JPH07247835A - Exhaust heat recovery system - Google Patents

Exhaust heat recovery system

Info

Publication number
JPH07247835A
JPH07247835A JP6064600A JP6460094A JPH07247835A JP H07247835 A JPH07247835 A JP H07247835A JP 6064600 A JP6064600 A JP 6064600A JP 6460094 A JP6460094 A JP 6460094A JP H07247835 A JPH07247835 A JP H07247835A
Authority
JP
Japan
Prior art keywords
cooling water
temperature
exhaust heat
heat recovery
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6064600A
Other languages
Japanese (ja)
Inventor
Koji Okuda
浩二 奥田
Kosuke Nakatani
浩介 中谷
Hiroshi Fujimoto
洋 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP6064600A priority Critical patent/JPH07247835A/en
Publication of JPH07247835A publication Critical patent/JPH07247835A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Silencers (AREA)

Abstract

PURPOSE:To improve exhaust heat recovery efficiency by increasing a temperature of cooling water to be supplied to an engine cooling part to maximum without generating engine trip. CONSTITUTION:An absorbing type refrigerator and a hot water unit are connected to an engine cooling part in order to utilize its cooling exhaust heat. A heat exchanger for exhaust heat is connected to a cooling water supplying side piping lead to the engine cooling part through a three-directional valve 12 and a bypass piping. A temperature T1 of the cooling water to be supplied to the three-directional valve 12 is measured by means of an inlet temperature sensor 15. In addition, a temperature T2 of the cooling water in the bypass piping at an outlet side from the exhaust heat exchanger is measured by means of an outlet temperature sensor 16. An opening V of the three-directional valve 12 is controlled by the following equation based on the inlet temperature Tl, the outlet temperature T2, and a set temperature Tset : V=(Tset-T2)/(T1-T2).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、コジェネレーションシ
ステムなどに用いるために、ガスエンジンやディーゼル
エンジンの冷却ジャケットといったエンジン冷却部と、
吸収式冷凍機や給湯設備や暖房装置などの排熱回収部と
を配管を介して接続するとともに、排熱回収部からエン
ジン冷却部への冷却水供給側配管に、三方弁などの流量
分配手段とバイパス配管とを介して排熱用熱交換器を接
続した排熱回収システムに関する。
BACKGROUND OF THE INVENTION The present invention relates to an engine cooling section such as a cooling jacket for a gas engine or a diesel engine, for use in a cogeneration system or the like.
The exhaust heat recovery unit of the absorption chiller, hot water supply equipment, heating device, etc. is connected via a pipe, and the flow distribution unit such as a three-way valve is connected to the cooling water supply side pipe from the exhaust heat recovery unit to the engine cooling unit. And an exhaust heat recovery system connected to a heat exchanger for exhaust heat via a bypass pipe.

【0002】[0002]

【従来の技術】上述のような排熱回収システムでは、一
般に、冷却水供給側配管のバイパス配管よりも下流側で
エンジン冷却部に供給される冷却水の温度を測定する冷
却水温度センサを設けるとともに、冷却水温度センサで
測定される冷却水の温度が設定温度になるように流量分
配手段を作動する流量分配制御手段を備え、エンジン冷
却部に供給される冷却水の温度が設定温度になるよう
に、排熱用熱交換器に分配供給する冷却水量を制御して
いる。これにより、冷却ジャケット内の冷却水の温度が
上昇しすぎてエンジン保護回路が作動し、エンジンを自
動的に停止する、いわゆるエンジントリップの発生を回
避できるようにしている。
2. Description of the Related Art In the above-mentioned exhaust heat recovery system, generally, a cooling water temperature sensor for measuring the temperature of the cooling water supplied to the engine cooling section is provided downstream of the bypass pipe of the cooling water supply side pipe. Along with this, there is provided a flow rate distribution control means for operating the flow rate distribution means so that the temperature of the cooling water measured by the cooling water temperature sensor becomes the set temperature, and the temperature of the cooling water supplied to the engine cooling section becomes the set temperature. Thus, the amount of cooling water distributed and supplied to the heat exchanger for exhaust heat is controlled. As a result, the temperature of the cooling water in the cooling jacket rises too much, the engine protection circuit operates, and the so-called engine trip, which automatically stops the engine, can be avoided.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来例
では、例えば、冷房装置の冷房負荷が急激に減少するな
どのように排熱需要量が急激に減少した場合、後流に三
方弁を介して水温を下げるための排熱用熱交換器を設け
ていても、水温が急上昇すると排熱用熱交換器で熱が十
分奪われず、冷却水の温度が設定温度よりもオーバーシ
ュートし、高温の冷却水がエンジンに戻ってエンジンが
トリップする。
However, in the conventional example, when the exhaust heat demand sharply decreases, for example, when the cooling load of the air conditioner sharply decreases, a three-way valve is used in the wake of the exhaust flow. Even if an exhaust heat heat exchanger for lowering the water temperature is provided, if the water temperature rises sharply, the exhaust heat heat exchanger does not fully remove heat, and the cooling water temperature overshoots the set temperature, resulting in high-temperature cooling. Water returns to the engine and the engine trips.

【0004】そのため、オーバーシュートによる最大温
度を見込んで設定温度を低くしている。ところが、通常
時においてエンジン冷却部から取り出される冷却水の温
度が低くなってしまい、排熱回収効率が低下する欠点が
あった。
Therefore, the set temperature is lowered in anticipation of the maximum temperature due to overshoot. However, there is a drawback that the temperature of the cooling water taken out from the engine cooling section becomes low during normal times, and the exhaust heat recovery efficiency decreases.

