JPH027035B2 - - Google Patents

Info

Publication number
JPH027035B2
JPH027035B2 JP6806684A JP6806684A JPH027035B2 JP H027035 B2 JPH027035 B2 JP H027035B2 JP 6806684 A JP6806684 A JP 6806684A JP 6806684 A JP6806684 A JP 6806684A JP H027035 B2 JPH027035 B2 JP H027035B2
Authority
JP
Japan
Prior art keywords
light
lens
optical system
optical axis
reflecting surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6806684A
Other languages
Japanese (ja)
Other versions
JPS60211382A (en
Inventor
Yoshiisa Narutaki
Tadashi Iizuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OPUTETSUKU KK
Original Assignee
OPUTETSUKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OPUTETSUKU KK filed Critical OPUTETSUKU KK
Priority to JP6806684A priority Critical patent/JPS60211382A/en
Publication of JPS60211382A publication Critical patent/JPS60211382A/en
Publication of JPH027035B2 publication Critical patent/JPH027035B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating

Description

【発明の詳細な説明】 産業上の利用分野 本発明は送出光と反射光とを用いて光学的に距
離を測定する光波距離計に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a light wave distance meter that optically measures distance using transmitted light and reflected light.

背景技術とその問題点 一般にこの種の光波距離計は、小型化のために
送光光学系と受光光学系とを同軸配置したものが
多い。送光量よりも反射光量が大巾に少ないの
で、大口径受光レンズ(対物レンズ)を必要と
し、従つて、送光光学系は対物レンズ鏡筒内に同
軸配置されるのが常である。
BACKGROUND TECHNOLOGY AND PROBLEMS Generally, this type of optical distance meter has a light transmitting optical system and a light receiving optical system arranged coaxially in order to reduce the size. Since the amount of reflected light is much smaller than the amount of transmitted light, a large-diameter light receiving lens (objective lens) is required, and therefore the light transmitting optical system is usually arranged coaxially within the objective lens barrel.

ところが光波距離計として、より長い測距性能
や測点に反射器を置かない直接測距性能力が要求
される場合、送光系の光源出力を大きくし、また
受光素子の感度を大にする必要が生ずる。
However, when a light wave distance meter requires longer distance measurement performance or direct distance measurement capability without placing a reflector at the measurement point, the light source output of the light transmitting system and the sensitivity of the light receiving element must be increased. A need arises.

このような場合、受光光源の出力を強化する
と、対物レンズ内側面や鏡筒内面などを経てわず
かな機械内反射光が受光素子に迷光として受光さ
れ、測定値に大きな誤差が生ずる。また受光素子
の感度を上げると、受光素子が発光源からの電気
的誘導を受け易くなり、測定誤差の原因となる。
In such a case, if the output of the light-receiving light source is strengthened, a small amount of internally reflected light in the machine will be received by the light-receiving element as stray light after passing through the inner surface of the objective lens, the inner surface of the lens barrel, etc., and a large error will occur in the measured value. Furthermore, when the sensitivity of the light receiving element is increased, the light receiving element becomes more susceptible to electrical induction from the light emitting source, causing measurement errors.

更に、光波距離計の測距性能を増強するには、
上述の誤差要因に対処する外に校正光学系による
校正(キヤリブレーシヨン)をより正確にしなけ
ればならない。校正光学系は、測定点からの反射
を介在させずに発光源の光を鏡筒内において受光
素子に直接導入する光学系であつて、この校正光
により、装置内の光路長及び電気回路の位相変化
に基く測距誤差を除去する修正演算を行うことが
できる。
Furthermore, in order to enhance the ranging performance of the light wave distance meter,
In addition to dealing with the above-mentioned error factors, the calibration by the calibration optical system must be made more accurate. The calibration optical system is an optical system that directly introduces the light from the light emitting source into the light receiving element within the lens barrel without intervening reflection from the measurement point, and uses this calibration light to determine the optical path length and electrical circuit inside the device. Correction calculations can be performed to remove distance measurement errors based on phase changes.

