JPS60147501A - Turbine rotor - Google Patents

Turbine rotor

Info

Publication number
JPS60147501A
JPS60147501A JP186584A JP186584A JPS60147501A JP S60147501 A JPS60147501 A JP S60147501A JP 186584 A JP186584 A JP 186584A JP 186584 A JP186584 A JP 186584A JP S60147501 A JPS60147501 A JP S60147501A
Authority
JP
Japan
Prior art keywords
rotor
turbine
stress
base material
turbine rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP186584A
Other languages
Japanese (ja)
Other versions
JPH0472041B2 (en
Inventor
Hajime Toritani
初 鳥谷
Naoaki Shibashita
直昭 柴下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP186584A priority Critical patent/JPS60147501A/en
Publication of JPS60147501A publication Critical patent/JPS60147501A/en
Publication of JPH0472041B2 publication Critical patent/JPH0472041B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/007Preventing corrosion

Abstract

PURPOSE:To enhance the reliability and life to turbine as well as simply reclaim a rotor by a method in which the padding of a material whose thermal expansion coefficient is smaller than the base material of the rotor is provided on the surface of the turbine rotor. CONSTITUTION:A surface 19 as shown by surface contours 19a and 19b is provided for the surface of the rotor 13 in the high- and medium pressure stage 1 in high- and medium pressure steam turbines. The basal portion of a disc, as shown by a round mark A, is shaped into a circular arc form with an intention of relieving the concentration of stress. In this case, the surface contours 19a and 19b and the circular arc-shaped portion are made of paddings 18a-18c of a proper thickness formed from the contour 20, as shown by the oblique line. The material of the padding is high-Cr steels such as 12 Cr-steel, etc., in the case where the base material of the rotor 13 is a low-Cr steel such as Cr-Mo-V steels, etc., having a smaller thermal expansion coefficient than the base material of the rotor 13.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、蒸気タービンの高圧、中圧タービンに1吏用
されるタービンロータに係り、特に、ロータの表層部に
肉盛し、強度を向上するようにしたタービンロータに関
する。
Detailed Description of the Invention [Field of Application of the Invention] The present invention relates to a turbine rotor used in a high-pressure or intermediate-pressure steam turbine. The present invention relates to a turbine rotor configured to do so.

〔発明の背景〕[Background of the invention]

近年、増大する成力需要を効率よく補うために蒸気ター
ビン完成装置は著しく大容菫化されてハる。ま之これに
ともなって成力膚要の昼夜の差S:補うために、従来ペ
ースロードとして運転されてきた発電装置にもS繁な起
動停止、負荷変化が請求されてきている。
In recent years, in order to efficiently meet the increasing demand for raw power, steam turbine completion equipment has become significantly larger in capacity. Along with this, in order to compensate for the critical difference between day and night, power generation equipment, which has traditionally been operated as a pace road, is being required to start and stop frequently and change its load.

上記の起gjh停止、負荷変化隷伴い、タービンロータ
(以下ロータと称呼する)には薦応力が4−1−1特に
ロータのディスクつけ根には応力集中が発生する。従っ
て、ロータの寿合金向上するためには、砿ロータの強度
、特にディスクっけ根の表面の強度全向上させる必要か
める。又、タービンの長期間直用によりロータが疲労し
た場合、これを適宜再生する手段も要請されていた。し
かしながら、従来技術では1′111i1更、かつ有効
な手段がl<、ロータの信頼性、寿命の低下全層く欠点
があった。
As a result of the above-mentioned start-up and stoppage and load changes, stress concentration occurs in the turbine rotor (hereinafter referred to as rotor) with a recommended stress of 4-1-1, especially at the root of the rotor's disk. Therefore, in order to improve the life span of the rotor, it is necessary to completely improve the strength of the steel rotor, especially the surface strength of the disk root. There is also a need for a means for appropriately regenerating the rotor when it becomes fatigued due to direct use of the turbine for a long period of time. However, in the prior art, there was a drawback that the reliability and life of the rotor were further deteriorated even though there were no effective means.