【0005】本発明は、このような事情に鑑みてなされ
たものであって、請求項1に係る発明の排熱回収システ
ムは、エンジントリップを発生させずに、エンジン冷却
部に供給される冷却水の温度を極力高くして排熱回収効
率を向上できるようにすることを目的とし、また、請求
項2に係る発明の排熱回収システムは、排熱回収部での
負荷変動が予め特定できるようなときに、負荷のピーク
に対しても良好に対応できるようにすることを目的と
し、また、請求項3に係る発明の排熱回収システムは、
既製の制御システムに合理的に組み込めるようにするこ
とを目的とする。
The present invention has been made in view of such circumstances, and the exhaust heat recovery system of the invention according to claim 1 is a cooling system to be supplied to an engine cooling section without causing an engine trip. The purpose is to raise the temperature of water as much as possible to improve the exhaust heat recovery efficiency, and in the exhaust heat recovery system of the invention according to claim 2, the load fluctuation in the exhaust heat recovery unit can be specified in advance. In such a case, the purpose is to be able to respond favorably to the peak of the load, and the exhaust heat recovery system of the invention according to claim 3 is
The purpose is to be able to reasonably incorporate into a ready-made control system.

【0006】[0006]

【課題を解決するための手段】請求項1に係る発明の排
熱回収システムは、上述のような目的を達成するため
に、エンジン冷却部と排熱回収部とを配管を介して接続
するとともに、排熱回収部からエンジン冷却部への冷却
水供給側配管に、流量分配手段とバイパス配管とを介し
て排熱用熱交換器を接続した排熱回収システムにおい
て、排熱回収部を経由した冷却水と経由しない冷却水を
合流する箇所と排熱用熱交換器の間の冷却水の温度を測
定する入口温度センサと、排熱用熱交換器からの出口側
のバイパス配管での冷却水の温度を測定する出口温度セ
ンサとを設け、流量分配手段を、入口温度センサで測定
される冷却水の入口温度と出口温度センサで測定される
冷却水の出口温度と設定温度とに基づく下記関係式によ
り作動制御する流量分配制御手段を設けて構成する。 関係式V=(Tset−T2)/(T1−T2) V:エンジン冷却部に供給する冷却水全量に対して排熱
用熱交換器側に供給しない冷却水量の割合 Tset:設定温度 T1:入口温度センサで測定される冷却水の入口温度 T2:出口温度センサで測定される冷却水の出口温度
In order to achieve the above-mentioned object, an exhaust heat recovery system according to a first aspect of the present invention connects an engine cooling section and an exhaust heat recovery section via a pipe. In an exhaust heat recovery system in which a heat exchanger for exhaust heat is connected to a cooling water supply side pipe from the exhaust heat recovery unit to the engine cooling unit via a flow distribution means and a bypass pipe, the exhaust heat recovery unit is used. An inlet temperature sensor that measures the temperature of the cooling water between the point where the cooling water and the cooling water that does not pass through and the heat exchanger for exhaust heat are measured, and the cooling water in the bypass pipe on the outlet side from the heat exchanger for exhaust heat An outlet temperature sensor for measuring the temperature of the cooling water is provided, and the flow rate distribution means is based on the following relationship based on the inlet temperature of the cooling water measured by the inlet temperature sensor and the outlet temperature of the cooling water measured by the outlet temperature sensor and the set temperature. Flow rate controlled by formula Constituting provided control means. Relational expression V = (Tset-T2) / (T1-T2) V: ratio of the amount of cooling water not supplied to the exhaust heat heat exchanger side to the total amount of cooling water supplied to the engine cooling unit Tset: set temperature T1: inlet Cooling water inlet temperature measured by temperature sensor T2: Cooling water outlet temperature measured by outlet temperature sensor

【0007】排熱回収部としては、温水吸収式冷凍機や
給湯設備や蒸気圧縮式冷凍機や暖房装置などが用いられ
る。
As the exhaust heat recovery section, a hot water absorption type refrigerator, hot water supply equipment, vapor compression type refrigerator, heating device, etc. are used.

【0008】また、請求項2に係る発明の排熱回収シス
テムは、上述のような目的を達成するために、請求項1
に係る発明の排熱回収システムにおける設定温度を、排
熱回収部で回収される排熱量が多い時間帯程高くなるよ
うに、予め設定した時間帯に合わせて自動的に変更する
設定温度変更手段を備えて構成する。
Further, the exhaust heat recovery system of the invention according to claim 2 is the same as that of claim 1 in order to achieve the above object.
Set temperature changing means for automatically changing the set temperature in the exhaust heat recovery system of the invention according to the invention in accordance with a preset time zone such that the set temperature becomes higher in a time zone in which the amount of exhaust heat recovered by the exhaust heat recovery section is higher. And is configured.

【0009】また、請求項3に係る発明の排熱回収シス
テムは、上述のような目的を達成するために、請求項1
または請求項2のいずれかに記載の排熱回収システムに
おいて、冷却水供給側配管のバイパス配管よりも下流側
でエンジン冷却部に供給される冷却水の温度を測定する
冷却水温度センサを設けるとともに、冷却水温度センサ
で測定される冷却水の温度が設定温度になるように流量
分配手段を作動する定常流量分配制御手段を備え、入口
温度センサで測定される冷却水の入口温度が設定温度以
上のときにのみ、前記定常流量分配制御手段よりも優先
して流量分配制御手段を作用するように作用状態を切換
える作用状態切換手段を備えて構成する。
The exhaust heat recovery system of the invention according to claim 3 is the same as that of claim 1 in order to achieve the above object.
Alternatively, in the exhaust heat recovery system according to claim 2, a cooling water temperature sensor for measuring the temperature of the cooling water supplied to the engine cooling unit is provided downstream of the bypass pipe of the cooling water supply side pipe. , Equipped with steady flow distribution control means for operating the flow distribution means so that the temperature of the cooling water measured by the cooling water temperature sensor becomes the set temperature, and the inlet temperature of the cooling water measured by the inlet temperature sensor is equal to or higher than the set temperature. Only in this case, the operation state switching means for switching the operation state so as to operate the flow rate distribution control means in preference to the steady flow rate distribution control means is provided.

