JPS60148715A - Heater of vehicle - Google Patents

Heater of vehicle

Info

Publication number
JPS60148715A
JPS60148715A JP417884A JP417884A JPS60148715A JP S60148715 A JPS60148715 A JP S60148715A JP 417884 A JP417884 A JP 417884A JP 417884 A JP417884 A JP 417884A JP S60148715 A JPS60148715 A JP S60148715A
Authority
JP
Japan
Prior art keywords
hot water
engine
heat exchanger
main
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP417884A
Other languages
Japanese (ja)
Other versions
JPS6229245B2 (en
Inventor
Hiroo Shimada
弘夫 嶋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Jukogyo KK
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Jukogyo KK, Fuji Heavy Industries Ltd filed Critical Fuji Jukogyo KK
Priority to JP417884A priority Critical patent/JPS60148715A/en
Publication of JPS60148715A publication Critical patent/JPS60148715A/en
Publication of JPS6229245B2 publication Critical patent/JPS6229245B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/03Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant and from a source other than the propulsion plant
    • B60H1/032Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant and from a source other than the propulsion plant from the cooling liquid of the propulsion plant and from a burner

Abstract

PURPOSE:To improve the setting up characteristics of a heater after an engine is started by providing both a main hot water circuit in which cooling water runs from the engine through both a preheater and a main heat-exchanger to the engine and a sub hot water circuit in which cooling water runs from the engine through a sub heat- exchanger to the engine. CONSTITUTION:In a heater of a bus or like, the cooling water outlet part of an engine 1 is connected to a radiator 2 via a thermostat 3. A main hot water circuit 10 in which cooling water (or hot water) is sent by the operation of a heating water pump 6 from a shut-off valve 5 to pass through a burning type preheater 7 and a main heat- exchanger 8 and then fed to a hot water return port 9 which is disposed at the cooling water inlet part of the engine 1 is connected to the heating hot water take-out port 4 disposed at said outlet part. And a sub hot water circuit 12 which is separated from the main circuit 10 at the upstream side point of the preheater 7 thereof, passes through a sub heat-exchanger 11 and then is combined with the main hot water circuit 10 at the lower current side of the main heat-exchanger 8 is connected the main hot water circuit 10. The temperature of hot water at the inlet of the main heat-exchanger 8 is controlled to maintained equally or higher than the temperature of hot water at the inlet of the sub heat-exchanger 11.

Description

【発明の詳細な説明】 本発明は車両用暖房装置に関するものである。[Detailed description of the invention] The present invention relates to a heating device for a vehicle.

バス等の暖房装置として従来から一般に走行用エンジン
の冷却水を用いた温水暖房装置が用いられるのが普通で
あり、通常は走行用エンジンの熱を奪った冷却水(温水
)を暖房用水ポンプにて予熱機に導いてここで更に加熱
した後暖房用熱交換器に流入させここで室内空気に放熱
して再び走行用エンジンに流入するようになっている(
例えば実開昭48−42244号公報の第1図参照)。
Conventionally, hot water heating systems that use the cooling water of the driving engine have been used as heating systems for buses, etc., and usually the cooling water (hot water) that has removed the heat from the driving engine is used as a heating water pump. The heat is then led to a preheater, where it is further heated, and then flows into a heating heat exchanger, where it radiates heat to the indoor air, and then flows back into the driving engine.
For example, see FIG. 1 of Japanese Utility Model Application Publication No. 48-42244).

上記のような従来装置では、例えば走行用エンジン始動
直後等エンジン冷却水温が低いとき予熱機が作動して該
冷却水を加熱し、暖房用熱交換器への入口水温を上昇さ
せようとするものであるが、該予熱機による温水の加熱
効果が充分発揮されず特にエンジン始動後の室内空気温
度の立上り特性が不良であると言う欠点を有している。
In the conventional device described above, when the engine cooling water temperature is low, for example, immediately after starting the driving engine, the preheater operates to heat the cooling water and raise the temperature of the inlet water to the heating heat exchanger. However, the preheater has the disadvantage that the hot water heating effect is not sufficiently exerted and the rise characteristic of the indoor air temperature after the engine starts is particularly poor.