すなわち、第1図は、4フロー型の代表的蒸気タービン
の蒸気流路を示す。ボイラーからの蒸気5はまず高圧段
落1を通り、再びボイラー51で加熱されて中圧段落2
に入る。以陵、クロスオーバ管3を通って低圧段落4を
通過しコンデンサーへ導かれる。
That is, FIG. 1 shows a steam flow path of a typical four-flow type steam turbine. Steam 5 from the boiler first passes through high pressure stage 1, is heated again in boiler 51, and passes through medium pressure stage 2.
to go into. Afterwards, it passes through a crossover pipe 3, passes through a low-pressure stage 4, and is led to a condenser.

この蒸気タービ/に2いて、起動時、停止時または、負
荷変動時に蒸気温度変化によりタービンロータに熱応力
が発生する。ここで第2図(a)、 (b)にて、その
熱応力発生過程全説明する。
In this steam turbine, thermal stress is generated in the turbine rotor due to changes in steam temperature when starting, stopping, or changing load. Here, the entire thermal stress generation process will be explained with reference to FIGS. 2(a) and 2(b).

第2図(a)は横軸に時間を表示し、al:!lqI]
にロータ於よびロータまわりの温度を示したものであり
、第2図<b)は、同じく満3袖に時間を表示し、4郵
1にロータに生ずる応カ金示したものである。共に冷機
、起動の場合を示す。
Figure 2 (a) shows time on the horizontal axis, al:! lqI]
Figure 2 shows the temperature in and around the rotor, and Figure 2 <b) also shows the time on the 3rd sleeve and the stress generated on the rotor on the 4th and 1st. Both cases show the case of cold engine and startup.

第2図(、l)に示す9口く、タービン起動時にはロー
タの第1段1蒸気温1w6はほぼ室温の状態から丸線の
如く立上る。又、ロータ表向温度7は点線で示す妬く、
第1段1麦蒸気温度6からやや遅れ、同じように立上る
。又ロータ中心孔温度8は、一点′lJ4腺で示す矩く
、ロータ表面温1斐7から更に471゜はぼ同じように
立上る。起動後からタービン停市まで、上記の各温度は
1心間軸に平行に、かつ同一温度に床侍されて経過する
。タービン停止時には、−まず、第1没後蒸気温度6が
ほぼ室温まで下り、次に、ロータ表面温度7、ロータ中
心孔温度8が1順次遅れて同じように下る。
As shown in FIG. 2(,l), when the turbine is started, the first stage 1 steam temperature 1w6 of the rotor rises like a circular line from a state of approximately room temperature. Also, the rotor surface temperature 7 is indicated by a dotted line.
1st stage 1 wheat steam temperature is slightly delayed from 6, and rises in the same way. Also, the rotor center hole temperature 8 rises approximately 471 degrees from the rotor surface temperature 1/7 in a rectangular shape indicated by a point 'lJ4'. From the start until the turbine stops, each of the above-mentioned temperatures passes in parallel to the center-to-center axis and at the same temperature. When the turbine is stopped, - first, the first steam temperature 6 decreases to approximately room temperature, and then the rotor surface temperature 7 and the rotor center hole temperature 8 decrease in the same way, one after the other.

第2図(b)は第2図(a)に示した@度変化に滲って
、ロータ内に生ずる応力を示したもので、ロータ表面応
力】Oは点2腺で示す如く、圧縮応力となシ、ロータ中
心孔応力9は引張応力となるっロータ茂面応力10の内
、ロータのディスクっけ根には応力県中が生じ、マイナ
ス降伏点12t−越す圧縮応力が生ずる。このため、起
動後に2いても残留応力11が残る。又、タービン停止
時には、図示の如くロータ表面応力1oは引・脹応カと
4−シ、ロータ中心孔応力9は圧縮応力となる。
Figure 2 (b) shows the stress generated in the rotor due to the degree change shown in Figure 2 (a), where the rotor surface stress [O] is the compressive stress as shown by the point 2 gland. Meanwhile, the rotor center hole stress 9 becomes a tensile stress, and the rotor surface stress 10 occurs at the root of the disk of the rotor, resulting in a compressive stress that exceeds the minus yield point 12t. Therefore, residual stress 11 remains even after starting. Further, when the turbine is stopped, as shown in the figure, the rotor surface stress 1o becomes a tensile stress and an expansion stress, and the rotor center hole stress 9 becomes a compressive stress.