【0010】[0010]

【作用】請求項1に係る発明の排熱回収システムの構成
によれば、排熱需要量が急激に減少して流量分配手段に
戻されてくる冷却水の温度が高くなっても、それに伴
い、流量分配手段を即座に作動して、排熱用熱交換器に
流す冷却水の流量を増加する。一方、排熱需要量が急激
に増大して流量分配手段に戻されてくる冷却水の温度が
低くなっても、それに伴い、流量分配手段を即座に作動
して、排熱用熱交換器に流す冷却水の流量を減少する。
これらの制御によって、排熱需要量の急激な変動にかか
わらず、エンジン冷却部に供給される冷却水の温度変化
を精度良く抑えることができる。
According to the constitution of the exhaust heat recovery system of the invention as set forth in claim 1, even if the temperature of the cooling water returned to the flow rate distribution means becomes high due to the rapid decrease in the exhaust heat demand amount, the temperature of the cooling water is increased accordingly. Immediately actuating the flow rate distribution means to increase the flow rate of the cooling water flowing to the heat exhaust heat exchanger. On the other hand, even if the exhaust heat demand rapidly increases and the temperature of the cooling water returned to the flow rate distribution unit becomes low, the flow rate distribution unit is immediately activated and the heat exhaust heat exchanger is replaced. Reduce the flow rate of cooling water.
By these controls, it is possible to accurately suppress the temperature change of the cooling water supplied to the engine cooling unit regardless of the rapid change in the exhaust heat demand amount.

【0011】また、請求項2に係る発明の排熱回収シス
テムの構成によれば、冷房負荷などのように、その1日
における時間的な変動が予め把握できるような場合、す
なわち、排熱需要量の経時的変化が予め特定できる場合
に、その排熱需要量が増大するときには、その設定温度
を極力高くし、エンジン冷却部から取り出される冷却水
の温度を高くし、排熱回収部に送る冷却水の温度を高く
することができる。
Further, according to the configuration of the exhaust heat recovery system of the second aspect of the present invention, when the temporal variation in one day can be grasped in advance such as the cooling load, that is, the exhaust heat demand. When the change in quantity over time can be specified in advance, when the exhaust heat demand increases, the set temperature is made as high as possible, the temperature of the cooling water taken out from the engine cooling section is made high, and it is sent to the exhaust heat recovery section. The temperature of the cooling water can be raised.

【0012】また、請求項3に係る発明の排熱回収シス
テムの構成によれば、エンジン冷却部に供給される冷却
水の温度を測定して流量分配手段を制御する、既製の定
常流量分配制御手段と併用し、エンジン冷却部に供給す
る冷却水の温度が必要以上に高温になる虞の無いときに
は、既製の定常流量分配制御手段による制御を行い、一
方、排熱需要量が急激に減少して流量分配手段に戻され
てくる冷却水の温度が設定温度以上に高くなり、エンジ
ン冷却部に供給する冷却水の温度が必要以上に高温にな
る虞のあるときに、流量分配制御手段を優先させて作用
することができる。
According to the structure of the exhaust heat recovery system of the third aspect of the invention, the ready-made steady flow rate distribution control for controlling the flow rate distribution means by measuring the temperature of the cooling water supplied to the engine cooling section. When there is no fear that the temperature of the cooling water supplied to the engine cooling unit will be unnecessarily high, it is controlled by an off-the-shelf steady-state flow distribution control means, while the exhaust heat demand sharply decreases. When there is a risk that the temperature of the cooling water returned to the flow distribution means will rise above the set temperature and the temperature of the cooling water supplied to the engine cooling section will rise to an unnecessarily high temperature, the flow distribution control means will be given priority. Can act by letting it work.

【0013】[0013]

【実施例】次に、本発明の実施例を図面に基づいて詳細
に説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0014】図1は、本発明に係る排熱回収システムの
実施例を示すブロック図であり、ガスエンジン1に、伝
動クラッチ2を介して発電機3が連動連結されている。
FIG. 1 is a block diagram showing an embodiment of an exhaust heat recovery system according to the present invention, in which a generator 3 is interlocked with a gas engine 1 via a transmission clutch 2.

【0015】ガスエンジン1のエンジン冷却部の出口と
入口とにわたって、第1のポンプ4を介装した主配管5
が接続されている。主配管5に、排熱回収部としての吸
収式冷凍機6と給湯設備7それぞれが、互いに並列に送
り配管8aおよび戻り配管8bを介して接続されてい
る。更に、吸収式冷凍機6に、第2のポンプ9を介装し
た冷房用配管10を介して冷房装置11…が接続され、
エンジン冷却によって発生する排熱を冷房や給湯の熱源
として利用するように構成されている。前記主配管5と
送り配管8aおよび戻り配管8bの全体を配管と称す
る。
A main pipe 5 having a first pump 4 interposed between the outlet and the inlet of the engine cooling portion of the gas engine 1.
Are connected. An absorption refrigerator 6 as an exhaust heat recovery unit and hot water supply equipment 7 are connected to the main pipe 5 in parallel with each other via a feed pipe 8a and a return pipe 8b. Further, the absorption refrigerating machine 6 is connected with cooling devices 11 ... Through a cooling pipe 10 in which a second pump 9 is interposed,
The exhaust heat generated by cooling the engine is used as a heat source for cooling and hot water supply. The main pipe 5, the feed pipe 8a, and the return pipe 8b are collectively referred to as pipes.

