase irregularity to an emitting angle, by a method wherein a reflective member is made accessible with respect to a light transmission path and light having an emitting angle range almost same to that of light used as measuring light or light at an optical axis part is used as correction light. CONSTITUTION:Modulation light from a light emitting element 2 is transmitted through a condensing lens 3 and an optical fiber 4 and a shutter 5 changes over light incident to a light receiving part 14 to either one of measuring light and correction light. The shutter 5 is rotated by a motor 9 and, when measuring light is selected, light transmitted through the condensing lens 3 passes the shutter 5 to be incident to the optical fiber 4. On the other hand, when correction light is selected, the light condensed by the condensing lens 3 is reflected by the shutter 5 and incident to an optical fiber 10 for transmitting correction light.

Description

【発明の詳細な説明】 本発明は光波を用いて距離を測定する光波測距装置の光
学的構造に関するものである。光波測距装置は周知のよ
うに、ある規定の周波数で変調された発光ダイオード等
の発光素子からの光を送光光学系を用いて測点に置かれ
たコーナーキューブ等の反射器に向けて放射し、該反射
器より返された光を受光光学系を用いて受光素子に結像
させ、電気信号に変換し、基準変調光に列する反fl=
1変調光の位相遅れを検出することによって距離を測定
する装置である。この様な光波測距装置の場合、距離の
測定誤差は重要な性能ヒの問題であり、その誤差に起因
するものに光学的原因や電気的原因が種々存在する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical structure of a light wave distance measuring device that measures distance using light waves. As is well known, a light wave ranging device uses a light transmitting optical system to direct light from a light emitting element such as a light emitting diode that is modulated at a certain specified frequency to a reflector such as a corner cube placed at a measuring point. The light emitted and returned from the reflector is imaged on a light receiving element using a light receiving optical system, converted into an electrical signal, and aligned with the reference modulated light.
This is a device that measures distance by detecting the phase delay of 1 modulated light. In the case of such a light wave distance measuring device, a distance measurement error is an important performance problem, and there are various optical and electrical causes of the error.

本発明は前記の光学的原因のうち発光部の位相むらによ
る影響を除去し、測定誤差を小さくする光学的構造に関
するものである。
The present invention relates to an optical structure that eliminates the influence of phase unevenness of a light emitting section among the optical causes and reduces measurement errors.

通常、光波測距装置においては、装置内の光路長及び電
子回路部の位相ずれに基く測定誤差を補正するために、
測定光とは別に補正光を設けているが、この補正光のと
らえ方として発光部の光軸付近の放射光を利用する測定
光とは異なり、光軸より大きくはなれた放射角度範囲の
光を使用する方法が機構上よくとられる。しかしこの場
合放射角度のちがいにより位相むらがあると、測定光と
補正光の位相差が光路の機械的な設定位置の経II庁変
化又は発光素子の温度特性により変化することによって
、距離の測定誤差が大きくなるとし1う問題がある。そ
して、この位相むらは、光波測距装置からの出射光が大
きくとれることで非常に有効な高指向性形の発光素子に
おいては、光軸付近での位相むらは小さく許容できる範
囲であるが、光軸より大きくはなれた放射角度に椙)て
は、角度に対する位相むらが非常に大きい傾向にある。
Normally, in a light wave distance measuring device, in order to correct measurement errors based on the optical path length within the device and the phase shift of the electronic circuit section,
A correction light is provided separately from the measurement light, but unlike the measurement light, which uses radiation near the optical axis of the light emitting part, this correction light is captured by using light in a radiation angle range far away from the optical axis. The method used is mechanically common. However, in this case, if there is phase unevenness due to a difference in the radiation angle, the phase difference between the measurement light and the correction light changes due to changes in the mechanically set position of the optical path or the temperature characteristics of the light emitting element, resulting in distance measurement. There is a problem when the error becomes large. This phase unevenness is small and within an acceptable range in the vicinity of the optical axis in highly directional light emitting elements, which are very effective because they allow a large amount of light to be emitted from the optical range finder. When the radiation angle is far from the optical axis, the phase unevenness with respect to the angle tends to be very large.

前記放射角度に対する位相むらの影響を減少させろため
の従来の装置としては、発光素子とオプティカルファイ
バーを結合し、このオプティカルファイバーを屈曲させ
て光路内に配置する構成、発光素子として放射角度に対
する位相むらの少ないものを用いる構成、発光素子から
の逆光光路内にハーフミラ−を固定して補正光として5
光軸イ1近の光を利用する構成、送光部と送光光学系の
間に設けたシャッターと光学系により光軸付近の光を利
用する構成などがある。
Conventional devices for reducing the influence of phase unevenness on the radiation angle include a structure in which a light emitting element and an optical fiber are coupled, and this optical fiber is bent and placed in the optical path; A half mirror is fixed in the backlight optical path from the light emitting element and used as correction light.
There are configurations that utilize light near the optical axis A1, and configurations that utilize light near the optical axis using a shutter and optical system provided between the light transmitting section and the light transmitting optical system.

