JPS60133381A - Light wave distance measuring apparatus - Google Patents

Light wave distance measuring apparatus

Info

Publication number
JPS60133381A
JPS60133381A JP58243388A JP24338883A JPS60133381A JP S60133381 A JPS60133381 A JP S60133381A JP 58243388 A JP58243388 A JP 58243388A JP 24338883 A JP24338883 A JP 24338883A JP S60133381 A JPS60133381 A JP S60133381A
Authority
JP
Japan
Prior art keywords
light
radiation
reflected
correction
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58243388A
Other languages
Japanese (ja)
Other versions
JPH0135306B2 (en
Inventor
Koji Tsuda
浩二 津田
Shinichi Suzuki
新一 鈴木
Atsumi Kaneko
敦美 金子
Toshifumi Kanauma
利文 金馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentax Corp
Original Assignee
Asahi Kogaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kogaku Kogyo Co Ltd filed Critical Asahi Kogaku Kogyo Co Ltd
Priority to JP58243388A priority Critical patent/JPS60133381A/en
Publication of JPS60133381A publication Critical patent/JPS60133381A/en
Publication of JPH0135306B2 publication Critical patent/JPH0135306B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PURPOSE:To remove the effect due to uneven phase with respect to the angle of radiation by moving a reflecting member into and out of the optical path between a light emitting section and an object lens to enable the use of light which is almost the same in the range of radiation angle as correcting light. CONSTITUTION:When a measuring light is selected, a radiation light from a light emitting section 1 passes through a through hole 5 of a shutter 2, then, reflected on the reflecting surface 6a of a light beam splitter 6 and radiated as parallel flux passing through an object lens 7. The radiation light is reflected with a corner cube 8 at the measuring point to be distance measuring information via a light receiving section 9. When a correcting light is selected, a radiation light from the light emitting section 1 passes through the through hole 5, a light with the range of angle of radiation almost the same as the measuring light containing the optical axis of the light emitting section 1 is reflected from a reflecting member 4 to form a parallel flux with a condenser lens 10 for the correcting light. Then, it is focused with a condenser lens 11 via reflecting members 12 and 13 and enters the light receiving section 9 to offer correcting information for measuring errors based on a phase deviation between the optical path length and an electronic circuit section in the apparatus.

Description

【発明の詳細な説明】 本発明は光波を用いて距離を測定する光波測距装置の光
学的構造に関するものである。光波測距装置は周知のよ
うに、ある規定の周波数で変調された発光ダイオード等
の発光素子からの光を送光光学系を用いて測点に置かれ
たコーナーキューブ等の反射器に向けて放射し、該反射
器より返された光を受光光学系を用いて受光素子に結像
させ、電気信号に変換し、基準変調光に対する反射変調
光の位相遅れを検出することによって距離を測定する装
置である。この様な光波測距装置の場合、距離の測定誤
差は重要な性能上の問題であり、その誤差に起因するも
のに光学的原因や電気的原因が種々存在する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical structure of a light wave distance measuring device that measures distance using light waves. As is well known, a light wave ranging device uses a light transmitting optical system to direct light from a light emitting element such as a light emitting diode that is modulated at a certain specified frequency to a reflector such as a corner cube placed at a measurement point. The distance is measured by emitting light and focusing the light returned from the reflector on a light receiving element using a light receiving optical system, converting it into an electrical signal, and detecting the phase delay of the reflected modulated light with respect to the reference modulated light. It is a device. In the case of such a light wave distance measuring device, distance measurement error is an important performance problem, and there are various optical and electrical causes of the error.

本発明は前記の光学的原因のうち発光部の位相むらによ
る影響を除去し、測定誤差を小さくする光学的構造に関
するものである。
The present invention relates to an optical structure that eliminates the influence of phase unevenness of a light emitting section among the optical causes and reduces measurement errors.