校正光学系は、測定用光学系と物理条件が近似
しているのが望ましいが、現実には、鏡筒内にお
いて発光源の送出光の一部をプリズムやミラー等
の反射器又はオプテイカルフアイバー等を使つて
受光素子に導入するようにしているので、正確な
校正が期待出来ない。
It is desirable for the calibration optical system to have similar physical conditions to those of the measurement optical system, but in reality, a portion of the light emitted from the light source is reflected within the lens barrel using a reflector such as a prism or mirror, or an optical fiber. etc., to introduce the light into the light receiving element, so accurate calibration cannot be expected.

発明の目的 本発明は上述の問題にかんがみ、送光光学系と
受光光学系との光学的及び電気的分離を確実に
し、あわせて校正光学系の物理条件を測定光学系
に近づけることにより、より高性能で測距誤差が
少ない光波距離計を得ることを目的とする。
Purpose of the Invention In view of the above-mentioned problems, the present invention ensures optical and electrical separation between the light transmitting optical system and the light receiving optical system, and also brings the physical conditions of the calibration optical system closer to those of the measuring optical system. The objective is to obtain a light wave distance meter with high performance and low distance measurement errors.

実施例 以下本発明の構成を実施例に基いて説明する。Example The structure of the present invention will be explained below based on examples.

第1図は本発明を適用した光波距離計の縦断面
図である。
FIG. 1 is a longitudinal sectional view of a light wave distance meter to which the present invention is applied.

第1図において、外筒1(本体鏡筒)内には大
口径の受光レンズ2が取付けられ、その後方光軸
上の焦点には受光素子3及び検出回路4が設けら
れている。受光レンズ2の前方における外筒1の
開口端には平行ガラス板5が嵌め込まれている。
この平行ガラス板5の内側面における光軸中心に
は、光軸に対して45度を成す斜面8を有する直角
プリズム6が貼付けられている。そして外筒1の
外側に設けられた送光部7からの送出光9が平行
ガラス板5と平行に直角プリズム6の斜面8に入
射され、全反射又は鏡面反射によつて直角に折り
曲げられて、平行ガラス板5を通して測定点に向
かつて導出される。
In FIG. 1, a large-diameter light-receiving lens 2 is mounted inside an outer tube 1 (main barrel), and a light-receiving element 3 and a detection circuit 4 are provided at a focal point on the rear optical axis. A parallel glass plate 5 is fitted into the open end of the outer tube 1 in front of the light receiving lens 2.
At the center of the optical axis on the inner surface of the parallel glass plate 5, a right angle prism 6 having a slope 8 forming an angle of 45 degrees with respect to the optical axis is attached. The light 9 emitted from the light transmitting section 7 provided on the outside of the outer cylinder 1 is incident on the slope 8 of the right angle prism 6 in parallel with the parallel glass plate 5, and is bent at a right angle by total reflection or specular reflection. , are guided toward the measuring point through the parallel glass plate 5.

送光部7は外筒1の側部に取付けられたハウジ
ング10内に収容されていて、送出光9の発光源
である発光素子11、その駆動回路12及びコリ
メータレンズ13を備えている。発光素子11か
らの光はコリメータレンズ13で平行光束に直さ
れ、外筒1に形成された孔14を介して前記の直
角プリズム6の斜面8に入射される。
The light transmitting section 7 is housed in a housing 10 attached to the side of the outer cylinder 1, and includes a light emitting element 11 that is a light source of the transmitted light 9, a driving circuit 12 thereof, and a collimator lens 13. The light from the light emitting element 11 is converted into a parallel beam by a collimator lens 13, and is incident on the slope 8 of the right angle prism 6 through a hole 14 formed in the outer cylinder 1.

平行ガラス板5を通して測定点に向かつて導出
された送出光8は、測定点上の反射物に当たつて
反射される。反射光15は、平行ガラス板5を通
つて受光レンズ2に入射され、受光素子3に集光
される。受光素子3の光電変換出力は検出回路4
に入力され、位相検出によつて測定点までの距離
が算出される。
The transmitted light 8 guided toward the measuring point through the parallel glass plate 5 hits a reflective object on the measuring point and is reflected. The reflected light 15 enters the light receiving lens 2 through the parallel glass plate 5 and is focused on the light receiving element 3. The photoelectric conversion output of the light receiving element 3 is sent to the detection circuit 4.
The distance to the measurement point is calculated by phase detection.