即ち、暖房用水ポンプによる暖房回路への冷却水流量は
通常30〜40 J/−程度であり、この状態で10.
000 Kcal/Hの加熱能力を持った予熱機を作動
させたとすると、予熱機内での上昇水温Δtは、 q IQ、000 Δ””wcp 40X60X1ζ4℃・・・・・・(1
)である。ここでWは冷却水流量、cpは比熱。
That is, the flow rate of cooling water to the heating circuit by the heating water pump is usually about 30 to 40 J/-, and in this state, the flow rate of cooling water to the heating circuit is about 10.
Assuming that a preheating machine with a heating capacity of 000 Kcal/H is operated, the rising water temperature Δt in the preheating machine is q IQ, 000 Δ""wcp 40X60X1ζ4℃... (1
). Here, W is the cooling water flow rate and cp is the specific heat.

qは熱膏を示す。q indicates hot plaster.

従って例えば外気温が3℃でエンジン始動前のエンジン
冷却水温が約3℃であると、エンジン始動直後の予熱機
の出口水温は6℃+4℃=7℃であり、暖房用熱源とし
ては不適当である。
Therefore, for example, if the outside air temperature is 3°C and the engine cooling water temperature before the engine starts is about 3°C, the outlet water temperature of the preheater immediately after the engine starts will be 6°C + 4°C = 7°C, which is inappropriate as a heat source for heating. It is.

その後冷却水温は徐々に上昇してやがては80〜90℃
に達し予熱機を用いないで暖房できるようになるが、予
熱機での水温上昇はわずかに4℃にすぎないので、室内
空気温度の立上り特性は著しく悪くエンジン暖機に長時
間を費すことになり、エネルギーロスが非常に大である
After that, the cooling water temperature gradually rises to 80-90℃.
Once the temperature reaches that point, it becomes possible to heat the room without using a preheater, but since the water temperature rises with the preheater only by 4°C, the rise characteristics of the indoor air temperature are extremely poor and it takes a long time to warm up the engine. , and the energy loss is extremely large.

一般に暖房能力は、熱交換器の入口水温が高い程、又送
水量が多い根太となることは言うまでもないが、予熱機
での温度上昇量は上記(1)弐に示すように送水量Wに
反比例するので、暖房用水ポンプの能力をアップさせ熱
交換器への送水量を増大させると予熱機での温度上昇量
が減少する。例えば上記(1)式のように4011/袖
の送 −水量で温度上昇が4℃であったものが、60v
−に送水量が増えると予熱機での温度上昇は2.8℃に
なってしまう。この場合エンジン冷却水温が70℃で室
内温度が15℃であったとし、予熱機を作動させないと
きと予熱機を作動させたときの暖房用熱交換器の放熱量
をそれぞれQ 、 Q’とすると、 となり、予熱機の作動による放熱量増加分は0.05即
ち5%にすぎなくなり、従ってQ=20.000KCα
l/Hの熱交換器であれば、予熱機で10.000 K
C(Ll/H加えても20.000X0.05=1、0
00 KC(tl/Hとなり、10.000−1.00
0=9、000 Kcal/Hは室内に放熱されないま
ま走行用エンジンの加熱にまわされ、結局は該エンジン
のラジェータから外気中に放熱されてしまい、非常にエ
ネルギーロスが大きくなる。
In general, it goes without saying that the higher the water temperature at the inlet of the heat exchanger, the higher the amount of water delivered to the joists, the higher the heating capacity. Since it is inversely proportional, increasing the capacity of the heating water pump and increasing the amount of water sent to the heat exchanger will reduce the amount of temperature rise in the preheater. For example, as shown in equation (1) above, when the temperature rise is 4℃ at 4011/sleeve water flow, 60v
- If the amount of water fed increases, the temperature rise in the preheater will be 2.8°C. In this case, assuming that the engine coolant temperature is 70°C and the indoor temperature is 15°C, let Q and Q' be the amount of heat released from the heating heat exchanger when the preheater is not operating and when the preheater is operating, respectively. , and the increase in heat radiation due to the operation of the preheater is only 0.05, or 5%, so Q = 20.000KCα
If it is a l/H heat exchanger, the preheater will be 10,000 K.
C (Even if Ll/H is added, 20.000X0.05=1,0
00 KC (tl/H, 10.000-1.00
0=9,000 Kcal/H is not radiated indoors but is used to heat the engine for driving, and is eventually radiated into the outside air from the radiator of the engine, resulting in a very large energy loss.