通常、光波測距装置においては、装置内の光路長及び電
子回路部の位相ずれに基く測定誤差を補正するために、
測定光とは別に補正光を設けているが、この補正光のと
らえ方として発光部の光軸付近の放射光を利用する測定
光とは異なり、光軸より大きくはなれた放射角度範囲の
光を使用する方法が機構上よくとられる。しかしこの場
合放射角度のちがいにより位相むらがあると、測定光と
補正光の位相差が、光路の機械的な設定位置の経時変化
又は発光素子の温度特性により変化することによって、
距離の測定誤差が大きくなるという問題がある。そして
、この位相むらは、光波測距装置からの出射光が大きく
とれる点で非常に有効な高指向性形の発光素子において
は、光軸付近での位相むらは小さく許容できる範囲であ
るが、光軸より大きくはなれた放射角度においては、角
度に対する位相むらが非常に大きい傾向にある。
Normally, in a light wave distance measuring device, in order to correct measurement errors based on the optical path length within the device and the phase shift of the electronic circuit section,
A correction light is provided separately from the measurement light, but unlike the measurement light, which uses radiation near the optical axis of the light emitting part, this correction light is captured by using light in a radiation angle range far away from the optical axis. The method used is mechanically common. However, in this case, if there is phase unevenness due to a difference in the radiation angle, the phase difference between the measurement light and the correction light changes due to changes over time in the mechanical setting position of the optical path or the temperature characteristics of the light emitting element.
There is a problem that the distance measurement error increases. This phase unevenness is small and within an acceptable range near the optical axis in a highly directional light emitting element, which is very effective in that a large amount of light can be emitted from a light wave ranging device. At radiation angles that are far from the optical axis, phase unevenness with respect to angle tends to be very large.

前記放射角度に対する位相むらの影響を減少させるため
の従来の方法としては、発光素子とオプティカルファイ
バーを結合しこのオプティカルファイバーを屈曲させて
光路内に配置する方法、発光素子として放射角度に対す
る位相むらの少ないものを用いる方法などがある。
Conventional methods for reducing the influence of phase unevenness on the radiation angle include a method of coupling a light emitting element and an optical fiber and bending this optical fiber to arrange it in the optical path; There are ways to use less.

しかし、オプティカルファイバーを屈曲させる方法は極
端に曲げてやらないと目的を達成することは困難であり
、その屈曲がオプティカルファイバーの破断につながり
光波測距装置の経時的信頼性を損ない、また、放射角に
対する位相むらの少ない発光素子を用いる方法は、発光
素子として光の放射特性が無指向性に近いものを選択す
る必要があり、このような発光素子は無指向性であるが
ゆえに、実際に使用する狭い放射角度範囲での光出力が
小さく、さらにオプティカルファイバー等と光結合して
使用する場合は、それらとの結合効率が非常に悪く、そ
の結合損失を補うためにより多くの電力を発光素子に供
給して放射光量を増さなければならないという欠点があ
る。
However, it is difficult to achieve the purpose of bending the optical fiber without extreme bending, and the bending can lead to the optical fiber breaking, impairing the reliability of the optical rangefinder over time, and also causing radiation In order to use a light emitting element with little phase unevenness with respect to angles, it is necessary to select a light emitting element whose light radiation characteristics are close to omnidirectional, and since such a light emitting element is omnidirectional, it is difficult to actually The light output in the narrow radiation angle range used is small, and when used optically coupled with optical fibers, etc., the coupling efficiency with them is very poor, and more power is required to compensate for the coupling loss. The disadvantage is that the amount of emitted light must be increased by supplying

本発明の目的は、前記した従来の方法の欠点を解決し、
位相むらによる不都合を除去した光波測距装置を提供す
ることにあり、その特徴は次のようである。
The purpose of the present invention is to solve the drawbacks of the above-mentioned conventional methods,
The object of the present invention is to provide a light wave distance measuring device that eliminates the disadvantages caused by phase unevenness, and its features are as follows.