しかし、オプティカルファイバーを屈曲させる構成は極
端に曲げてやらないと目的を達成することは困難であり
、その屈曲がオプティカルファイバーの破断につながり
光波測距装置の経時的信頼性を損ない、また、放射角に
対する位相むらの少ない発光素子を用いる構成は、発光
素子として光の放射特性が無指向性に近いものを選択す
る必要があり、このような発光素子は無視向性であるが
ゆえに実際に使用する狭い放射角度範囲での光出力が小
さく、さらにオプティカルファイバー等と光結合して使
用する場合は、それらとの結合効率が非常に悪く、その
結合損失を補うためにより多くの電力を発光素子に供給
して放射光14を増さなければならないという欠点があ
る。さらに、ノ1−フミラーを用いて補正光を取り出す
構成は、光波測距装置からの出射光量がその分減少して
しまし)、飛距離が短くなってしまう欠点があり、送光
部と送光光学系の間に設けたシャッターと光学系により
補正光を取り出す構成は、送受光光学系等で混雑した場
所にシャッター及びシャッター駆動装置等を配置しなけ
ればならず、構造−]−不利になることがある。
However, it is difficult to achieve the purpose of the configuration in which the optical fiber is bent unless the optical fiber is bent extremely, and the bending can lead to the optical fiber breaking, impairing the reliability of the optical distance measuring device over time, and also causing radiation For a configuration using a light emitting element with little phase unevenness with respect to angles, it is necessary to select a light emitting element whose light radiation characteristics are close to omnidirectional, and because such a light emitting element has negligible tropism, it is difficult to actually use it. The light output is small in a narrow radiation angle range, and when used in optical coupling with optical fibers, the coupling efficiency with them is very poor, so more power must be transferred to the light emitting element to compensate for the coupling loss. The disadvantage is that the emitted light 14 must be increased by supplying it. Furthermore, the configuration in which the correction light is taken out using a no. The configuration in which corrected light is taken out using a shutter provided between the light optical system and the optical system requires the shutter and shutter drive device to be placed in a crowded place with the light transmitting and receiving optical system, resulting in a disadvantageous structure. It may happen.

本発明の目的は、前記した従来の欠点を解決し、位相む
らによる不都合を除去した光波測距装置を提供すること
にあり、その特徴は次のようである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a light wave ranging device which solves the above-mentioned conventional drawbacks and eliminates the disadvantages caused by phase unevenness, and its features are as follows.

一般に放射角度に対する位相むらとは別に、発光素子の
発光面の場所による位相むらが距離d1す定誤差を増大
させるという問題があり、オプティカルファイバー又は
棒状の透光物質(以後、オプティカルロッドという。)
を使用して光を混合することによって発光面の場所によ
る位相むらは混合均一され、この問題は解決されること
がすでに知られており、本発明においても、送光部とし
ては、発光素子と、オプティカルファイバー又はオプテ
ィカルロッド等の透光部材と、この発光素子と透光部材
の光結合をなす光学系とを組み合わせたものとしている
。そして本発明では、この送光部において前記発光素子
と透光部材の間の送光光路1−に受光部に入射する光が
測定光と補正光で’=7Jり換えられるように反射部材
を出し入れし、発光素子の光軸を含む測定光として用い
る光とほぼ同一の放射角度範囲の光、又は光軸部分の光
を補正光として用いるようにしており、こうすることに
よって送光部の光軸に対して大きな角度の光を補正光と
して用いる場合と異なり、測定誤差に結びつく放射角度
に対する位相むらの影響を受けずに済み、測定誤差が小
さく押さえられ、正確な測距ができるようになる。そし
て、前記した高指向性形発光素子を使用することも同時
に可能となる。従って、前述したように、オプティカル
ファイバーを屈曲させたり、放射角に対する位相むらは
小さいが、光波測距装置としては効率が悪い無指向性形
の発光素子を使用して大電力を供給しなければならない
という不都合は生じなくなる。又、ハーフミラ−を固定
して使用せず、測定光が選択される時は送光光路上に反
射部材が位置しないようにしているため、補正光を取り
出すために光波測距装置からの出射光叩゛が減少し飛距
離が犠牲になるということもない。さらに測定光と補正
光の切り換えのための反射部材及びその駆動装置を送光
部の発光素子イ1近に配置でき、送受光光学系等で混雑
した場所に配置する必要がなくなり、構造−1鑞何利で
ある。
In general, apart from the phase unevenness with respect to the radiation angle, there is a problem that the phase unevenness depending on the location of the light emitting surface of the light emitting element increases the error in determining the distance d1.
It is already known that the phase unevenness caused by the location of the light emitting surface can be mixed uniformly by mixing light using a light emitting element, and this problem can be solved. , a light-transmitting member such as an optical fiber or an optical rod, and an optical system that optically couples the light-emitting element and the light-transmitting member. In the present invention, in the light transmitting section, a reflecting member is provided in the light transmitting optical path 1- between the light emitting element and the light transmitting member so that the light incident on the light receiving section is switched by '=7J between the measurement light and the correction light. The light emitted from the light-emitting element is inserted and taken out, and the light in the radiation angle range that is almost the same as the light used as the measurement light, including the optical axis of the light emitting element, or the light in the optical axis portion is used as the correction light. Unlike the case where light at a large angle to the axis is used as correction light, it is not affected by phase unevenness in the radiation angle that leads to measurement errors, and measurement errors are kept small, allowing for accurate distance measurement. . At the same time, it is also possible to use the highly directional light emitting element described above. Therefore, as mentioned above, large amounts of power must be supplied by bending the optical fiber or by using omnidirectional light emitting elements, which have small phase irregularities with respect to the radiation angle but are inefficient as light wave distance measuring devices. The inconvenience of not being able to do so will no longer occur. In addition, since the half mirror is not used in a fixed manner, and the reflective member is not positioned on the light transmission path when the measurement light is selected, the emitted light from the light wave distance measuring device is There is no need to sacrifice flying distance due to decreased impact. Furthermore, the reflecting member and its driving device for switching between the measurement light and the correction light can be placed near the light emitting element A1 of the light transmitting section, eliminating the need for placing it in a crowded place with the light transmitting and receiving optical system, etc. This is Qin Heli.