本発明は上記のような従来装置の問題をすべて解消し得
る車両用暖房装置を提供するものであり、以下本発明を
附図実権例を参照して説明する。
The present invention provides a heating device for a vehicle that can solve all the problems of the conventional devices as described above, and the present invention will be explained below with reference to the accompanying drawings.

第1図において、1はバスの走行用エンジン、2はその
ラジェータ、3はエンジン1の冷却水出口側水路に設け
られたサーモスタットで、該サーモスタット3にてエン
ジン1からラジェータ2に流入する冷却水量を冷却水温
に応じて調整しエンジン冷却水温を所定温度(例えば7
5℃前後程度)に保つものである。このサーモスタット
3の上流側からラジェータ下流側に冷却水をバイパスさ
せるバイパス路3′が設けられ、ラジェータ2に流れな
い冷却水が該バイパス路3′ヲ通ってエンジン1の冷却
水入口部に流入するよう構成されている。
In FIG. 1, 1 is the running engine of the bus, 2 is its radiator, and 3 is a thermostat installed in the cooling water outlet side waterway of the engine 1.The thermostat 3 indicates the amount of cooling water flowing from the engine 1 to the radiator 2. is adjusted according to the cooling water temperature to set the engine cooling water temperature to a predetermined temperature (for example, 7
(approximately 5℃). A bypass passage 3' is provided to bypass the cooling water from the upstream side of the thermostat 3 to the downstream side of the radiator, and the cooling water that does not flow to the radiator 2 passes through the bypass passage 3' and flows into the cooling water inlet of the engine 1. It is configured like this.

エンジン1の冷却水出口部には暖房用温水J収出口4が
設けてあり、暖房用水ポンプ6の作動によりエンジンを
冷却した饅の冷却水(温水)が暖房用温水取出口4から
シャットオフパルプ5を通り例えば燃焼式等の予熱機T
に至りここで更に加熱されて主熱交換器8を通ってエン
ジン1の冷却水入口部に設けた温水戻り口9に芋る主温
水回路10が設けられている。
A heating hot water J outlet 4 is provided at the cooling water outlet of the engine 1, and the steam cooling water (hot water) that cools the engine by the operation of the heating water pump 6 is passed from the heating hot water outlet 4 to the shut-off pulp. 5, for example, a combustion type preheater T.
A main hot water circuit 10 is provided in which the hot water is further heated, passes through a main heat exchanger 8, and returns to a hot water return port 9 provided at the cooling water inlet of the engine 1.

又上記主温水回路10の予熱機7より上流側から分岐し
側熱交換器11を通って前記主熱交換器8より下流側の
主温水回路10に合流する側温水回路12が設けられて
いる。
Further, a side hot water circuit 12 is provided which branches from the upstream side of the preheater 7 of the main hot water circuit 10, passes through a side heat exchanger 11, and joins the main hot water circuit 10 downstream of the main heat exchanger 8. .