本発明においては、送光部と対物レンズの間の光路上に
受光部に入射する光を測定光と補正光で切換えるシャッ
ターを設け、さらに補正光に切換えた時のシャッター位
置においてそのシャッターに反射部材を取り付けその反
射光を集光光学系で集光し、送光部の光軸を含む測定光
とほぼ同一の放射角度範囲の光を補正光として用いるこ
とによって、送光部の光軸に対して大きな角度の光を補
正光として用いた場合と異なり、測定誤差に結びつく放
射角度に対する位相むらの影響を受けずに済む。そして
、前記した高指向性形発光素子の使用が可能となる。従
って前述したように、オプティカルファイバーを屈曲さ
せたり、放射角に対する位相むらは少ないが、光波測距
装置としては効率が悪い無指向性形の発光素子を使用し
て大電力を供給しなければならないという不都合は生じ
なくなる。
In the present invention, a shutter is provided on the optical path between the light transmitting part and the objective lens to switch the light incident on the light receiving part into measurement light and correction light, and the light is reflected on the shutter at the shutter position when switching to the correction light. By attaching the member and condensing the reflected light with a condensing optical system, and using as correction light the light with a radiation angle range that is almost the same as the measurement light including the optical axis of the light transmitting unit, the optical axis of the light transmitting unit can be focused. On the other hand, unlike the case where light at a large angle is used as correction light, it is not affected by phase unevenness with respect to the radiation angle that leads to measurement errors. Then, it becomes possible to use the highly directional light emitting element described above. Therefore, as mentioned above, large amounts of power must be supplied by bending the optical fiber or using omnidirectional light-emitting elements, which have little phase variation with respect to the radiation angle but are inefficient as light wave ranging devices. This inconvenience will no longer occur.

以下、図面を参照にして本発明の実施例を詳述する。な
お、放射角度に対する位相むらとは別に、発光素子の発
光面の場所による位相むらが距離測定誤差を増大させる
という問題があり、オプティカルファイバー又は棒状の
透光物質(以後、オプティカルロッドという。)等を使
用することによって発光面の場所による位相むらは混合
均一され、この問題は解決されることがすでに知られて
いる。
Embodiments of the present invention will be described in detail below with reference to the drawings. In addition to the phase unevenness with respect to the radiation angle, there is a problem that the phase unevenness depending on the location of the light emitting surface of the light emitting element increases the distance measurement error. It is already known that by using this method, the phase unevenness caused by the location of the light emitting surface can be mixed evenly, and this problem can be solved.

従って、本発明の実施例においてもこの事を考慮し、送
光部として発光素子とオプティカルファイバー又はオプ
ティカルロッドの組み合わせたものを考える。ここで、
発光面の場所による位相むらがない発光素子では、オプ
ティカルファイバー又はオプティカルロッドが不要であ
ることは明らかであり、送光部として発光素子をそのま
ま配置すればよい。
Therefore, in consideration of this fact in the embodiments of the present invention, a combination of a light emitting element and an optical fiber or an optical rod is considered as a light transmitting section. here,
It is clear that an optical fiber or an optical rod is not necessary for a light emitting element that has no phase unevenness depending on the location of the light emitting surface, and the light emitting element may be placed as it is as a light transmitting section.

第1図は、光波測距装置の光学的構造に関する本発明の
一実施例を示す図であり、lは送光部、2は測定光と補
正光の切換え用のシャッター、3はシャッター2の駆動
装置、4はシャッター2に設けられた反射部材、5は送
光光路透孔、6は光ビーム分割器、6a及び6bは光ビ
ーム分割器6の反射面、7は対物レンズ、8はコーナー
キューブ、9は受光部、10及び11は補正光用装光レ
ンズ、12及び13は補正光用反射部材である。
FIG. 1 is a diagram showing an embodiment of the present invention regarding the optical structure of a light wave distance measuring device, in which l is a light transmitting unit, 2 is a shutter for switching between measurement light and correction light, and 3 is a shutter 2. A driving device, 4 is a reflecting member provided on the shutter 2, 5 is a light transmission optical path through hole, 6 is a light beam splitter, 6a and 6b are reflective surfaces of the light beam splitter 6, 7 is an objective lens, 8 is a corner In the cube, 9 is a light receiving section, 10 and 11 are lenses for correction light, and 12 and 13 are reflection members for correction light.