なお送光光路には絞り17が介在され、絞り調
整モータ18によつて駆動ギヤ19を介して絞り
17が回動されることにより、送出光の光量調整
が行われる。
Note that a diaphragm 17 is interposed in the light transmission optical path, and the diaphragm 17 is rotated by an diaphragm adjustment motor 18 via a drive gear 19 to adjust the amount of light to be transmitted.

以上の構成によれば、送光光学系と受光光学系
とが直交し、また受光レンズの前方に送光光学系
が位置するので、相互の光学的干渉を著しく減小
させることができる。つまり従来の受光レンズ2
の後方に送光光学系を配置した構成のように受光
レンズ2の内側面や外筒1の内側面からの反射光
が迷光(漏れ光)として受光素子3に入射するこ
とが無くなり、発光素子11の出力を増強する
か、或いは受光素子3の感度を上げることによ
り、測距限界を延長し、又分解能を高めることが
できる。
According to the above configuration, since the light transmitting optical system and the light receiving optical system are orthogonal to each other, and the light transmitting optical system is located in front of the light receiving lens, mutual optical interference can be significantly reduced. In other words, the conventional light receiving lens 2
As with the configuration in which the light transmitting optical system is placed behind the light emitting element, reflected light from the inner surface of the light receiving lens 2 and the inner surface of the outer tube 1 does not enter the light receiving element 3 as stray light (leak light). By increasing the output of the light receiving element 11 or increasing the sensitivity of the light receiving element 3, the distance measurement limit can be extended and the resolution can be improved.

また受光部と送光部7とは夫々外筒1及びハウ
ジング10によつて電気的にも分離し得る。この
ため駆動回路12内のキヤリア発振器などからの
放射電界を遮へいすることができ、従つて受光素
子3及び検出回路4への電気的誘導を排除して、
より高出力の受光又はより高感度の受光が可能と
なる。
Further, the light receiving section and the light transmitting section 7 can be electrically separated by the outer tube 1 and the housing 10, respectively. Therefore, it is possible to shield the radiated electric field from the carrier oscillator in the drive circuit 12, and therefore eliminate electrical induction to the light receiving element 3 and the detection circuit 4.
It becomes possible to receive light with higher output or with higher sensitivity.

また送光部7を受光系外筒1外に配置している
ので、受光レンズ2の有効面積が送光部7の駆動
回路12等によつて妨害されて減少することが無
く、従つて従来と同じ光量の送出光を用いて受光
感度をより高めることが可能である。
In addition, since the light transmitting section 7 is arranged outside the light receiving system outer cylinder 1, the effective area of the light receiving lens 2 is not reduced due to obstruction by the drive circuit 12 of the light transmitting section 7, etc. It is possible to further increase the light-receiving sensitivity by using the same amount of transmitted light.

しかも第1図のように送出光8の光束径を受光
レンズ径に対して十分に小さく絞り込むことが可
能である。これは測定点に反射プリズムを置かな
いような所謂ダイレクト測距の場合に有効であ
る。即ち、測定点に反射プリズムを置く場合に
は、反射光は送出光とほぼ同じ径の平行光束であ
るが、ダイレクト測距の場合には、第2図に示す
ように、被測定物20に当たつた平行送出光9
は、反射後に発散(乱反射)して反射光15とし
て受光レンズ2に入射する。従つて送出光8の光
束径を小さくして、被測定物20に当てる光エネ
ルギーの分散をより少なくすると共に、有効面積
の大きい受光レンズ2によつて発散した反射光1
5を効率良く集めることにより、高分解能のダイ
レクト測距が可能となる。
Moreover, as shown in FIG. 1, it is possible to narrow down the diameter of the beam of the transmitted light 8 to be sufficiently smaller than the diameter of the light-receiving lens. This is effective in the case of so-called direct distance measurement in which no reflecting prism is placed at the measurement point. In other words, when a reflecting prism is placed at the measurement point, the reflected light is a parallel beam with approximately the same diameter as the transmitted light, but in the case of direct distance measurement, as shown in FIG. Parallel transmitted light 9
After being reflected, the light diverges (diffusely reflects) and enters the light receiving lens 2 as reflected light 15. Therefore, by reducing the beam diameter of the transmitted light 8, the dispersion of the light energy applied to the object to be measured 20 is further reduced, and the reflected light 1 diverged by the light receiving lens 2 having a large effective area is reduced.
5 can be efficiently collected, high-resolution direct distance measurement becomes possible.