【0016】また、主配管5の戻り配管8bとの接続箇
所よりも下流となる冷却水供給側配管に、流量分配手段
としての三方弁12とバイパス配管13とを介して排熱
用熱交換器14が接続されている。三方弁12は、排熱
用熱交換器14の出口側に設けても良い。
In addition, a heat exchanger for exhaust heat is provided to a cooling water supply side pipe downstream of a connection point of the main pipe 5 with the return pipe 8b via a three-way valve 12 and a bypass pipe 13 as flow rate distributing means. 14 is connected. The three-way valve 12 may be provided on the outlet side of the heat exchanger 14 for exhaust heat.

【0017】前記冷却水供給側配管の三方弁12よりも
上流側に、三方弁12に供給される冷却水、すなわち、
排熱用熱交換器14への入口側での冷却水の温度を測定
する入口温度センサ15が設けられている。また、排熱
用熱交換器14からの出口側のバイパス配管13に、排
熱用熱交換器14で冷却された冷却水の温度を測定する
出口温度センサ16が設けられている。更に、冷却水供
給側配管のバイパス配管13よりも下流側に、エンジン
冷却部に供給される冷却水の温度を測定する冷却水温度
センサ17が設けられている。
The cooling water supplied to the three-way valve 12, that is, the upstream side of the three-way valve 12 of the cooling water supply side pipe,
An inlet temperature sensor 15 for measuring the temperature of the cooling water on the inlet side to the heat exchanger 14 for exhaust heat is provided. In addition, an outlet temperature sensor 16 that measures the temperature of the cooling water cooled by the heat exchanger 14 for exhaust heat is provided in the bypass pipe 13 on the outlet side from the heat exchanger 14 for exhaust heat. Further, a cooling water temperature sensor 17 that measures the temperature of the cooling water supplied to the engine cooling unit is provided downstream of the bypass pipe 13 of the cooling water supply side pipe.

【0018】入口温度センサ15、出口温度センサ16
および冷却水温度センサ17それぞれがマイクロコンピ
ュータ18に接続され、そのマイクロコンピュータ18
に三方弁12のドライバ19が接続されている。
Inlet temperature sensor 15 and outlet temperature sensor 16
And the cooling water temperature sensor 17 are each connected to a microcomputer 18, and the microcomputer 18
Is connected to the driver 19 of the three-way valve 12.

【0019】マイクロコンピュータ18には、図2のブ
ロック図に示すように、開度算出手段20、設定温度変
更手段21、第1および第2の比較手段22,23およ
び作用状態切換手段24が備えられている。
As shown in the block diagram of FIG. 2, the microcomputer 18 is provided with an opening degree calculating means 20, a set temperature changing means 21, first and second comparing means 22 and 23, and an operating state switching means 24. Has been.

【0020】開度算出手段20では、入口温度センサ1
5で測定される冷却水の入口温度T1と出口温度センサ
16で測定される冷却水の出口温度T2と設定温度変更
手段21からの設定温度Tsetが入力され、下記関係
式により三方弁12の開度Vを算出し、その算出した開
度Vに応じた指令信号を作用状態切換手段24を介して
ドライバ19に出力するようになっている。 関係式V=(Tset−T2)/(T1−T2) V:エンジン冷却部に供給する冷却水全量に対して排熱
用熱交換器14側に供給しない冷却水量の割合 Tset:設定温度 T1:入口温度センサ15で測定される冷却水の入口温
度 T2:出口温度センサ16で測定される冷却水の出口温
In the opening degree calculating means 20, the inlet temperature sensor 1
5, the inlet temperature T1 of the cooling water, the outlet temperature T2 of the cooling water measured by the outlet temperature sensor 16, and the set temperature Tset from the set temperature changing means 21 are input, and the three-way valve 12 is opened by the following relational expression. The degree V is calculated, and a command signal according to the calculated opening degree V is output to the driver 19 via the action state switching means 24. Relational expression V = (Tset-T2) / (T1-T2) V: Ratio of the amount of cooling water not supplied to the exhaust heat heat exchanger 14 side to the total amount of cooling water supplied to the engine cooling unit Tset: Set temperature T1: Coolant inlet temperature measured by inlet temperature sensor 15 T2: Coolant outlet temperature measured by outlet temperature sensor 16

【0021】設定温度変更手段21では、例えば、5秒
などの設定時間ごとに時計25からの時刻信号を受け、
それに応答して設定温度テーブル26に格納されたデー
タを読み込み、各時刻ごとの設定温度Tsetを読み込
んで開度算出手段20に送るようになっている。
The set temperature changing means 21 receives a time signal from the clock 25 every set time such as 5 seconds,
In response to this, the data stored in the set temperature table 26 is read, the set temperature Tset for each time is read, and sent to the opening degree calculation means 20.