以下図面に基いて本発明の一実施例を説明する。An embodiment of the present invention will be described below based on the drawings.

第1図は本発明の一実施例である光波測距JA置の送光
部を示す光学系の配置図である。
FIG. 1 is a layout diagram of an optical system showing a light transmitting section of a light wave ranging JA system which is an embodiment of the present invention.

lの符号で示したものは送光部の光学系を示した配置図
であり、測距光を発光する発光素子2の光束トに集光レ
ンズ3が配されており、この集光レンズ3の結像点にオ
プティカルファイバー4を設置しである。
The one indicated by the symbol l is a layout diagram showing the optical system of the light transmitting section, in which a condenser lens 3 is disposed in the light beam of the light emitting element 2 that emits distance measuring light, and this condenser lens 3 An optical fiber 4 is installed at the imaging point.

この測距光光路上で集光レンズ3と第1オプテイカルフ
アイバー4の間に円板状のシャッター5を設けその一部
は略45°の角度に反射部材6、又他の一部は透孔7部
が穿設されていてシャッター5の回動により反射部材6
と透孔7は測距光光路」ニに出入可能に切替えられる。
A disc-shaped shutter 5 is provided between the condensing lens 3 and the first optical fiber 4 on the distance measuring light optical path, and a part of the shutter 5 is provided with a reflective member 6 at an angle of approximately 45°, and the other part is transparent. A hole 7 is formed, and when the shutter 5 rotates, the reflecting member 6
The through hole 7 can be switched into and out of the distance measuring light optical path.

この切替えには駆動軸8を介してモーター9により駆動
される。
This switching is performed by a motor 9 via a drive shaft 8.

測距光光路上に反射部材6が切替えられている時には発
光素子2から集光レンズ3を経て反射部材6により反射
された光束は補正光として結像されるが、その結像点に
別の補正光伝達用の第2オプテイカルフアイバー10を
設けである。
When the reflecting member 6 is switched on the distance measuring light optical path, the light beam from the light emitting element 2, passing through the condensing lens 3 and being reflected by the reflecting member 6 is imaged as correction light, but there is another light beam at the imaging point. A second optical fiber 10 for transmitting correction light is provided.

以上が光波測距計の送光部1であり、第2図ではその全
体構成図を光学系を主体に簡略に示した図である。
The above is the light transmitting section 1 of the light wave range finder, and FIG. 2 is a diagram showing the entire configuration in a simplified manner, mainly focusing on the optical system.

この第2図では従来から公知のビームスプリッタ−11
,対物しンズ12.コーナーキューブ13及び受光部1
4で構成される測距光光路の光学的構造を示したもので
あり、他方補正光光路上には前記第2オプテイカルフア
イバーの出射端面側には集光レンズ15.NDフィルタ
ー16.駆動軸17の配置した状況を示したものである
In FIG. 2, a conventionally known beam splitter 11 is shown.
, Objective Shins 12. Corner cube 13 and light receiving section 1
4 shows the optical structure of the distance measuring light optical path, which is composed of a focusing lens 15.4, and a condenser lens 15.4 on the output end surface side of the second optical fiber on the correction light optical path. ND filter 16. This shows the arrangement of the drive shaft 17.