反射光15が平行光束でないようなダイレクト
測距を行う場合、受光レンズ2と受光素子3との
間に介在させた補正レンズ21を調整することに
より、受光素子3の入射光量を最大にすることが
でき、よりS/Nの高い測距情報を得ることがで
きる。これは特に数m〜十数mの至近距離を測定
する場合に有効であつて、反射光15を受光レン
ズ2で収束させ、更に補正レンズ21の光軸方向
位置を調整することにより、受光素子3の光電変
換面において合焦させることができる。補正レン
ズ21は外筒1の外から位置調整可能になつてい
て、例えば受光レベルの表示器を見ながら調整操
作することにより、或いは予め機械的に距離目盛
を刻んだ位置に合わせることにより、合焦状態を
得ることができる。
When performing direct distance measurement where the reflected light 15 is not a parallel beam, the amount of light incident on the light receiving element 3 can be maximized by adjusting the correction lens 21 interposed between the light receiving lens 2 and the light receiving element 3. It is possible to obtain distance measurement information with a higher S/N ratio. This is particularly effective when measuring close distances of several meters to more than ten meters, and by converging the reflected light 15 with the light receiving lens 2 and further adjusting the position of the correction lens 21 in the optical axis direction, the light receiving element It is possible to focus on the photoelectric conversion surface of No. 3. The position of the correction lens 21 can be adjusted from the outside of the outer cylinder 1, and the adjustment can be made by, for example, adjusting while looking at the light receiving level display, or by aligning the position with a mechanical distance scale carved in advance. You can get a focused state.

補正レンズ21は、視準望遠鏡の合焦調整部に
機械的に連動関係になつているのが望ましい。視
準望遠鏡は外筒1に沿つて外側に取付けられた鏡
筒23内に収容されている。この望遠鏡に外光を
導入するために、送受光系の平行ガラス板5の内
側面中心に貼付けられた直角プリズム6の斜面8
には、更にもう一つの直角プリズム24が貼付け
られている。この直角プリズム24を貼付けた場
合には、直角プリズム6の斜面8における全反射
性能が失われるので、この場合には、プリズム6
及び24の接合面である一方側の斜面8にコーテ
イングを施して斜面8を半透鏡として使用してい
る。コーテイング材としては、外部からの可視光
は通過するが、発光素子11(発光ダイオードや
半導体レーザなど)から放出される特定の波長の
光に対しては斜面8において95%以上の鏡面反射
が生ずるような材料が選ばれている。
Preferably, the correction lens 21 is mechanically interlocked with the focus adjustment section of the collimating telescope. The collimating telescope is housed in a lens barrel 23 attached to the outside along the outer tube 1. In order to introduce outside light into this telescope, a slope 8 of a right-angle prism 6 is attached to the center of the inner surface of the parallel glass plate 5 of the light transmitting and receiving system.
Another rectangular prism 24 is attached to the. If this right-angle prism 24 is attached, the total reflection performance on the slope 8 of the right-angle prism 6 will be lost, so in this case, the prism 6
The inclined surface 8 on one side, which is the joint surface of the parts 24 and 24, is coated and used as a semi-transparent mirror. As a coating material, visible light from the outside passes through, but specular reflection of 95% or more occurs on the slope 8 for light of a specific wavelength emitted from the light emitting element 11 (light emitting diode, semiconductor laser, etc.). Materials such as:

従つて測定点からの外光25は、平行ガラス板
5、プリズム6を通り、その斜面8のコーテイン
グ膜を透過し、更に直角プリズム24の反対側の
斜面26にて全反射され、外筒1に形成された孔
27を通して望遠鏡筒23の前端部に配設された
直角プリズム28に入射される。この直角プリズ
ム28で更に90度折り曲げられた外光は、望遠鏡
の対物レンズ29、正立レンズ30,31を通
り、接眼レンズ系32に導びかれる。
Therefore, the external light 25 from the measurement point passes through the parallel glass plate 5 and the prism 6, passes through the coating film on the slope 8, is totally reflected at the slope 26 on the opposite side of the right angle prism 24, and is reflected by the outer cylinder 1. The light enters a right-angle prism 28 disposed at the front end of the telescope barrel 23 through a hole 27 formed in the telescope tube 23 . The outside light that is further bent by 90 degrees by this right-angle prism 28 passes through an objective lens 29 and erecting lenses 30 and 31 of the telescope, and is guided to an eyepiece system 32.

接眼レンズ系32の一部のレンズ33は通常の
望遠鏡のように光軸方向に位置調整可能であり、
その調整により合焦状態を得て、光波距離計の光
軸を被測定物の測定中心点に正しく合わせること
ができる。
Some lenses 33 of the eyepiece lens system 32 can be adjusted in position in the optical axis direction like a normal telescope,
Through this adjustment, a focused state can be obtained and the optical axis of the light wave distance meter can be correctly aligned with the measurement center point of the object to be measured.

既述の如くにこの接眼レンズ系32のレンズ3
3の調整操作機構と受光系の補正レンズ21の調
整機構とを第1図の点線34で示すように機械的
に連動させることにより、非常に使い勝手のよい
距離計を得ることができる。即ち、視準望遠鏡の
接眼レンズ調整により被測定物に正しく視準させ
れば、受光光学系補正レンズ21も自動的にほぼ
合焦位置に移動され、受光素子3において最大感
度の受光を行うことができる。
As mentioned above, the lens 3 of this eyepiece system 32
By mechanically interlocking the adjustment mechanism 3 and the adjustment mechanism of the correction lens 21 of the light receiving system as shown by the dotted line 34 in FIG. 1, it is possible to obtain a rangefinder that is extremely easy to use. That is, if the object to be measured is correctly sighted by adjusting the eyepiece lens of the collimating telescope, the light receiving optical system correction lens 21 is also automatically moved to a substantially in-focus position, and the light receiving element 3 receives light with maximum sensitivity. Can be done.

第1図の実施例に示す視準光学系によれば、視
準光学系の光軸と測定光学系の光軸とを一致させ
ることができるので、正確な視準が可能である。
また受光レンズ2の前方に視準光学系のためのプ
リズム24が置かれているから、受光光学系を妨
害することが少ない。つまり受光レンズ2の後方
に視準光学系のためのプリズムを置けば、入射外
光が受光レンズ2で収束された分だけ受光素子3
への妨害度は増えることになる。また視準光学系
に受光レンズ2(対物レンズ)が介在されないか
ら、視準像が歪むことが少ない。
According to the collimating optical system shown in the embodiment of FIG. 1, the optical axis of the collimating optical system and the optical axis of the measuring optical system can be made to coincide, so that accurate collimation is possible.
Furthermore, since the prism 24 for the collimating optical system is placed in front of the light receiving lens 2, there is little interference with the light receiving optical system. In other words, if a prism for the collimation optical system is placed behind the light receiving lens 2, the amount of incident external light converged by the light receiving lens 2 will be reflected in the light receiving element 3.
The degree of interference will increase. Furthermore, since the light receiving lens 2 (objective lens) is not interposed in the collimation optical system, the collimation image is less likely to be distorted.

更に、第1図の実施例では、上述の視準光学系
の直角プリズム24を利用して校正光路を構成し
ている。校正光学系は、測定点からの反射を介在
させずに発光源の光を鏡筒内において受光素子に
直接導入する光学系であつて、この校正光によ
り、装置内の光路長及び電気回路の位相変化に基
く測定誤差を除去する修正演算を行うことができ
る。
Furthermore, in the embodiment shown in FIG. 1, the calibration optical path is constructed using the rectangular prism 24 of the above-mentioned collimating optical system. The calibration optical system is an optical system that directly introduces the light from the light emitting source into the light receiving element within the lens barrel without intervening reflection from the measurement point, and uses this calibration light to determine the optical path length and electrical circuit inside the device. Correct calculations can be performed to remove measurement errors based on phase changes.