13は流量制御弁で、予熱機T、主熱交換器8に流れる
温水流量と側温水回路12に流れる温水流量との配分比
を制御するものであり、図示実施例では予熱機1の出口
水温を検知して作動する温度センサ14の温度信号に基
づくコントロール装置15の出力にて流量制御弁13が
予熱機I、主熱交換器8に流れる温水流量を可変的に制
御するようにした例を示している。
Reference numeral 13 denotes a flow rate control valve, which controls the distribution ratio between the flow rate of hot water flowing into the preheater T and main heat exchanger 8 and the flow rate of hot water flowing into the side hot water circuit 12; An example is shown in which the flow rate control valve 13 variably controls the flow rate of hot water flowing into the preheater I and the main heat exchanger 8 based on the output of the control device 15 based on the temperature signal of the temperature sensor 14 which detects and operates. It shows.

前記主及び副の熱交換器8と11は第2図に示すように
暖房用の送風機16による通風方向1γに対し側熱交換
器11が上流側になるよう直列に配列され、先ず側熱交
換器11にて熱交換された空気が主熱交換器8に流入し
て更に熱交換されるようになっている。
As shown in FIG. 2, the main and sub heat exchangers 8 and 11 are arranged in series such that the side heat exchanger 11 is on the upstream side with respect to the ventilation direction 1γ by the heating fan 16. The air heat-exchanged in the vessel 11 flows into the main heat exchanger 8 for further heat exchange.

上記の構成において、予熱機1の出口水温が80〜90
℃となるようコントロール1f11翫設定しておくこと
により、エンジン1の始動直後の冷却水温が低いときは
、流量制御弁13が予熱器7に流入する温水流量を絞り
、側温水回路12側の温水流量を増加させる。すると、
予熱機Tを流れる温水流量はかなり少くなるので、前記
(1)式から予熱機7での温水の加熱上昇温度Δtは大
幅に増大し、予熱機Tの出口水温はたちまち80〜90
℃に昇温する。時間がたつにつれてエンジン1かも出る
冷却水温は上昇するが、それに伴って流量制御弁13は
徐々に開度な大きくして行き予熱機Tの小口水温は常に
80〜90℃に保持され、第4図のAに示すような温度
特性となる。
In the above configuration, the outlet water temperature of the preheater 1 is 80 to 90.
By setting the control 1f11 so that the temperature is ℃, when the cooling water temperature is low immediately after starting the engine 1, the flow rate control valve 13 throttles the flow rate of hot water flowing into the preheater 7, and the hot water flowing into the side hot water circuit 12 is Increase flow rate. Then,
Since the flow rate of hot water flowing through the preheater T becomes considerably small, from the above equation (1), the heating temperature Δt of the hot water in the preheater 7 increases significantly, and the outlet water temperature of the preheater T quickly increases to 80 to 90.
Increase temperature to ℃. As time passes, the temperature of the cooling water produced by the engine 1 rises, and accordingly, the opening of the flow control valve 13 is gradually increased, and the water temperature at the end of the preheater T is always maintained at 80 to 90°C. The temperature characteristics are as shown in A in the figure.

予熱機Tの入口部には図示しないサーモスイッチが設け
てあり、人口水温が予じめ設定された温度になるとサー
モスイッチが作動して自動的に予熱機Tの作動が停正し
、流量制御弁13が全開となる。
A thermoswitch (not shown) is installed at the inlet of the preheater T, and when the artificial water temperature reaches a preset temperature, the thermoswitch is activated and automatically stops the operation of the preheater T, controlling the flow rate. Valve 13 is fully opened.

一方副温水回路12側はエンジン冷却水が直接流れるの
で側熱交換器11を流れる温水温度特性は第4図のBの
ようになるが、該側熱交換器11を流れる温水流量は、
前記流量制御弁13の作動により、温水温度が低く予熱
機7側の流量を大きく絞っているときは多く、流量制御
弁130開度が大きくなるに従って側熱交換器11を流
れる温水流量は徐々に少くなる。
On the other hand, since engine cooling water directly flows through the auxiliary hot water circuit 12 side, the temperature characteristics of the hot water flowing through the side heat exchanger 11 are as shown in B in FIG. 4, but the flow rate of hot water flowing through the side heat exchanger 11 is
Due to the operation of the flow control valve 13, the flow rate of the hot water flowing through the side heat exchanger 11 is often reduced when the hot water temperature is low and the flow rate on the side of the preheater 7 is greatly reduced, and as the opening degree of the flow rate control valve 130 increases, the flow rate of hot water flowing through the side heat exchanger 11 is gradually reduced. It becomes less.