次に第1図と第2図を使ってこれらの作用を説明する。Next, these effects will be explained using FIGS. 1 and 2.

第1図において、今シャッター5を無視して考えると、
発光素子2からの変調光は、放射角度に対する位相むら
が小さく許容範囲内である角度の光が、集光レンズ3に
より集光され、第1オプテイカルフアイバー4の入射端
面4aに結像し、この変調光は第1オプテイカルフアイ
バー4により伝達され、出射端面4bより放射される。
In Fig. 1, if we ignore the shutter 5,
The modulated light from the light emitting element 2 has a small phase unevenness with respect to the radiation angle and is within a permissible range, is focused by the condensing lens 3, and is imaged on the incident end surface 4a of the first optical fiber 4, This modulated light is transmitted by the first optical fiber 4 and emitted from the output end face 4b.

こIlが送光部1からの放射光つまり測定光となる。こ
の送光部にシャッター5等の周辺機構を加えたものが第
1図の状態であり、シャッター5は受光部14に入射す
る光を測定光と補正光のいずれかに切り換える切り換え
シャッターであり、測定光の時のシャッター位置には測
定光が通過するように送光光路用の透孔7を有し、補正
光の時のシャッター位置には反射部材6が取り付けであ
る。そしてこのシャッター5はモーター9の駆動軸8に
固定されていて、測定光と補正光に応じてモーター9に
より回転され、測定光が選択される時は集光レンズ3を
通過した光はそのシャッター位置に反射部材6がないた
めにそのままシャッター5を通過して第1オプテイカル
フアイバー4の入射端面4aに入射するが、補正光が選
択される時は反射部材6により反射され補正光伝達用の
第2オプテイカルフアイバー10に入射するようにしで
ある。
This Il becomes the emitted light from the light transmitting section 1, that is, the measurement light. The state shown in FIG. 1 is the light transmitting section plus peripheral mechanisms such as the shutter 5, and the shutter 5 is a switching shutter that switches the light incident on the light receiving section 14 into either measurement light or correction light. A through hole 7 for a light transmission optical path is provided at the shutter position for measuring light so that the measuring light passes through, and a reflecting member 6 is attached to the shutter position for correcting light. This shutter 5 is fixed to a drive shaft 8 of a motor 9, and is rotated by the motor 9 according to the measurement light and correction light. When the measurement light is selected, the light passing through the condensing lens 3 is sent to the shutter of the motor 9. Since there is no reflecting member 6 in the position, the light passes through the shutter 5 as it is and enters the incident end face 4a of the first optical fiber 4. However, when the correction light is selected, it is reflected by the reflecting member 6 and used for transmitting the correction light. This is so that the light is incident on the second optical fiber 10.

ここで測定光が選択される時は反射部材6が送光光路内
にセットされないために、第2オプテイカルフアイバー
10には光は入射せず、補正光は存在しないし補正光が
選択される時は、反射部材が送光光路内にセットされて
測定光光路が遮断されるため、第1オプテイカルフアイ
バー4には光は入射せず測定光は存在しない。つまり、
選択された光路に対して他方の光路は遮断されるように
しである。
When the measurement light is selected here, since the reflection member 6 is not set in the light transmission optical path, no light enters the second optical fiber 10, and there is no correction light, so the correction light is selected. At this time, the reflecting member is set in the light transmission optical path and the measurement light optical path is blocked, so that no light enters the first optical fiber 4 and no measurement light exists. In other words,
The selected optical path is blocked from the other optical path.

以上のことを含め、さらに詳述すると、まず測定光が選
択された場合を考えると、発光素子2からの放射光は集
光レンズ3により集光され、シャッター5の送光光路透
孔7を通過した後、第1オプテイカルフアイバー4の入
射端面4aに結像する。ここで入射部において発光素子
2の光軸と第1オプテイカルフアイバー4の光軸は一致
するようにしてあり、入射端面4aへの入射角度は光軸
に対して片側01度とする。そして第1オプテイカルフ
アイバー4で伝達された測定光は出射端面4bからほぼ
光軸に刺して片側01度の角度で放射される。次にこの
測定光はビームズブリッター11の第1反射面?1aに
より反射され5対物レンズ】2を通り、平行光束となっ
て外部へ放射される。さらにこの放射光は距離測定点に
設置されたコーナーキューブ13により反射されその反
射光は再び対物レンズ12を通過し、光ビーム分割器1
1の第2反射面] 1 bにより反射され、受光部■4
に入射して距N1測定情報となる。
To explain in more detail including the above, first consider the case where the measurement light is selected, the emitted light from the light emitting element 2 is focused by the condensing lens 3, and the light transmitting light path through hole 7 of the shutter 5 is condensed. After passing through, an image is formed on the incident end surface 4a of the first optical fiber 4. Here, the optical axis of the light emitting element 2 and the optical axis of the first optical fiber 4 are made to coincide with each other at the entrance part, and the angle of incidence on the entrance end surface 4a is 01 degrees on one side with respect to the optical axis. The measurement light transmitted by the first optical fiber 4 is emitted from the output end face 4b at an angle of 01 degrees on one side, substantially along the optical axis. Next, is this measurement light the first reflection surface of the beams blitter 11? It is reflected by 1a, passes through objective lens 5 and 2, and is emitted to the outside as a parallel beam of light. Furthermore, this emitted light is reflected by a corner cube 13 installed at the distance measurement point, and the reflected light passes through the objective lens 12 again, and the light beam splitter 1
1 second reflecting surface] 1 b, and is reflected by the light receiving part ■4
It becomes the distance N1 measurement information.