【0022】各時刻ごとの設定温度Tsetは、例え
ば、午後2時をピークとして83℃に設定するとともに、
午前7時および午後9時を最低値として75℃に設定し、
その中間部分は、過去のデータに基づいて平均して得ら
れる曲線に乗るように設定される。そして、中間期や冬
季などでは、時計25からの時刻信号を適宜停止できる
ようになっている。この設定温度変更手段21で設定温
度Tsetを変更することにより、夏季の冷房負荷がピ
ークとなるときに、エンジン冷却部に供給する冷却水の
温度を極力高めにし、得られる排熱エネルギー量を増大
できるように構成されている。
The set temperature Tset for each time is set to 83 ° C. with a peak at 2:00 pm, and
Set the lowest value at 7am and 9pm to 75 ° C,
The middle part is set so as to ride on a curve obtained by averaging based on past data. The time signal from the clock 25 can be stopped as appropriate during the intermediate period or winter. By changing the set temperature Tset by the set temperature changing means 21, the temperature of the cooling water supplied to the engine cooling section is raised as much as possible when the cooling load in the summer reaches a peak, and the amount of exhaust heat energy obtained is increased. It is configured to be able to.

【0023】第1の比較手段22では、冷却水温度セン
サ17で測定されるエンジン冷却部に供給する冷却水の
温度Tを入力し、その温度と第1の設定温度Ta(例え
ば、75℃)と比較し、測定温度Tが第1の設定温度Ta
よりも高いときには閉じ信号を出力し、開度が小になる
側に、すなわち、排熱用熱交換器14に流す冷却水量を
増加し、逆に、測定温度Tが第1の設定温度Taよりも
低いときには開き信号を出力し、開度が大になる側に、
すなわち、排熱用熱交換器14に流す冷却水量を減少す
るように、それぞれ指令信号を作用状態切換手段24を
介してドライバ19に出力するようになっている。
In the first comparing means 22, the temperature T of the cooling water supplied to the engine cooling section measured by the cooling water temperature sensor 17 is inputted, and the temperature and the first set temperature Ta (for example, 75 ° C.) are inputted. In comparison with the measured temperature T is the first set temperature Ta
When it is higher than the above, a closing signal is output, and the amount of cooling water flowing to the exhaust heat exchanger 14 is increased on the side where the opening degree becomes small, and conversely, the measured temperature T is higher than the first set temperature Ta. When it is too low, an open signal is output and the opening becomes larger,
That is, command signals are output to the driver 19 via the action state switching means 24 so as to reduce the amount of cooling water flowing to the exhaust heat heat exchanger 14.

【0024】第2の比較手段23では、入口温度センサ
15で測定される冷却水の入口温度T1を入力し、その
温度と第2の設定温度Tb(例えば、85℃)と比較し、
測定温度が第2の設定温度Tbよりも高いときには、作
用状態切換手段24に優先信号を出力し、入口温度T1
と出口温度T2とに基づいてのみ三方弁12の開度を優
先的に制御し、逆に、測定温度が第2の設定温度Tbよ
りも低いときには、作用状態切換手段24に定常信号を
出力し、エンジン冷却部に供給する冷却水の温度Tに基
づいてのみ三方弁12の開度を制御するように、その制
御形態を切換えるようになっている。
In the second comparing means 23, the inlet temperature T1 of the cooling water measured by the inlet temperature sensor 15 is input, and the temperature is compared with the second set temperature Tb (for example, 85 ° C.),
When the measured temperature is higher than the second set temperature Tb, a priority signal is output to the operating state switching means 24 to set the inlet temperature T1.
And the outlet temperature T2, the opening degree of the three-way valve 12 is preferentially controlled. On the contrary, when the measured temperature is lower than the second set temperature Tb, a steady signal is output to the operating state switching means 24. The control mode is switched so that the opening degree of the three-way valve 12 is controlled only based on the temperature T of the cooling water supplied to the engine cooling unit.

【0025】次に、上記構成による制御動作を図3のフ
ローチャートを用いて説明する。先ず、入口温度T1を
入力して(S1)、第2の設定温度Tbと比較する(S
2)。ここで、測定温度が第2の設定温度Tb以上のと
きには、出口温度T2を入力し(S3)、設定温度変更
手段21から入力される各時刻ごとの設定温度Tset
と入口温度T1と出口温度T2とを関係式に代入して開
度Vを算出し(S4)、その算出された開度Vに対応す
る開度信号を出力して(S5)三方弁12の開度を調整
する。このステップS3、S4およびS5の制御が流量
分配制御手段に相当する。
Next, the control operation according to the above configuration will be described with reference to the flowchart of FIG. First, the inlet temperature T1 is input (S1) and compared with the second set temperature Tb (S).
2). Here, when the measured temperature is equal to or higher than the second set temperature Tb, the outlet temperature T2 is input (S3), and the set temperature Tset for each time input from the set temperature changing means 21.
And the inlet temperature T1 and the outlet temperature T2 are substituted into the relational expression to calculate the opening degree V (S4), and the opening degree signal corresponding to the calculated opening degree V is output (S5). Adjust the opening. The control of steps S3, S4 and S5 corresponds to the flow rate distribution control means.

【0026】ステップS2において、測定温度が第2の
設定温度Tbよりも低いときには、エンジン冷却部に供
給する冷却水の温度Tを入力して(S6)から、その冷
却水温度Tと第1の設定温度Taとを比較する(S
7)。
In step S2, when the measured temperature is lower than the second set temperature Tb, the temperature T of the cooling water supplied to the engine cooling portion is input (S6), and then the cooling water temperature T and the first Compare with the set temperature Ta (S
7).