第3図はロータ13の概要を示すもので、高圧段落IV
Cは主蒸気S1が通過し、中圧段落2には通過した主蒸
気SIが再加熱された再熱蒸気S、が通過する。これ等
の蒸気によυ、上記の如く、高圧没落1の高圧f7J段
ディスクっけ根Aおよび中圧段落2の再熱0段ディスク
つけ根Bには上記の如く応力染中した熱応力が生じ、ロ
ータ中心孔14にも上記の熱応力が生ずる。
FIG. 3 shows an outline of the rotor 13, and shows the high pressure stage IV.
The main steam S1 passes through C, and the reheated steam S, which is the main steam SI that has passed through, is reheated through the intermediate pressure stage 2. Due to these steams, thermal stress is generated as described above at the root A of the high pressure f7J stage disc of high pressure collapse 1 and the root B of the reheat stage 0 disc of medium pressure stage 2. , the above thermal stress also occurs in the rotor center hole 14.

次に、第4図に示す如く、口〜夕139よびロータ中心
孔14には、点線で示す上記の熱応力15の曲、一点@
線で示す遠心応ノ:116が作用する。従って、その合
成応力17(実線で示す)が作用する。ロータ表面では
、起動停止に半う熱応力15が咲心応力16に比べて非
常に大きく、ロータ表面の寿命蕾胛、汁a−々夷t(E
 rへI力lハギノフヵつけ根に作用する熱応力15に
基く低サイクル疲労を考慮すればよい。又、ロータ中心
孔14では、熱応力15による低サイクル疲労と、遠心
応力16によるクリープ寿命金考痙すnばよい。
Next, as shown in FIG.
The centrifugal response shown by the line 116 acts. Therefore, the resultant stress 17 (shown by a solid line) acts. On the rotor surface, the thermal stress 15 during start-up and stop is much larger than the stress 16 at the center of bloom, and the life span of the rotor surface is limited.
It is sufficient to consider low cycle fatigue based on the thermal stress 15 acting on the root of the I force I on r. Further, in the rotor center hole 14, low cycle fatigue due to thermal stress 15 and creep life due to centrifugal stress 16 may be reduced.

上記の寿命管理に関しては、公用文献の存在し例えば、
a prior paker entitles v″
TheOperation of Large Ste
am Turbines t。
Regarding the above-mentioned lifespan management, there are official documents, for example,
a prior paker entitles v″
The Operation of Large Ste.
am Turbines t.

Lim1t Cyclie ’phermal Cra
cking” by II P。
Lim1t Cyclie 'Pharma Cra
cking” by II P.

Tjmo to G 、 W Aarney (ASM
E PakerNo、 67−WA/PWR,publ
ishes in 1967 )が上げられるが、ター
ビンの安全運転のためにはロータの寿命管理が必要であ
シ、このためには、ディスクつけ根の応力集中にょる熱
応力を極力j・さくすると、とが必要とされる。しかし
ながら、従来技術に2いては、簡匣、適切な手段がなく
、タービンの信頼性、寿命を低下させる原因となってい
た。又、長時間使用にょシ疲労−下したロータを丹生す
る適切の手段もなく、問題とされていた。
Tjmo to G, W Aarney (ASM
E Parker No. 67-WA/PWR, publ
However, in order to operate the turbine safely, it is necessary to manage the life of the rotor, and for this purpose, it is necessary to reduce the thermal stress caused by stress concentration at the base of the disk as much as possible. Needed. However, in the prior art, there is no simple and appropriate means, which causes a reduction in the reliability and life of the turbine. Furthermore, there was no suitable means for restoring the rotor which had suffered fatigue due to long-term use, which was a problem.