ここで出射端面4b及び受光部14は対物レンズ12の
焦点位置にあり、第1オプテイカルフアイバー4の光軸
に対して片側01度の角度の光が対物レンズ12より放
射及び入射するようにしである。又、補正光が選択され
た場合には、発光素子2からの放射光は集光レンズ3に
より集光され、シャッター5に取り伺けられた反射部材
6により反射され、第、2オプテイカルフアイバー10
の入射端面10aに結像する。ここで発光素子2の光軸
と第2オプテイカルフアイバー10の光軸は一致するよ
うにしてあり、入射端面10aへの入射角度は測定光の
時の角度範囲と同じく光軸に対して片側01度としであ
る。さJ)に第2オプテイカルフアイバー10により伝
達された補正光は出射端面tobからほぼ光軸に対して
L1側。1度の角度で放射され、その角度範囲の光が集
光レンズ15により集光されて受光部14に入射し、装
置内の光路長及び電子回路部の位相ずれに基く測定誤差
の補正情報となる。
Here, the output end surface 4b and the light receiving section 14 are located at the focal point of the objective lens 12, so that light at an angle of 01 degrees on one side with respect to the optical axis of the first optical fiber 4 is emitted from and incident on the objective lens 12. be. Further, when the correction light is selected, the emitted light from the light emitting element 2 is collected by the condensing lens 3, reflected by the reflection member 6 that is covered by the shutter 5, and then reflected by the second optical fiber. 10
The image is formed on the incident end surface 10a of the. Here, the optical axis of the light emitting element 2 and the optical axis of the second optical fiber 10 are made to coincide with each other, and the angle of incidence on the incident end face 10a is the same as the angular range when the measurement light is applied, and the angle of incidence is 01 on one side with respect to the optical axis. It's a degree. In (J), the correction light transmitted by the second optical fiber 10 is from the output end surface tob to the L1 side with respect to the optical axis. The light is emitted at an angle of 1 degree, and the light in that angular range is focused by the condensing lens 15 and enters the light receiving section 14, and the light is corrected for measurement errors based on the optical path length in the device and the phase shift of the electronic circuit section. Become.

さらに、受光部14の前面には回転角に応じて濃度が変
化するNDフィルター16が設けられており、モーター
等(図示せず)の駆動軸I7により回転されて測定光の
コーナーキューブ13がらの反射入射光量と集光レンズ
15により集光された補正光量の調整を行なうようにし
ている。
Furthermore, an ND filter 16 whose density changes depending on the rotation angle is provided on the front surface of the light receiving section 14, and is rotated by a drive shaft I7 of a motor or the like (not shown) to filter the measurement light from the corner cube 13. The amount of reflected incident light and the amount of corrected light focused by the condenser lens 15 are adjusted.

本実施例においては、反射部材6をシャッター5に取り
付け、このシャッター5をモーター9により回転してい
るが、シャッターを用いずに直接反射部材を測定光と補
正光に応じて光路に出し入れする構造でもなんらさし・
つかえない。第3図はその一例であり1反射部材6はモ
ーター9の駆動軸8により測定光、補正光に応じて回転
され、光路に出し入れされる。このように反射部材6の
駆動手段は、測定光と補正光が切換えられればいかなる
手段でもさしつかえない。さらに本実施例では、反射部
材6による反射光を第2オブテ、イカルファイバー10
により伝達しているが、オプティカルファイバーを用い
ず、集光レンズ、ミラー等の光学部品を用いる構成でも
かまわない。又、本実施例では、測定光及び補正光とし
て発光素子の光軸に対して同じ角度範囲の光を利用して
いるが。
In this embodiment, the reflecting member 6 is attached to the shutter 5, and this shutter 5 is rotated by the motor 9, but the structure is such that the reflecting member is directly moved in and out of the optical path according to the measurement light and correction light without using a shutter. But what the heck?
can not use. FIG. 3 is an example of this, and one reflecting member 6 is rotated by a drive shaft 8 of a motor 9 according to the measurement light and the correction light, and is moved in and out of the optical path. In this way, any means for driving the reflecting member 6 may be used as long as the measurement light and the correction light can be switched. Furthermore, in this embodiment, the light reflected by the reflection member 6 is transferred to the second optical fiber 10.
However, it is also possible to use optical components such as condensing lenses and mirrors instead of using optical fibers. Further, in this embodiment, light having the same angle range with respect to the optical axis of the light emitting element is used as the measurement light and the correction light.