校正光路はハウジング10内において送光光路
に2回反射形の菱形プリズム36が介在されるこ
とによつて構成される。この菱形プリズム36は
回転シヤツター板37上に取付けられていて、測
距時には送出光9が回転シヤツター板37の孔を
透過し、また校正時にはシヤツターモータ38に
よつて回転シヤツター板37が回転されて、菱形
プリズム36が送光光路中に介在されるようにな
つている。
The calibration optical path is constructed by interposing a twice-reflecting rhombic prism 36 in the light transmission optical path within the housing 10 . This rhombic prism 36 is mounted on a rotating shutter plate 37, and the emitted light 9 passes through a hole in the rotating shutter plate 37 during distance measurement, and the rotating shutter plate 37 is rotated by a shutter motor 38 during calibration. Thus, a rhombic prism 36 is interposed in the light transmission optical path.

校正時には、送光素子11からの光がコリメー
タレンズ8を経て菱形プリズム36に入射され、
2回反射によつて送光光軸に対して光路が平行移
動される。菱形プリズム36の出射光は、外筒1
に送光系の孔14に隣接して形成された孔39を
通して視準系の直角プリズム24の斜面26に入
射され、ここで90度折り曲げられてから受光レン
ズ2の光軸中心部を通して受光素子3に導びかれ
る。これにより装置内において発光素子11から
受光素子3に至る直接の校正光路40(点線)が
形成され、必要な校正演算を行うことができる。
During calibration, the light from the light transmitting element 11 is incident on the rhombic prism 36 via the collimator lens 8,
By the two reflections, the optical path is moved parallel to the light transmission optical axis. The light emitted from the rhombic prism 36 is
The light enters the slope 26 of the rectangular prism 24 of the collimation system through a hole 39 formed adjacent to the hole 14 of the light transmitting system, is bent 90 degrees here, and then passes through the center of the optical axis of the light receiving lens 2 to the light receiving element. I am guided by 3. As a result, a direct calibration optical path 40 (dotted line) from the light emitting element 11 to the light receiving element 3 is formed within the apparatus, and necessary calibration calculations can be performed.

なお視準系の直角プリズム24の斜面26を反
射面として利用するために、斜面26にはコーテ
イングが施されている。視準光路では直角プリズ
ム24の斜面26を全反射面として利用している
から、斜面26のコーテイングが視準系に影響を
与えることはない。直角プリズム24の両斜面
8,26のコーテイング材は同種のものであつて
よい。
Incidentally, in order to utilize the slope 26 of the rectangular prism 24 of the collimation system as a reflecting surface, the slope 26 is coated. Since the collimating optical path uses the slope 26 of the right-angle prism 24 as a total reflection surface, the coating on the slope 26 does not affect the collimation system. The coating material on both slopes 8, 26 of the right-angled prism 24 may be of the same type.

この校正光路では、直角プリズム24を視準光
路と兼用しているから、構成が簡単であり、また
製造組立時の光路調整作業も容易である。また送
光系のコリメータレンズ13及び受光系の受光レ
ンズ2が共に校正光路に含まれるような構成であ
るから、校正光路が測定光学系の物理条件により
近くなり、従つて校正を正確にして測距精度を向
上させることができる。この結果、第1図の構成
において高出力発光素子11及び高感度受光素子
3を用いて測長限界を延ばしても、高い測距精度
を得ることができる。
In this calibration optical path, the rectangular prism 24 is also used as a collimating optical path, so the configuration is simple and the optical path adjustment work during manufacturing and assembly is also easy. In addition, since the collimator lens 13 of the light transmitting system and the light receiving lens 2 of the light receiving system are both included in the calibration optical path, the calibration optical path is closer to the physical conditions of the measurement optical system, which allows accurate calibration and measurement. Distance accuracy can be improved. As a result, even if the length measurement limit is extended using the high output light emitting element 11 and the high sensitivity light receiving element 3 in the configuration shown in FIG. 1, high distance measurement accuracy can be obtained.