上記のように構成した本発明によれば、エンジン始動直
後のエンジン冷却水温が低いときでも主熱交換器80入
口温水温度を80〜90℃の高温に保持することができ
、案内空気温度との温度差が極めて大きくなるので、従
来よりも熱交換量が増大すると共に、側熱交換器11を
流れる温水流量が大幅に増大し放熱量が増大するので、
第5図に示すように実線水の従来のものに比し、本発明
のものは点線水のように室温の立上り特性がはるかに良
くなり、エンジンの暖機時間も短縮される。
According to the present invention configured as described above, even when the engine cooling water temperature is low immediately after the engine starts, the hot water temperature at the inlet of the main heat exchanger 80 can be maintained at a high temperature of 80 to 90°C, and the temperature is equal to the guide air temperature. Since the temperature difference becomes extremely large, the amount of heat exchange increases compared to the conventional method, and the flow rate of hot water flowing through the side heat exchanger 11 increases significantly, increasing the amount of heat radiation.
As shown in FIG. 5, compared to the conventional one with solid line water, the one of the present invention has much better room temperature rise characteristics as shown in dotted line water, and the warm-up time of the engine is also shortened.

又従来の装置では暖房用水ポンプの能力を上げて温水流
量を増やすと前記(2)式に示したよう゛に予熱機の効
果が減少し、エネルギーの浪費を来すばかりか、場合に
よっては熱交換器での熱交換量が予熱機で加えた熱量以
下となり走行用エンジンのラジェータで余剰熱量を外部
に放出してしまいエネルギーの無駄を生じるので温水の
流量増大をはかることができなかったが、本発明ではポ
ンプの能力を上げ温水流量を増大させても予熱機を通過
する温水流量は流量制御弁にて絞られて予熱機での予熱
効果は決して減少することがなく、予熱機で加えた熱量
は主熱交換器にてすべて室内空気の暖房に消費され、残
りの温水はすべて側熱交換器で室内空気中に放熱するの
で、いくら温水流量を増やしても予熱機の熱をロスする
ことがなく必要なだけ温水桝量を増やして放熱量の大幅
な増大をはかることができる。
In addition, in conventional systems, when the capacity of the heating water pump is increased to increase the flow rate of hot water, the effect of the preheater decreases as shown in equation (2) above, which not only results in wasted energy, but also in some cases reduces heat exchange. However, it was not possible to increase the flow rate of hot water because the amount of heat exchanged in the heat exchanger would be less than the amount of heat added by the preheater, and the excess heat would be released to the outside by the radiator of the driving engine, resulting in wasted energy. In the invention, even if the capacity of the pump is increased and the flow rate of hot water is increased, the flow rate of hot water passing through the preheater is throttled by the flow control valve, so the preheating effect in the preheater never decreases, and the amount of heat added by the preheater is reduced. is all consumed in the main heat exchanger to heat the indoor air, and all remaining hot water is radiated into the indoor air in the side heat exchanger, so no matter how much you increase the hot water flow rate, there will be no loss of heat from the preheater. The amount of heat dissipated can be greatly increased by increasing the amount of hot water as necessary.

更に又第2図示のように側熱交換器11を主熱交換器8
の上流側(空気流に対して)に隣接して設けておくこと
により、空気は一旦副熱交換器11で暖められた上で側
熱交換器11を流通する温水より温度の高い(前記実施
例では80〜90℃に保たれている)温水が流通する主
熱交換器8にて更に暖められるので、従来装置より高い
温度の空気を室内に供給することができ、デフロスタの
効きも良くなり短時間のうちに窓ガラス外面に付着した
霜や氷を融かすことができる。
Furthermore, as shown in the second figure, the side heat exchanger 11 is connected to the main heat exchanger 8.
By providing the air adjacent to the upstream side (with respect to the air flow), the air is once warmed by the side heat exchanger 11 and then has a temperature higher than the hot water flowing through the side heat exchanger 11 (the above-mentioned implementation). Since the hot water (maintained at 80 to 90 degrees Celsius in this example) is further heated by the main heat exchanger 8, it is possible to supply air at a higher temperature than conventional systems into the room, and the defroster is also more effective. It can melt frost and ice adhering to the outer surface of window glass in a short period of time.