第2図は、第1図における送光部lの一実施例を示す図
であり、14は発光素子、15はコンデンサーレンズ、
1Gはオプティカルファイバー、16aはオプティカル
ファイバー16の入射端面、1(3bはオプティカルフ
ァイバー16の出射端面である。このオプティカルファ
イバーはオプティカルロッドでもさしつかえない。
FIG. 2 is a diagram showing an embodiment of the light transmitting section l in FIG. 1, in which 14 is a light emitting element, 15 is a condenser lens,
1G is an optical fiber, 16a is an input end face of the optical fiber 16, and 1 (3b is an output end face of the optical fiber 16).This optical fiber may be an optical rod.

第2図において、発光素子14からの変調光は、コンデ
ンサーレンズ15を経由してオプティカルファイバー1
6の入射端面16aに結像する。入射端面16aに入射
した変調光は、オプティカルファイバー16により伝達
され、出射端面16bより放射される。これが送光部1
からの放射光となる。第1図においてシャッター2は、
受光部9に入射する光を測定光と補正光のいずれかに切
換える切換シャッターであり、測定光と補正光の時の両
方にまたがる送光光路透孔5を有し、測定光と補正光に
応じて駆動装置3により回転され、補正光の時のシャッ
ター位置に反射部材4が取り付けてあり、測定光が選択
される時は送光部1からの放射光はそのシャッター位置
に反射部材4がないためにそのままシャッター2を通過
して光ビーム分割器6に到達する。この時1反射部材は
送光は光は入らない。又、補正光が選択される時は、送
光部lからの放射光はシャッター2に設けられたミラー
等の反射部材4により反射され補正光光路に導かれる。
In FIG. 2, the modulated light from the light emitting element 14 is transmitted to the optical fiber 1 via the condenser lens 15.
The image is formed on the incident end surface 16a of No. 6. The modulated light that has entered the input end face 16a is transmitted by the optical fiber 16 and is emitted from the output end face 16b. This is light transmitting section 1
It becomes radiation light from. In FIG. 1, the shutter 2 is
This is a switching shutter that switches the light incident on the light receiving section 9 to either measurement light or correction light. A reflecting member 4 is attached to the shutter position when the correction light is selected, and the reflecting member 4 is attached to the shutter position when the measuring light is selected. Therefore, the light passes through the shutter 2 and reaches the light beam splitter 6. At this time, the first reflecting member transmits light, but no light enters it. Further, when the correction light is selected, the emitted light from the light transmitting section 1 is reflected by a reflection member 4 such as a mirror provided on the shutter 2 and guided to the correction light optical path.

この時、反射部材が送光光路内にセットされて測定光光
路が遮断されるため、測定光は存在しない。つまり、今
、測定光が選択された場合を考えると、送光部1からの
放射光は、シャッター2の送光光路透孔5を通過した後
、光ビーム分割器6の反射面6aにより反射され、対物
レンズ7を通り、平行光束となって外部へ放射される。
At this time, the measuring light is not present because the reflecting member is set in the light transmission optical path and the measuring light optical path is blocked. That is, considering the case where the measurement light is selected now, the emitted light from the light transmitting section 1 passes through the light transmitting optical path through hole 5 of the shutter 2, and then is reflected by the reflecting surface 6a of the light beam splitter 6. The light passes through the objective lens 7, becomes a parallel light beam, and is emitted to the outside.