放射角度に対する位相むらはこの角度範囲では小さく許
容できるので、反射部材6の寸法を小さくし光軸部分の
光のみを反射して補正光として使用してもさしつかえな
い。ただしこの補正光選択時には、光軸部分以外の光は
測定光路にゆかないように遮光さtLることが必要であ
る。
Since the phase unevenness with respect to the radiation angle can be small within this angular range, the size of the reflecting member 6 may be reduced to reflect only the light on the optical axis and use it as correction light. However, when selecting this correction light, it is necessary to block light other than the optical axis portion so that it does not reach the measurement optical path.

第4図は本発明の他の実施例であって、発光素子2は集
光レンズ18の焦点位置に、又入射端面4aは集光レン
ズ19の焦点位置に、入射端面]Oaは集光レンズ20
の焦点位置にあり、発光素子2からの放射光は集光レン
ズ18により平行光束となり、この平行光束は測定光の
時は送光光路用の透孔7を通過して焦光レンズ19によ
り集光され第1オプテイカルフアイバー4の入射端面4
aに結像し、補正光の時は反射部材6で反射した後、集
光レンズ20により集光して、第2オプテイカルフアイ
バー10の入射端面]、 Oaに結像する。この実施例
では、平行光束部分で光の結合。
FIG. 4 shows another embodiment of the present invention, in which the light emitting element 2 is located at the focal point of the condensing lens 18, the entrance end surface 4a is located at the focal position of the condensing lens 19, and the entrance end surface Oa is the condensing lens. 20
The emitted light from the light emitting element 2 is turned into a parallel light beam by the condensing lens 18, and when this parallel light beam is used as measurement light, it passes through the transparent hole 7 for the light transmission optical path and is condensed by the focusing lens 19. The incident end face 4 of the first optical fiber 4 receives light.
When the correction light is used, the light is reflected by the reflecting member 6, then condensed by the condenser lens 20, and imaged onto the incident end surface of the second optical fiber 10], Oa. In this example, light is combined in the parallel beam part.

切り換えが行なえるので発光素子2と集光レンズ18、
第1オプテイカルフアイバー4と集光レンズ19、第2
オプテイカルフアイバー10と集光レンズ20、シャッ
タ一部分等がユニツ1−化できるようになり、調整もや
りやすくなる。
Since it can be switched, the light emitting element 2 and the condensing lens 18,
The first optical fiber 4 and the condensing lens 19, the second
The optical fiber 10, the condensing lens 20, a part of the shutter, etc. can be made into a unit, making adjustment easier.

以上説明したように本発明によれは、送光部の発光素子
と透光部材の間の送光光路上に測定光と補正光に応じて
反射部材を出し入れし、測定光として用いる光とほぼ同
一の放射角度範囲の光、又は光軸部分の光を補正光とし
て用いることによって、透光部光軸とは大きくはなれた
角度の光を補正光として利用する場合と異り、放射角度
に対する位相むらによる影響が除去できる。従って、透
光物質を屈曲する必要もなく、又放射光量が大きくとれ
ることで光波測距儀への応用として非常に有効な高指向
性形の発光素子を使用することが可能となり、放射角度
に対する位相むらが小さい発光素子を選択し、その発光
素子に大電力を供給してその出射効率の悪さを補うこと
によって必要な放射光量を確保するという不都合がなく
なり、その種の発光素子に比べ、数分の−の供給電力で
それ以上の放射光量を得ることが可能となる。従って、
光波測距装置の低消費電力化及び電気的誤差の減少をH
する上でも非常に有効である。さらに、送光光路上に反
射部材を出し入れする構成であるので、測定光が選択さ
れる時、その光量が減衰するという不都合もなく、光路
上にハーフミラ−を固定して用いる場合に比べ飛距離も
大きくとれるようになる。又、送光部のオプティカルフ
ァイバー出射端面ば対物レンズの焦点に位置し、測定光
As explained above, according to the present invention, a reflecting member is moved in and out on the light transmission optical path between the light emitting element and the light transmitting member of the light transmitting section according to the measurement light and the correction light, so that the light used as the measurement light and the By using light in the same radiation angle range or light on the optical axis as correction light, the phase with respect to the radiation angle is The effects of unevenness can be removed. Therefore, there is no need to bend the translucent material, and the large amount of emitted light can be obtained, making it possible to use highly directional light emitting elements that are very effective in application to light wave rangefinders. By selecting a light-emitting element with small phase unevenness and supplying a large amount of power to the light-emitting element to compensate for its poor emission efficiency, the inconvenience of securing the necessary amount of emitted light is eliminated, and compared to that type of light-emitting element, the number of It becomes possible to obtain a greater amount of radiated light with a supply power of -1000 yen. Therefore,
H
It is also very effective in doing so. Furthermore, since the reflective member is moved in and out of the light transmission optical path, there is no inconvenience that the amount of light is attenuated when the measurement light is selected, and the distance traveled is greater than when using a half mirror fixed on the optical path. You will also be able to get larger amounts. In addition, the optical fiber output end face of the light transmitting section is located at the focal point of the objective lens, and the measurement light is emitted.