側熱交換器11と主熱交換器8とを第3図に示すように
1個の熱交換器1B内に仕切り19を設けることにより
一体に構成しても良い。
The side heat exchanger 11 and the main heat exchanger 8 may be integrally configured by providing a partition 19 within one heat exchanger 1B, as shown in FIG.

尚上記実施例では流量制御弁13を予熱機Tと主熱交換
器8との間に設けた例を示しているが、該流量制御弁1
3は側温水回路120分岐点から側温水回路120合流
点に主る間の主温水回路10中又は側温水回路12中の
どこに設けても良く、特に該流量制御弁13を主熱交換
器8の下流側に設けると主熱交換器8内の水圧が上昇し
温水の沸点が上昇するのでより好ましい。
In the above embodiment, the flow control valve 13 is provided between the preheater T and the main heat exchanger 8, but the flow control valve 1
3 may be provided anywhere in the main hot water circuit 10 or in the side hot water circuit 12 between the branch point of the side hot water circuit 120 and the confluence point of the side hot water circuit 120. It is more preferable to provide it on the downstream side of the main heat exchanger 8 because the water pressure in the main heat exchanger 8 increases and the boiling point of hot water increases.

又図示実施例では流量制御弁13が温度センサ14の信
号に基づき自動的に作動し流量を可変制御するようにし
た例を示しているが、温度センサ14以外の信号例えば
暖房能力の切換えに伴なう信号等によって流量制御弁1
3が作動するようにしても良く、更に又流量制御弁13
としてオリフィスのような固定式のものとし、予熱機T
側と側温水回路12側との流目配分比を一定値に設定し
ておいても上記のような室内空気温度の立上り特性向上
、暖房効果向上、熱的エネルギーのロス防止等の時効果
を得ることができる。
In the illustrated embodiment, the flow rate control valve 13 is automatically operated based on the signal from the temperature sensor 14 to variably control the flow rate, but the flow rate control valve 13 is automatically operated based on the signal from the temperature sensor 14 to variably control the flow rate. The flow control valve 1 is activated by a signal, etc.
3 may be operated, and furthermore, the flow control valve 13 may be operated.
The preheater T should be a fixed type such as an orifice.
Even if the flow distribution ratio between the side and the side hot water circuit 12 side is set to a constant value, the above-mentioned effects such as improving the rise characteristics of the indoor air temperature, improving the heating effect, and preventing loss of thermal energy can be achieved. Obtainable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す暖房周温′水回路説明
図、第2図は第1図の熱交換器部の拡大説明図、第6図
は熱交換器の他の実施例を示す側面説明図、第4図は第
1図装置におけるエンジン始動直後の主熱交換器及び側
熱交換器を流通する温水温度上昇特性を示す図、第5図
は本発明の室内突気立上り特性を従来装置との比較にお
いて示す図である。 1・・・走行用エンジン、6・・・暖房用水ポンプ、1
・・・予熱機、8・・・主熱交換器、10・・・主温水
回路、11・・・側熱交換器、12・・・側温水回路、
13・・・流量制御弁。 以 上 嘴 3 閃 2
Fig. 1 is an explanatory diagram of a heating water circuit showing one embodiment of the present invention, Fig. 2 is an enlarged explanatory diagram of the heat exchanger section of Fig. 1, and Fig. 6 is another embodiment of the heat exchanger. FIG. 4 is a diagram showing the temperature rise characteristics of hot water flowing through the main heat exchanger and side heat exchanger immediately after the engine starts in the device shown in FIG. 1, and FIG. FIG. 3 is a diagram showing characteristics in comparison with a conventional device. 1...Travelling engine, 6...Heating water pump, 1
... Preheater, 8... Main heat exchanger, 10... Main hot water circuit, 11... Side heat exchanger, 12... Side hot water circuit,
13...Flow rate control valve. Upper beak 3 flash 2