【0027】ここで、冷却水温度Tが第1の設定温度T
a以上のときには、閉じ信号を出力し(S8)、排熱用
熱交換器14側に流される冷却水の流量を多くして冷却
水温度Tが第1の設定温度Taになるように三方弁12
の開度を調整する。一方、冷却水温度Tが第1の設定温
度Taよりも低いときには、開き信号を出力し(S
9)、排熱用熱交換器14側に流される冷却水の流量を
少なくして冷却水温度Tが第1の設定温度Taになるよ
うに三方弁12の開度を調整する。このステップS6、
S7、S8およびS9の制御が定常流量分配制御手段に
相当する。
Here, the cooling water temperature T is the first set temperature T
When it is equal to or more than a, a close signal is output (S8), the flow rate of the cooling water flowing to the heat exchanger 14 for exhaust heat is increased, and the three-way valve is set so that the cooling water temperature T becomes the first set temperature Ta. 12
Adjust the opening of. On the other hand, when the cooling water temperature T is lower than the first set temperature Ta, an opening signal is output (S
9) The flow rate of the cooling water flowing to the heat exchanger 14 for exhaust heat is reduced to adjust the opening degree of the three-way valve 12 so that the cooling water temperature T reaches the first set temperature Ta. This step S6,
The control of S7, S8 and S9 corresponds to the steady flow distribution control means.

【0028】次に、上記実施例によるシミュレーション
の結果について説明する。三方弁12としては、全閉か
ら全開までの作動時間が30秒のものを用いた。流量を 1
00m3、排熱用熱交換器14での冷却温度差を10℃、排熱
用熱交換器14での伝達特性を1/(1+5s)にそれ
ぞれ設定した。但し、sは伝達関数におけるラプラス変
換子である。また、入力が印加されてから出力に影響が
出るまでの無駄時間は10秒とした。
Next, the result of the simulation according to the above embodiment will be described. As the three-way valve 12, an operating time of 30 seconds from fully closed to fully opened was used. Flow rate 1
00 m 3 , the cooling temperature difference in the exhaust heat heat exchanger 14 was set to 10 ° C., and the transfer characteristic in the exhaust heat heat exchanger 14 was set to 1 / (1 + 5 s). However, s is a Laplace transformer in the transfer function. In addition, the dead time from when the input is applied until the output is affected is set to 10 seconds.

【0029】上記条件下でエンジン冷却部に供給される
冷却水の温度(1で示す)および三方弁12に供給され
る直前の冷却水の温度(2で示す)それぞれの経時的変
化を考察したところ、図4のグラフに示すように、三方
弁12に供給される直前の冷却水の温度が75℃から85℃
に変化しても、出口温度は75℃近辺に維持され、排熱需
要量の急激な減少による三方弁12に供給される直前の
冷却水の温度の急激な変化にかかわらず、排熱用熱交換
器14に供給する冷却水量を精度良く制御して、エンジ
ン冷却部に供給される冷却水の温度を設定温度近くに良
好に維持し、その温度変化を抑制できることが明らかで
あった。
Under the above-mentioned conditions, changes in the temperature of the cooling water supplied to the engine cooling portion (shown by 1) and the temperature of the cooling water immediately before supplied to the three-way valve 12 (shown by 2) were examined. However, as shown in the graph of FIG. 4, the temperature of the cooling water immediately before being supplied to the three-way valve 12 is 75 ° C. to 85 ° C.
Even if the temperature changes to 1, the outlet temperature is maintained near 75 ° C, and the heat for exhaust heat does not change regardless of the sudden change in the temperature of the cooling water immediately before being supplied to the three-way valve 12 due to the rapid decrease in the exhaust heat demand. It is clear that the amount of cooling water supplied to the exchanger 14 can be accurately controlled to maintain the temperature of the cooling water supplied to the engine cooling unit close to the preset temperature and suppress the temperature change.

【0030】前記入口温度センサ15、出口温度センサ
16および開度算出手段20により、冷却水の入口温度
T1と出口温度T2と設定温度Tsetとに基づいて三
方弁12の開度を算出し、その算出した開度となるよう
にドライバ22に駆動信号を出力し、冷却水の入口温度
T1が高くなる程排熱用熱交換器14側に供給する冷却
水量が多くなるように三方弁12を自動的に作動制御す
る構成をして流量分配制御手段と称する。
The inlet temperature sensor 15, the outlet temperature sensor 16 and the opening degree calculating means 20 calculate the opening degree of the three-way valve 12 based on the inlet temperature T1, the outlet temperature T2 and the set temperature Tset of the cooling water, A drive signal is output to the driver 22 so that the calculated opening degree is obtained, and the three-way valve 12 is automatically operated so that the cooling water inlet temperature T1 increases and the amount of cooling water supplied to the exhaust heat heat exchanger 14 increases. It is called a flow rate distribution control means having a structure for performing the operation control.

【0031】上記実施例では、排熱用熱交換器14に流
す冷却水流量を変更するのに三方弁12を用いている
が、例えば、主配管5の冷却水供給側配管とバイパス配
管13それぞれに個別に流量調整弁を設け、両流量調整
弁を互いに連動させて排熱用熱交換器14に流す冷却水
流量を変更するように構成しても良く、三方弁12やそ
れらの構成をして流量分配手段と総称する。
In the above embodiment, the three-way valve 12 is used to change the flow rate of the cooling water flowing through the heat exchanger 14 for exhaust heat. For example, the cooling water supply side pipe of the main pipe 5 and the bypass pipe 13 are respectively provided. It may be configured such that a flow rate adjusting valve is individually provided, and both flow rate adjusting valves are interlocked with each other to change the flow rate of the cooling water flowing to the heat exchanger 14 for exhaust heat. Collectively referred to as flow rate distribution means.