この放射光は、距順測定点に設置されたコーナーキュー
ブ8により反射され、その反射光は再び対物レンズ7を
通過し、光ビーム分割器6の反射面6bにより反射され
、受光部9に入射し距離測定情報となる。又、補正光が
選択された場合には送光部1からの放射光は、シャッタ
ー2の送光光路透孔5を通過した後1反射部材4により
送光部の光軸を含む測定光とほぼ同一の放射角度範囲の
光が反射され、補正光用集光レンズ10によす平行光束
となり1反射部材12及び13により反射した後、集光
レンズ11により集光されて受光部9に入射し、装置内
の光路長及び電子回路部の位相ずれに基く測定誤差の補
正情報となる。
This emitted light is reflected by a corner cube 8 installed at the distance measurement point, and the reflected light passes through the objective lens 7 again, is reflected by the reflective surface 6b of the light beam splitter 6, and enters the light receiving section 9. This becomes distance measurement information. In addition, when the correction light is selected, the emitted light from the light transmitting section 1 passes through the light transmitting optical path through hole 5 of the shutter 2 and is converted into measurement light including the optical axis of the light transmitting section by the reflecting member 4. Light in almost the same radiation angle range is reflected, becomes a parallel beam of light that enters the correction light condensing lens 10, is reflected by the first reflecting members 12 and 13, is condensed by the condensing lens 11, and enters the light receiving section 9. However, this information serves as correction information for measurement errors based on the optical path length within the device and the phase shift of the electronic circuit section.

本実施例においては、反射部材4をシャッター2に取り
付け、このシャッターを駆動装置3により回転している
が、シャッターを用いずに直接反射部材を測定光と補正
光に応じて光路に出し入れする構造でもなんらさしつか
えない。第3図はその一実施例であり1反射部材4は駆
動装置3の駆動軸17により測定光、補正光に応じて回
転されて、光路に出し入れされる。このように反射部材
4の駆動方法は、測定光と補正光が切換えられればいか
なる方法でもさしつかえない。さらに本実施例では、集
光レンズ10による平行光速を反射部材12及び13で
伝達しているが、この部分にオプティカルファイバーを
使用して、集光レンズ10によりオプティカルファイバ
ーの入射端に反射部材4からの反射光を集光し、オプテ
ィカルフの出射光1m光レンズ11で集光し、受光部9
へ入射する構造でもよい。
In this embodiment, the reflecting member 4 is attached to the shutter 2, and this shutter is rotated by the driving device 3, but the structure is such that the reflecting member is directly moved in and out of the optical path according to the measurement light and correction light without using a shutter. But I can't blame you. FIG. 3 shows one example of this, in which one reflecting member 4 is rotated by a drive shaft 17 of a drive device 3 in accordance with the measurement light and the correction light, and is moved in and out of the optical path. As described above, the reflecting member 4 can be driven by any method as long as the measuring light and the correction light can be switched. Furthermore, in this embodiment, the parallel light velocity produced by the condensing lens 10 is transmitted by the reflecting members 12 and 13, but an optical fiber is used for this portion, and the condensing lens 10 connects the reflecting member 4 to the incident end of the optical fiber. The reflected light from the optical fiber is collected by the 1m optical lens 11, and the light is sent to the light receiving section 9.
It may be a structure in which the light is incident on the