Claims (4)

【特許請求の範囲】[Claims] (1)、エンジンを冷却した後のエンジン冷却水を熱源
として利用すると共に、該エンジン冷却水を加熱する予
熱機を設け、該エンジン冷却水の熱を熱交換器にて室内
空気に放熱するようにした車両用温水暖房装置において
、エンジン冷却水がエンジンから予熱機を通り主熱交換
器を通ってエンジンに戻る主温水回路と、エンジン冷却
水がエンジンから側熱交換器を通ってエンジンに戻る副
温水回路とを設け、上記主熱交換器の入口温水温度を側
熱交換器の人口温水温度と同等か又は高温に保つように
したことを特徴とする車両用暖房装置。
(1) In addition to using the engine cooling water after cooling the engine as a heat source, a preheater is installed to heat the engine cooling water, and the heat of the engine cooling water is radiated to the indoor air using a heat exchanger. In a hot water heating system for a vehicle, there is a main hot water circuit in which engine cooling water passes from the engine through a preheater, passes through a main heat exchanger, and returns to the engine, and a main hot water circuit in which engine cooling water returns from the engine to the engine through a side heat exchanger. 1. A heating system for a vehicle, characterized in that a sub hot water circuit is provided, and the inlet hot water temperature of the main heat exchanger is maintained at a temperature equal to or higher than the artificial hot water temperature of the side heat exchanger.
(2)、側熱交換器は、暖房用空気流通方向において、
主熱交換器の上流側に配設され、側熱交換器を通過した
空気が主熱′交換器を流通するようになつ℃いることを
特徴とする特許請求の範囲第1項に記載の車両用暖房装
置。
(2) The side heat exchanger, in the heating air circulation direction,
The vehicle according to claim 1, characterized in that the vehicle is disposed upstream of the main heat exchanger, and the temperature at which the air that has passed through the side heat exchanger comes to flow through the main heat exchanger is ℃. heating equipment.
(3)、主温水回路と副温水回路は、それぞれの温水流
量が、該生温水回路、副温水回路のいずれか一方又は双
方に設けた流量制御弁によりある設定配分比において又
は可変的に制御されるようになっていることを特徴とす
る特許請求の範囲第1項又は第2項に記載の車両用暖房
装置。
(3) The hot water flow rate of each of the main hot water circuit and the sub hot water circuit is controlled at a certain set distribution ratio or variably by a flow control valve provided in either or both of the raw hot water circuit and the sub hot water circuit. The vehicle heating device according to claim 1 or 2, characterized in that the vehicle heating device is adapted to be heated.
(4)、流量制御弁は、予熱機の入口又は出口の温水温
度を検知する温度センサの信号により作動して開度な変
えるようになっていることを特徴とする特許請求の範囲
第3項に記載の車両用暖房装置。
(4) The flow control valve is actuated by a signal from a temperature sensor that detects the hot water temperature at the inlet or outlet of the preheater to change the opening degree. The vehicle heating device described in .
JP417884A 1984-01-12 1984-01-12 Heater of vehicle Granted JPS60148715A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP417884A JPS60148715A (en) 1984-01-12 1984-01-12 Heater of vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP417884A JPS60148715A (en) 1984-01-12 1984-01-12 Heater of vehicle

Publications (2)

Publication Number Publication Date
JPS60148715A true JPS60148715A (en) 1985-08-06
JPS6229245B2 JPS6229245B2 (en) 1987-06-25

Family

ID=11577453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP417884A Granted JPS60148715A (en) 1984-01-12 1984-01-12 Heater of vehicle

Country Status (1)