補正光切り換えシャッター及びその駆動装置等は、オプ
ティカルファー−バーで光結合されている発光素子イ]
近へ位置しているので、送受光光学系で混雑した場所に
配置する場合に比べ構造上有利となる。
The correction light switching shutter and its driving device, etc. are light emitting elements that are optically coupled with an optical fiber]
Since it is located close to the optical system, it is structurally advantageous compared to the case where the transmitting and receiving optical system is located in a crowded place.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は送光部及びその周辺機構に関する本発明の一実
施例を示す図であり、第2図は第1図に示す送光部及び
その周辺機構を含む光波測距装置の光学系に関する本発
明の一実施例を示す図であり、第3図は反射部材の駆動
部の別実施例を示す図であり、第4図は第1図の送光部
及びその周辺機構に関する本発明の他の実施例を示す図
である。 ■・・・送光部 2・・・発光素子 3 ・集光レンズ
4・・・第1オプティカルファイバー 5・・シャッター 6・・反射部材 7・・透孔8・・
駆動軸 9・・・モーター 10・・・第2オプティカルファイバー11 ビー11
スプリツター 12 ・対物レンズ 13 ・コーナーキューブ14・
受光部 15 ・集光レンズ 16・・NDフィルター 17 ・駆動軸18.19.
20・・・集光レンズ
FIG. 1 is a diagram showing an embodiment of the present invention relating to a light transmitting section and its peripheral mechanism, and FIG. 2 is a diagram showing an optical system of a light wave ranging device including the light transmitting section and its peripheral mechanism shown in FIG. FIG. 3 is a diagram showing another embodiment of the driving section of the reflecting member, and FIG. 4 is a diagram showing an embodiment of the present invention regarding the light transmitting section and its peripheral mechanism in FIG. 1. It is a figure which shows another Example. ■...Light sending unit 2...Light emitting element 3 - Condensing lens 4...First optical fiber 5...Shutter 6...Reflection member 7...Through hole 8...
Drive shaft 9...Motor 10...Second optical fiber 11 Bee 11
Splitter 12 ・Objective lens 13 ・Corner cube 14 ・
Light receiving unit 15 ・Condensing lens 16 ・ND filter 17 ・Drive shaft 18.19.
20...Condensing lens

Claims (1)

【特許請求の範囲】[Claims] 送光部からの放射変調光を送光光学系を用いて反射器に
向けて放射し、該反射器からの反射変調光を受光光学系
を用いて受光部に結像させ、前記放射変調光と反射変調
光との位相差により距離を測定する光波測距装置におい
て、前記送光部を発光素子と透光部材とそれらの間の光
結合をなすv16学系とし、該発光素子と透光部材の間
の送光光路上に測定光と補正光に応じて出し入れされる
反射部材を設け、発光素子の光軸部分の光、又は、光軸
を含み、測定光として用いる光とほぼ同一の放射角度範
囲の光を、補正光として用いることによって、前記放射
変調光の放射角度に対する位相むらの影響を除去したこ
とを特徴とする光波測距装置。
The modulated radiation light from the light transmitting part is emitted toward a reflector using a light transmitting optical system, and the modulated light reflected from the reflector is imaged on the light receiving part using a light receiving optical system. In a light wave distance measuring device that measures distance based on a phase difference between a light emitting element and a reflected modulated light, the light transmitting section is a V16 system that includes a light emitting element, a transparent member, and optical coupling between them, and the light emitting element and the light transmitting member are optically coupled. A reflecting member is provided on the light transmission optical path between the members, and is moved in and out depending on the measurement light and correction light. A light wave ranging device characterized in that the influence of phase unevenness on the radiation angle of the radiation modulated light is removed by using light in a radiation angle range as correction light.
JP59005469A 1984-01-14 1984-01-14 Optical distance measuring apparatus Granted JPS60149985A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59005469A JPS60149985A (en) 1984-01-14 1984-01-14 Optical distance measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59005469A JPS60149985A (en) 1984-01-14 1984-01-14 Optical distance measuring apparatus

Publications (2)