以上説明したように本発明によれば、送光部と対物レン
ズの間の光路内に測定光と補正光に応じて反射部材を出
し入れし、その反射光を集光光学系で集光し、補正光と
ほぼ同一の放射角度範囲の光を使用することによって、
送光部の光軸から大きくはなれた角度の光を利用する場
合と異なり、放射角度に対する位相むらによる影響が除
去でき、放射光量が大きくとれるために光波測距儀への
応用として、非);ぐに有効な高指向性形の発光素子を
使用することが可能となる。従って、放射角度に対する
位相むらが小さい発光素子を選択し、その発光素子に大
電力を供給してその出射効率の悪さを補うことによって
必要な放射光量を確保するという不都合がなくなり、そ
の種の発光素子に比べ、数分の−の供給電力でそれ以上
の放射光量を得ることが可能となる。従って、光波測距
装置の低消費電力化及び電気的誤差の減少をR1る上で
も非常に有効な装置である。
As explained above, according to the present invention, a reflecting member is moved in and out of the optical path between the light transmitting unit and the objective lens according to the measurement light and the correction light, and the reflected light is focused by the focusing optical system, By using light with almost the same emission angle range as the correction light,
Unlike the case of using light at an angle far away from the optical axis of the light transmitter, the influence of phase unevenness on the radiation angle can be removed, and a large amount of radiation can be obtained, so it is not suitable for application to light wave rangefinders. It becomes possible to use a highly directional light emitting element that is immediately effective. Therefore, the inconvenience of securing the necessary amount of emitted light by selecting a light emitting element with small phase unevenness with respect to the radiation angle and supplying a large amount of power to that light emitting element to compensate for its poor emission efficiency is eliminated. It is possible to obtain a greater amount of emitted light with a few minutes of the supplied power compared to a device. Therefore, it is a very effective device for reducing power consumption and reducing electrical errors in a light wave distance measuring device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は光波測距装置の光学的構造に関する一実施例を
示す図であり、第2図は送光部の一実施例を示す図であ
り、第3図は反射部材の駆動部の一実施例を示す図であ
る。 1・・・送光部 2・・・シャッター 3・・・シャッター駆動装置 4・・・反射部材5・・
・送光光路透孔 6・・・光ビーム分割器6a、6b・
・・光ビーム分割器6の反射面7・・対物レンズ 8・
・・コーナーキューブ9・・受光部 IQ、11・・・
補正光用葉先レンズ12.1.3・・・補正光用反射部
材 14・・・発光素子 15・・・コンデンサーレンズ1
6・・・オプティカルファイバー 16a・・・オプティカルファイバー16の入射端面1
6b・・・オプティカルファイバー16の出射端面17
・・・駆動装置3の駆動軸
FIG. 1 is a diagram showing an example of the optical structure of a light wave distance measuring device, FIG. 2 is a diagram showing an example of the light transmitting section, and FIG. 3 is a diagram showing an example of the driving section of the reflecting member. It is a figure showing an example. 1... Light transmitting section 2... Shutter 3... Shutter drive device 4... Reflection member 5...
・Light transmission optical path through hole 6...Light beam splitter 6a, 6b・
・Reflecting surface 7 of the light beam splitter 6 ・Objective lens 8 ・
... Corner cube 9 ... Light receiving section IQ, 11 ...
Tip lens for correction light 12.1.3... Reflection member for correction light 14... Light emitting element 15... Condenser lens 1
6...Optical fiber 16a...Incidence end surface 1 of optical fiber 16
6b... Output end surface 17 of optical fiber 16
... Drive shaft of drive device 3

Claims (1)

【特許請求の範囲】[Claims] 発光部からの放射変調光を送光光学系を用いて反射器に
向けて放射し、該反射器からの反射変調先登受光光学系
を用いて受光部に結仰させ、前記放射変調光と反射変調
光との位相差により距離を測定する光波測距装置におい
て、前記送光部と送光光学系の間の光路上に、測定光と
補正光に応じて出し入れされる反射部材を設け、補正光
光路上に前記補正光を焦光する隻光光学系を配置するこ
とによって、補正光として測定光とほぼ同一の放射角度
範囲の前記放射変調光を使用して、前記放射変調光の放
射角度に対する位相むらによる影響を除去したことを特
徴とする光波測距装置。
The modulated radiation light from the light emitting section is emitted toward a reflector using a light transmitting optical system, and the reflected modulation from the reflector is focused on the light receiving section using a receiving optical system, so that the modulated radiation light and In a light wave distance measuring device that measures distance by a phase difference with reflected modulated light, a reflecting member is provided on the optical path between the light transmitting section and the light transmitting optical system, and is moved in and out according to the measurement light and the correction light, By arranging a single-beam optical system that focuses the correction light on the correction light optical path, the radiation modulated light having approximately the same radiation angle range as the measurement light is used as the correction light, and the radiation of the radiation modulated light is A light wave ranging device characterized in that the influence of phase unevenness with respect to angle is removed.
JP58243388A 1983-12-22 1983-12-22 Light wave distance measuring apparatus Granted JPS60133381A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58243388A JPS60133381A (en) 1983-12-22 1983-12-22 Light wave distance measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58243388A JPS60133381A (en) 1983-12-22 1983-12-22 Light wave distance measuring apparatus

Publications (2)

Publication Number Publication Date
JPS60133381A true JPS60133381A (en) 1985-07-16
JPH0135306B2 JPH0135306B2 (en) 1989-07-25