Country Link
JP (1) JPS60148715A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1008471A1 (en) * 1998-12-07 2000-06-14 Ford Global Technologies, Inc. Coolant and heating circulation and heat exchanger for vehicles with additional coolant heater
EP0989002B1 (en) * 1998-09-24 2003-12-03 Ford Global Technologies, Inc. Method for heating a vehicle passenger compartment and heat exchanger for vehicles with additional heat source
JP2011131871A (en) * 2009-11-25 2011-07-07 Denso Corp Air conditioner for vehicle
JP2011183867A (en) * 2010-03-05 2011-09-22 Denso Corp Air conditioner for vehicle
JP2011183868A (en) * 2010-03-05 2011-09-22 Denso Corp Air conditioner for vehicle
JP2012145311A (en) * 2011-01-14 2012-08-02 Denso Corp Vehicle air conditioning device
WO2013011632A1 (en) * 2011-07-20 2013-01-24 株式会社デンソー Vehicle air-conditioning apparatus
JP2017223399A (en) * 2016-06-14 2017-12-21 株式会社デンソー Cooling system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7886988B2 (en) * 2004-10-27 2011-02-15 Ford Global Technologies, Llc Switchable radiator bypass valve set point to improve energy efficiency

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0989002B1 (en) * 1998-09-24 2003-12-03 Ford Global Technologies, Inc. Method for heating a vehicle passenger compartment and heat exchanger for vehicles with additional heat source
EP1008471A1 (en) * 1998-12-07 2000-06-14 Ford Global Technologies, Inc. Coolant and heating circulation and heat exchanger for vehicles with additional coolant heater
JP2011131871A (en) * 2009-11-25 2011-07-07 Denso Corp Air conditioner for vehicle
JP2011183867A (en) * 2010-03-05 2011-09-22 Denso Corp Air conditioner for vehicle
JP2011183868A (en) * 2010-03-05 2011-09-22 Denso Corp Air conditioner for vehicle
JP2012145311A (en) * 2011-01-14 2012-08-02 Denso Corp Vehicle air conditioning device
WO2013011632A1 (en) * 2011-07-20 2013-01-24 株式会社デンソー Vehicle air-conditioning apparatus
JP2013023060A (en) * 2011-07-20 2013-02-04 Denso Corp Vehicle air conditioner
JP2017223399A (en) * 2016-06-14 2017-12-21 株式会社デンソー Cooling system

Also Published As

Publication number Publication date
JPS6229245B2 (en) 1987-06-25

Similar Documents

Publication Publication Date Title
US3351128A (en) Multi-zone temperature control
JPS60148715A (en) Heater of vehicle
CN105697120A (en) Novel engine intelligent cooling system and control method based on split cooling and reversed cooling
JPS591998A (en) Heat medium pressure control device for waste heat restrieving device
US2266193A (en) Heating system
JPH0827000B2 (en) Hot water heating system
JP2001271644A (en) Method and device for adjusting engine oil temperature
RU2005280C1 (en) Air conditioning system with automatic control of temperature and moisture content in incoming air
JPH0345047Y2 (en)
JP2892114B2 (en) Air conditioner and its operation method
SU1668819A1 (en) Air-conditioning system with automatic thermal and humidity control of supply air
JPS601020A (en) Bus heater
JP2553617B2 (en) Hot water heating system
JPH08121874A (en) Circulation type water heater
JPH0297842A (en) Air conditioner
JPS5916734Y2 (en) heating system
JPH0731045Y2 (en) Heating system
SU1666879A1 (en) Air-conditioning system with automatic control of heat and humidity parameters of supply air
JPH0263917A (en) Warming device for vehicle
JPH07113458B2 (en) Hot water heating system
JPH08233396A (en) Engine-driven type heat pump air compressor with hot water feed function
JPH02122125A (en) Hot water heating device
JPH07247835A (en) Exhaust heat recovery system
JP3078712B2 (en) Startup control method in the number control system of fluid heaters
JPS60185049A (en) Instantaneous water heater