【0032】[0032]

【発明の効果】以上の説明から明らかなように、請求項
1に係る発明の排熱回収システムによれば、排熱需要量
が急激に減少して流量分配手段に戻されてくる冷却水の
温度変化に即座に対応して流量分配手段を作動し、排熱
用熱交換器に流す冷却水の流量を変え、排熱需要量の急
激な変動にかかわらず、エンジン冷却部に供給される冷
却水の温度変化を精度良く抑えるから、エンジントリッ
プを発生させずに、エンジン冷却部に供給される冷却水
の温度を極力高くして排熱回収効率を向上できるように
なった。
As is apparent from the above description, according to the exhaust heat recovery system of the first aspect of the present invention, the amount of exhaust heat demand sharply decreases and the cooling water returned to the flow distribution means is returned. Immediately responding to temperature changes, the flow distribution means is activated to change the flow rate of the cooling water flowing to the heat exchanger for exhaust heat, and the cooling that is supplied to the engine cooling unit regardless of sudden changes in the exhaust heat demand. Since the temperature change of water is accurately controlled, the temperature of the cooling water supplied to the engine cooling section can be made as high as possible and the exhaust heat recovery efficiency can be improved without causing an engine trip.

【0033】また、請求項2に係る発明の排熱回収シス
テムによれば、予め特定できる排熱需要量の経時的変化
に対応させ、排熱回収部での負荷が高くなるほど、エン
ジン冷却部から取り出される冷却水の温度を高くし、排
熱回収部に送る冷却水の温度を高くするから、排熱回収
部での負荷変動が予め特定できるようなときに、負荷の
ピークに対しても良好に対応できるようになった。
According to the exhaust heat recovery system of the second aspect of the invention, as the load on the exhaust heat recovery section becomes higher, the engine cooling section becomes more responsive to the temporal change in the exhaust heat demand that can be specified in advance. Since the temperature of the cooling water taken out is raised and the temperature of the cooling water sent to the exhaust heat recovery unit is raised, it is also good for the peak load when the load fluctuation in the exhaust heat recovery unit can be specified in advance. It has become possible to deal with.

【0034】また、請求項3に係る発明の排熱回収シス
テムによれば、エンジン冷却部に供給される冷却水の温
度を測定して流量分配手段を制御する、既製の定常流量
分配制御手段と併用し、排熱需要量が急激に減少して流
量分配手段に戻されてくる冷却水の温度が設定温度以上
に高くなり、エンジン冷却部に供給する冷却水の温度が
必要以上に高温になる虞のあるときにのみ、流量分配制
御手段を優先させて作用するから、既製の制御システム
を生かしながら合理的に組み込めるようになった。
Further, according to the exhaust heat recovery system of the third aspect of the present invention, an off-the-shelf steady flow rate distribution control means for controlling the flow rate distribution means by measuring the temperature of the cooling water supplied to the engine cooling section is provided. When used together, the exhaust heat demand sharply decreases and the temperature of the cooling water returned to the flow distribution means becomes higher than the set temperature, and the temperature of the cooling water supplied to the engine cooling part becomes higher than necessary. Only when there is a risk, the flow distribution control means is given priority and acts, so that it is possible to rationally incorporate the existing control system while making the most of it.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る排熱回収システムの実施例を示す
ブロック図である。
FIG. 1 is a block diagram showing an embodiment of an exhaust heat recovery system according to the present invention.

【図2】CPUの構成を示すブロック図である。FIG. 2 is a block diagram showing a configuration of a CPU.

【図3】フローチャートである。FIG. 3 is a flowchart.

【図4】グラフである。FIG. 4 is a graph.

【符号の説明】[Explanation of symbols]

1…ガスエンジン 5…主配管 6…吸収式冷凍機 7…給湯設備 8a…送り配管 8b…戻り配管 12…三方弁 13…バイパス配管 14…排熱用熱交換器 15…入口温度センサ 16…出口温度センサ 17…冷却水温度センサ 21…設定温度変更手段 24…作用状態切換手段 DESCRIPTION OF SYMBOLS 1 ... Gas engine 5 ... Main piping 6 ... Absorption type refrigerator 7 ... Hot water supply equipment 8a ... Feed piping 8b ... Return piping 12 ... Three-way valve 13 ... Bypass piping 14 ... Exhaust heat heat exchanger 15 ... Inlet temperature sensor 16 ... Outlet Temperature sensor 17 ... Cooling water temperature sensor 21 ... Set temperature changing means 24 ... Working state switching means

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F28F 27/00 511 M ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location F28F 27/00 511 M