Family

ID=17103109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58243388A Granted JPS60133381A (en) 1983-12-22 1983-12-22 Light wave distance measuring apparatus

Country Status (1)

Country Link
JP (1) JPS60133381A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60149985A (en) * 1984-01-14 1985-08-07 Asahi Optical Co Ltd Optical distance measuring apparatus
JPH08292258A (en) * 1995-04-21 1996-11-05 Nikon Corp Distance measuring equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2956472A (en) * 1956-10-18 1960-10-18 Askania Werke Ag Electro-optical distance meter
US4165936A (en) * 1976-12-03 1979-08-28 Wild Heerbrugg Aktiengesellschaft Coaxial transmitting and receiving optics for an electro-optic range finder
JPS55144567A (en) * 1979-04-27 1980-11-11 Tokyo Optical Co Ltd Optical fiber device for light wave range finder
JPS5814179U (en) * 1981-07-20 1983-01-28 富士光機株式会社 light wave distance meter
JPS5855471A (en) * 1981-09-07 1983-04-01 バイエル・アクチエンゲゼルシヤフト Substituted 6-alkoxy-tertiary-butyl-1,2,4- triazin-5-ones, manufacture and use as herbicide

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2806514A1 (en) * 1978-02-16 1979-08-30 Merck Patent Gmbh DIET TABLE FOOD AND METHOD FOR THE PRODUCTION THEREOF

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2956472A (en) * 1956-10-18 1960-10-18 Askania Werke Ag Electro-optical distance meter
US4165936A (en) * 1976-12-03 1979-08-28 Wild Heerbrugg Aktiengesellschaft Coaxial transmitting and receiving optics for an electro-optic range finder
JPS55144567A (en) * 1979-04-27 1980-11-11 Tokyo Optical Co Ltd Optical fiber device for light wave range finder
JPS5814179U (en) * 1981-07-20 1983-01-28 富士光機株式会社 light wave distance meter
JPS5855471A (en) * 1981-09-07 1983-04-01 バイエル・アクチエンゲゼルシヤフト Substituted 6-alkoxy-tertiary-butyl-1,2,4- triazin-5-ones, manufacture and use as herbicide

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60149985A (en) * 1984-01-14 1985-08-07 Asahi Optical Co Ltd Optical distance measuring apparatus
JPH0378948B2 (en) * 1984-01-14 1991-12-17 Asahi Optical Co Ltd
JPH08292258A (en) * 1995-04-21 1996-11-05 Nikon Corp Distance measuring equipment

Also Published As

Publication number Publication date
JPH0135306B2 (en) 1989-07-25

Similar Documents

Publication Publication Date Title
TW583388B (en) Sensor for replacement
US4799210A (en) Fiber optic read/write head for an optical disk memory system
US4105332A (en) Apparatus for producing a light beam having a uniform phase front and distance measuring apparatus
JP2000193748A (en) Laser distance-measuring device for large measurement range
JPH09304532A (en) Laser distance-measuring apparatus
JPS60133381A (en) Light wave distance measuring apparatus
JPS60149985A (en) Optical distance measuring apparatus
JP2002131587A (en) Laser diode module
US5149952A (en) Optical gauging apparatus using dual beams and intermittent interruption
JP3250627B2 (en) Distance measuring device
JP2000147311A (en) Positioning method in optical waveguide coupling device and optical waveguide coupling device realized by the method
JP3206993B2 (en) Bidirectional optical space transmission equipment
JP2002350543A (en) Laser range finder
JP2552325Y2 (en) Lightwave ranging device
JP2910452B2 (en) Laser distance measuring device
US5828045A (en) Optoelectronic record element with electronic feedback for power control
JP2001159681A (en) Light wave distance member
JPH1069666A (en) Optical pickup system
JPH05297233A (en) Monitor structure of light waveguide module
JPS58169007A (en) Optical position measuring device
JPH027035B2 (en)
JP2000147121A (en) Light-wave distance meter
JPS61243385A (en) Light wave distance measuring apparatus
JPH05158000A (en) Optical device
JP2000065527A (en) Optical range finder