発明の効果 本発明は上述の如く、受光レンズの前方に平行
ガラス板を配置し、その内側面に光軸に対して45
度を成す外向き反射面及び内向き反射面を設け
て、この外向き反射面に向かつて測定光を導出し
て測定光を外に送出すると共に、光源の光が上記
内向き反射面に入射するように光路を変更して測
定光が受光レンズを介して直接に受光素子に導入
されるようにした校正光学系を設けたものであ
る。
Effects of the Invention As described above, the present invention includes a parallel glass plate disposed in front of the light receiving lens, and an inner surface of the parallel glass plate arranged at an angle of 45° with respect to the optical axis.
An outward reflecting surface and an inward reflecting surface are provided, and the measuring light is directed to the outward reflecting surface and sent out, and the light from the light source is incident on the inward reflecting surface. A calibration optical system is provided in which the optical path is changed so that the measurement light is directly introduced into the light-receiving element via the light-receiving lens.

この構成により、送光光学系と受光光学系とを
光学的及び電気的にほぼ完全に分離できるから、
迷光や電気的誘導によつて測長誤差が増えること
がなく、従つて高出力発光素子や高感度受光素子
を用いて、測長距離がより長くしかも測長精度が
より高い光波距離計が得られる。また受光光学系
の像空間が送光光学系によつて妨害される度合い
も少ないから、受光レンズの径を有効に使つてよ
り高感度の測距を行うことができる。
With this configuration, the light transmitting optical system and the light receiving optical system can be almost completely separated optically and electrically.
By using a high-output light emitting element and a high-sensitivity light-receiving element, a light wave distance meter with a longer measuring distance and higher measuring accuracy can be obtained without increasing length measurement errors due to stray light or electrical induction. It will be done. Furthermore, since the image space of the light-receiving optical system is less obstructed by the light-transmitting optical system, the diameter of the light-receiving lens can be effectively used to perform distance measurement with higher sensitivity.

また校正光路中に受光レンズが介在されるの
で、校正光学系の物理条件が測定光学系に近づ
き、より精度を上げることができる。
Furthermore, since the light receiving lens is interposed in the calibration optical path, the physical conditions of the calibration optical system are closer to those of the measurement optical system, and accuracy can be further improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す光波距離計の
縦断面図、第2図は測定点における光路図であ
る。 なお図面に用いられた符号において、1……外
筒、2……受光レンズ、3……受光素子、4……
検出回路、5……平行ガラス板、6……直角プリ
ズム、7……送光部、8……斜面、9……送出
光、10……ハウジング、11……発光素子、1
3……コリメータレンズ、14……孔、15……
反射光、20……被測定物、21……補正レン
ズ、24……直角プリズム、25……外光、26
……斜面、29……対物レンズ、36……菱形プ
リズム、37……回転シヤツター板、40……校
正光路である。
FIG. 1 is a longitudinal sectional view of a light wave distance meter showing an embodiment of the present invention, and FIG. 2 is a diagram of the optical path at a measurement point. In addition, in the symbols used in the drawings, 1... outer cylinder, 2... light receiving lens, 3... light receiving element, 4...
Detection circuit, 5...Parallel glass plate, 6...Right angle prism, 7...Light transmitting section, 8...Slope, 9...Sending light, 10...Housing, 11...Light emitting element, 1
3... Collimator lens, 14... Hole, 15...
Reflected light, 20...Object to be measured, 21...Correction lens, 24...Right angle prism, 25...External light, 26
... slope, 29 ... objective lens, 36 ... rhombic prism, 37 ... rotating shutter plate, 40 ... calibration optical path.