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 エンジン冷却部と排熱回収部とを配管を
介して接続するとともに、前記排熱回収部からエンジン
冷却部への冷却水供給側配管に、流量分配手段とバイパ
ス配管とを介して排熱用熱交換器を接続した排熱回収シ
ステムにおいて、 前記排熱回収部を経由した冷却水と経由しない冷却水を
合流する箇所と前記排熱用熱交換器の間の冷却水の温度
を測定する入口温度センサと、前記排熱用熱交換器から
の出口側のバイパス配管での冷却水の温度を測定する出
口温度センサとを設け、前記流量分配手段を、前記入口
温度センサで測定される冷却水の入口温度と前記出口温
度センサで測定される冷却水の出口温度と設定温度とに
基づく下記関係式により作動制御する流量分配制御手段
を設けたことを特徴とする排熱回収システム。 関係式V=(Tset−T2)/(T1−T2) V:エンジン冷却部に供給する冷却水全量に対して排熱
用熱交換器側に供給しない冷却水量の割合 Tset:設定温度 T1:入口温度センサで測定される冷却水の入口温度 T2:出口温度センサで測定される冷却水の出口温度
1. An engine cooling unit and an exhaust heat recovery unit are connected via a pipe, and a cooling water supply side pipe from the exhaust heat recovery unit to the engine cooling unit is connected via a flow distribution means and a bypass pipe. In the exhaust heat recovery system in which a heat exchanger for exhaust heat is connected, the temperature of the cooling water between the location where the cooling water passing through the exhaust heat recovery unit and the cooling water not passing through and the heat exchanger for exhaust heat are combined. And an outlet temperature sensor for measuring the temperature of the cooling water in the bypass pipe on the outlet side from the heat exchanger for exhaust heat are provided, and the flow distribution means is measured by the inlet temperature sensor. Exhaust heat recovery system provided with a flow rate distribution control means for controlling the operation according to the following relational expression based on the inlet temperature of the cooling water and the outlet temperature of the cooling water measured by the outlet temperature sensor and the set temperature. . Relational expression V = (Tset-T2) / (T1-T2) V: ratio of the amount of cooling water not supplied to the exhaust heat heat exchanger side to the total amount of cooling water supplied to the engine cooling unit Tset: set temperature T1: inlet Cooling water inlet temperature measured by temperature sensor T2: Cooling water outlet temperature measured by outlet temperature sensor
【請求項2】 請求項1に記載の設定温度を、排熱回収
部で回収される排熱量が多い時間帯程高くなるように、
予め設定した時間帯に合わせて自動的に変更する設定温
度変更手段を備えた排熱回収システム。
2. The set temperature according to claim 1 is set to be higher in a time zone in which the amount of exhaust heat recovered by the exhaust heat recovery unit is higher.
An exhaust heat recovery system equipped with set temperature changing means that changes automatically according to a preset time period.
【請求項3】 請求項1または請求項2のいずれかに記
載の排熱回収システムにおいて、冷却水供給側配管のバ
イパス配管よりも下流側でエンジン冷却部に供給される
冷却水の温度を測定する冷却水温度センサを設けるとと
もに、前記冷却水温度センサで測定される冷却水の温度
が設定温度になるように流量分配手段を作動する定常流
量分配制御手段を備え、入口温度センサで測定される冷
却水の入口温度が設定温度以上のときにのみ、前記定常
流量分配制御手段よりも優先して流量分配制御手段を作
用するように作用状態を切換える作用状態切換手段を備
えた排熱回収システム。
3. The exhaust heat recovery system according to claim 1, wherein the temperature of the cooling water supplied to the engine cooling unit is measured downstream of the bypass pipe of the cooling water supply side pipe. And a steady flow rate distribution control means for operating the flow rate distribution means so that the temperature of the cooling water measured by the cooling water temperature sensor is set to a set temperature, and is measured by the inlet temperature sensor. An exhaust heat recovery system provided with an operating state switching means for switching the operating state so that the flow rate distribution control means operates in preference to the steady flow rate distribution control means only when the inlet temperature of the cooling water is equal to or higher than the set temperature.
JP6064600A 1994-03-07 1994-03-07 Exhaust heat recovery system Pending JPH07247835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6064600A JPH07247835A (en) 1994-03-07 1994-03-07 Exhaust heat recovery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6064600A JPH07247835A (en) 1994-03-07 1994-03-07 Exhaust heat recovery system

Publications (1)

Publication Number Publication Date
JPH07247835A true JPH07247835A (en) 1995-09-26

Family

ID=13262919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6064600A Pending JPH07247835A (en) 1994-03-07 1994-03-07 Exhaust heat recovery system

Country Status (1)

Country Link
JP (1) JPH07247835A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1273785A3 (en) * 2001-07-03 2003-08-06 Honda Giken Kogyo Kabushiki Kaisha Waste heat recovering apparatus for an engine
CN114655414A (en) * 2022-04-02 2022-06-24 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) High-energy-efficiency ship cooling system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1273785A3 (en) * 2001-07-03 2003-08-06 Honda Giken Kogyo Kabushiki Kaisha Waste heat recovering apparatus for an engine
US6739389B2 (en) 2001-07-03 2004-05-25 Honda Giken Kogyo Kabushiki Kaisha Waste heat recovering apparatus for an engine
CN114655414A (en) * 2022-04-02 2022-06-24 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) High-energy-efficiency ship cooling system
CN114655414B (en) * 2022-04-02 2024-04-09 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) High-energy-efficiency ship cooling system

Similar Documents

Publication Publication Date Title
JPH07247835A (en) Exhaust heat recovery system
JP2001241735A (en) Air conditioning system and its controlling method
JPS60148715A (en) Heater of vehicle
JP2899437B2 (en) Air conditioning system
JP2957781B2 (en) Control method of indoor electric valve in air conditioner
JPH08151922A (en) Exhaust heat recovery system
JPH07247834A (en) Exhaust heat recovery system
JPS594614B2 (en) How to control the number of hot and cold water machines
WO2019215513A1 (en) Hvac system and control method thereof
JPH07174436A (en) River water utilizing heat recovery system
JP3690842B2 (en) Waste heat recovery system
JP2935643B2 (en) Absorption chiller / heater
JP2676197B2 (en) Temperature control device for co-generation system
JPS5919257B2 (en) How to control the flow rate of a water cooler/heater pump
JP2894974B2 (en) Absorption chiller / heater
JPS631508B2 (en)
JPS63255507A (en) Exhaust air temperature control device for internal combustion engine
JPH0355752B2 (en)
JPH0117008Y2 (en)
JPS60155843A (en) Air conditioning control device by heat accumulation in water distributing pipe
JPH07269335A (en) Exhaust heat recovery system
JPH0355748B2 (en)
JP3270272B2 (en) Control system for heat source system for air conditioning
JPH0127347B2 (en)
JPH06281289A (en) Cogeneration apparatus