Publication Number Publication Date
JPS60149985A true JPS60149985A (en) 1985-08-07
JPH0378948B2 JPH0378948B2 (en) 1991-12-17

Family

ID=11612096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59005469A Granted JPS60149985A (en) 1984-01-14 1984-01-14 Optical distance measuring apparatus

Country Status (1)

Country Link
JP (1) JPS60149985A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01304380A (en) * 1988-06-02 1989-12-07 Sokkisha Co Ltd Range finder using optical wave
JPH0221282A (en) * 1988-07-11 1990-01-24 Sokkisha Co Ltd Light wave distance measuring apparatus
JPH02118284U (en) * 1989-03-07 1990-09-21
JPH05312951A (en) * 1990-12-19 1993-11-26 Asahi Seimitsu Kk Ranging optical system
JPH08292258A (en) * 1995-04-21 1996-11-05 Nikon Corp Distance measuring equipment
WO2006132060A1 (en) * 2005-06-06 2006-12-14 Kabushiki Kaisha Topcon Distance measuring device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5234999U (en) * 1975-09-04 1977-03-11
JPS5270867A (en) * 1975-11-28 1977-06-13 Mitetsuku Moderune Ind Tech Gm Photoelectric measuring method of dot restricted in distance under influence of enviroment and apparatus for executing same
JPS55144567A (en) * 1979-04-27 1980-11-11 Tokyo Optical Co Ltd Optical fiber device for light wave range finder
JPS5855471A (en) * 1981-09-07 1983-04-01 バイエル・アクチエンゲゼルシヤフト Substituted 6-alkoxy-tertiary-butyl-1,2,4- triazin-5-ones, manufacture and use as herbicide
JPS60133381A (en) * 1983-12-22 1985-07-16 Asahi Optical Co Ltd Light wave distance measuring apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5234999U (en) * 1975-09-04 1977-03-11
JPS5270867A (en) * 1975-11-28 1977-06-13 Mitetsuku Moderune Ind Tech Gm Photoelectric measuring method of dot restricted in distance under influence of enviroment and apparatus for executing same
JPS55144567A (en) * 1979-04-27 1980-11-11 Tokyo Optical Co Ltd Optical fiber device for light wave range finder
JPS5855471A (en) * 1981-09-07 1983-04-01 バイエル・アクチエンゲゼルシヤフト Substituted 6-alkoxy-tertiary-butyl-1,2,4- triazin-5-ones, manufacture and use as herbicide
JPS60133381A (en) * 1983-12-22 1985-07-16 Asahi Optical Co Ltd Light wave distance measuring apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01304380A (en) * 1988-06-02 1989-12-07 Sokkisha Co Ltd Range finder using optical wave
JPH0221282A (en) * 1988-07-11 1990-01-24 Sokkisha Co Ltd Light wave distance measuring apparatus
JPH02118284U (en) * 1989-03-07 1990-09-21
JPH05312951A (en) * 1990-12-19 1993-11-26 Asahi Seimitsu Kk Ranging optical system
JPH08292258A (en) * 1995-04-21 1996-11-05 Nikon Corp Distance measuring equipment
WO2006132060A1 (en) * 2005-06-06 2006-12-14 Kabushiki Kaisha Topcon Distance measuring device
JP2006337302A (en) * 2005-06-06 2006-12-14 Topcon Corp Distance-measuring device
US7474388B2 (en) 2005-06-06 2009-01-06 Kabushiki Kaisha Topcon Distance measuring device

Also Published As

Publication number Publication date
JPH0378948B2 (en) 1991-12-17

Similar Documents

Publication Publication Date Title
US5760905A (en) Distance measuring apparatus
JP3151595B2 (en) Coaxial lightwave distance meter
US6384944B1 (en) Integral transmitter-receiver optical communication apparatus
KR100264761B1 (en) Optical scanning device
JP2000234930A (en) Reflective prism device
JP2017072466A (en) Light wave distance measuring device
JPS60149985A (en) Optical distance measuring apparatus
JP3681198B2 (en) Laser surveyor
JP2000205858A (en) Laser range finder device
JP2002196270A (en) Laser lithography system
US4533226A (en) Still or motion picture camera
JPH07333544A (en) Optical deflector
JP2000275043A5 (en)
JPS60133381A (en) Light wave distance measuring apparatus
JP2939413B2 (en) Target reflective object detector
JP2001159681A (en) Light wave distance member
CN219302659U (en) Transmitting module and laser radar
JPH027035B2 (en)
JPH03274016A (en) Scanning optical device
JPS6298320A (en) Phased array semiconductor laser optical system
JPS6337827A (en) Optical pickup device
JP2721386B2 (en) Scanning optical device
JP2003185836A (en) Polarizing beam splitter and optical isolator optical system
RU2346393C1 (en) Terminal for clear optical communication
JPS5921514B2 (en) Optical system of light wave distance meter