Claims (1)

【特許請求の範囲】[Claims] 1 受光レンズ及びその光軸焦点位置に置かれた
受光部を鏡筒内に収容して成る受光光学系と、上
記受光レンズの光軸前方において上記鏡筒の開口
端部に嵌め込まれた平行ガラス板と、この平行ガ
ラス板の内側の光軸中心において光軸に対して略
45度を成すように光軸前方に向けて付設された外
向き反射面と、上記外向き反射面の背後で光軸に
対して略45度を成すように光軸後方に向けて付設
された内向き反射面と、上記鏡筒外から上記外向
き反射面に向けて送出光を導出して上記平行ガラ
ス板を介して上記送出光を対象物に送出するよう
にした送光光学系と、挿脱自在の光路変更手段を
上記送光光学系に介在させることによつて送出光
を上記内向き反射面に向けて導出させて上記受光
レンズを介して上記受光素子に収束させるように
した校正光学系とを具備することを特徴とする校
正光路を備える光波距離計。
1. A light-receiving optical system comprising a light-receiving lens and a light-receiving section placed at its optical axis focal position housed in a lens barrel, and a parallel glass fitted into the open end of the lens barrel in front of the optical axis of the light-receiving lens. approximately relative to the optical axis at the center of the optical axis inside this parallel glass plate.
An outward reflecting surface is attached toward the front of the optical axis so as to form an angle of 45 degrees, and an outward reflecting surface is attached toward the rear of the optical axis so as to form an approximately 45 degree angle to the optical axis behind the outward reflecting surface. an inward reflecting surface; a light sending optical system configured to direct outgoing light from outside the lens barrel toward the outward reflecting surface and send the outgoing light to a target object via the parallel glass plate; Calibration in which a removable optical path changing means is interposed in the light transmitting optical system so that the transmitted light is guided toward the inward reflecting surface and converged on the light receiving element via the light receiving lens. A light wave distance meter having a calibration optical path, comprising: an optical system.
JP6806684A 1984-04-05 1984-04-05 Light wave range finder equipped with calibration optical path Granted JPS60211382A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6806684A JPS60211382A (en) 1984-04-05 1984-04-05 Light wave range finder equipped with calibration optical path

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6806684A JPS60211382A (en) 1984-04-05 1984-04-05 Light wave range finder equipped with calibration optical path

Publications (2)

Publication Number Publication Date
JPS60211382A JPS60211382A (en) 1985-10-23
JPH027035B2 true JPH027035B2 (en) 1990-02-15

Family

ID=13363027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6806684A Granted JPS60211382A (en) 1984-04-05 1984-04-05 Light wave range finder equipped with calibration optical path

Country Status (1)

Country Link
JP (1) JPS60211382A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5208642A (en) * 1992-04-29 1993-05-04 Optec Co. Ltd. Electro-optical distance meter
JP6198400B2 (en) * 2013-01-31 2017-09-20 株式会社トプコン Light wave distance meter
JP6672715B2 (en) * 2015-11-05 2020-03-25 船井電機株式会社 measuring device

Also Published As

Publication number Publication date
JPS60211382A (en) 1985-10-23

Similar Documents

Publication Publication Date Title
US4534637A (en) Camera with active optical range finder
US4165936A (en) Coaxial transmitting and receiving optics for an electro-optic range finder
US10422861B2 (en) Electro-optical distance measuring instrument
EP3190428B1 (en) Electronic distance measuring instrument
JP3151595B2 (en) Coaxial lightwave distance meter
US3658426A (en) Alignment telescope
JP2002181933A (en) Laser distance measuring apparatus for wide-range measurement equipped with special photodetector
KR100763974B1 (en) Method and apparatus for aligning optical axis for wavefront sensor for mid-infrared band
US6580495B2 (en) Surveying instrument having a phase-difference detection type focus detecting device and a beam-splitting optical system
CN113376857B (en) High-precision optical path debugging device and method
US7826039B2 (en) Target acquisition device
US20010050764A1 (en) Surveying instrument having an optical distance meter
CN107238840B (en) Pulse laser high-speed distance measuring optical system
JPH027035B2 (en)
US5276497A (en) Measuring apparatus of mirror surface
JPH049478B2 (en)
JPH027034B2 (en)
US4533226A (en) Still or motion picture camera
US20010048518A1 (en) Surveying instrument having a sighting telescope and a phase-difference detection type focus detection device therefor
JP2019023650A (en) Light wave ranging device
JPS60149985A (en) Optical distance measuring apparatus
RU2461797C1 (en) Device to measure bend of artillery barrel
CN209858845U (en) Laser ranging telescope
JP3843028B2 (en) Light wave distance meter
JPS5923393B2 (en) light wave distance meter