〔発明の目的〕[Purpose of the invention]

本登明け、 I−j−ハ木目春ルーΔ斗^嗜ノff1l
l i2J・たものでるり、その目的は、タービンの信
頼性2よび寿命を向上すると共に、簡便の手段にょシ再
生可能となるタービンロータを提供することにある。
At the end of Honto, I-j-ha Kime Haru Rou Δ斗^晙ノff1l
The purpose of the l i2J Tamonode Ruri is to provide a turbine rotor that improves the reliability and life of the turbine and can be regenerated by a simple means.

〔発明の概要) 本発明は、上記目的を達成するために、ロータの表面を
、該ロータの表面よりも熱膨張係数の低い材料で肉盛形
成したタービンロータを特徴とすると共に、ロータ表面
の応力巣中部に肉盛溶接し、核部を円滑に仕上げた後、
焼鈍処理して形成されるタービンロータを特徴としたも
のである。
[Summary of the Invention] In order to achieve the above object, the present invention features a turbine rotor in which the surface of the rotor is overlaid with a material having a lower coefficient of thermal expansion than the surface of the rotor. After welding overlay to the center of the stress nest and smoothing the core,
The turbine rotor is characterized by being formed by annealing.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図面に基づき説明する。 Embodiments of the present invention will be described below based on the drawings.

まず、本実施例の概要を説明する。First, an outline of this embodiment will be explained.

第5図に示す如く、高圧段落1(中圧段落2の場合も同
様であるが、以下省略する)のロータ130表面には表
面輪郭(19a)、(19b)で示す表面部19が形成
され、特に、高圧初段ディスクつけ根(A丸印で示す)
は応力集中を緩和すべく弧状に形成されている。本実施
例では、表面輪郭部(19a)、(1gb)と上記高圧
初段ディスクつけ根の弧状部を図示の斜線の如く、輪郭
20から適宜の厚みだけ肉盛したものから形成せしめ、
肉盛部18a、18b、18cを形成したものである。
As shown in FIG. 5, a surface portion 19 shown by surface contours (19a) and (19b) is formed on the surface of the rotor 130 of the high-pressure stage 1 (the same applies to the medium-pressure stage 2, but omitted hereinafter). , especially the base of the high-pressure first stage disc (indicated by circle A)
is formed in an arc shape to alleviate stress concentration. In this embodiment, the surface contour portions (19a) and (1gb) and the arcuate portion of the base of the high-pressure first-stage disk are formed by building up an appropriate thickness from the contour 20, as shown by diagonal lines in the figure.
Built-up parts 18a, 18b, and 18c are formed.

肉盛材料としては、ロータ13の母材がOr−Mo−V
JAのμ口き低クロム鋼の場合には、12CrAの如き
高クロム鋼を用いるのが1ましい。12Crjjliは
公知の如く、Or−Mo−■綱に咬べ、熱膨張係数が小
さい材料である。上記肉盛後に、表面を円滑に仕上げる
ことにより、表面強度を向上すること力jできる。又、
ロータ13の表面形状の内、高圧初段ロータディスクつ
け根部は、上記のクロく応力集中しヤすい部分のため、
特に、この部分を肉盛し、円滑形状に仕上げ、かつ焼鈍
処理して応力歪を除去し、強度の高いタービンロータを
形成することができる。
As the overlay material, the base material of the rotor 13 is Or-Mo-V.
In the case of JA μ-hole low chromium steel, it is preferable to use high chromium steel such as 12CrA. As is well known, 12Crjjli is a material that can be attached to Or-Mo-■ steel and has a small coefficient of thermal expansion. After the above-mentioned overlay, the surface strength can be improved by smoothing the surface. or,
Among the surface shapes of the rotor 13, the base of the high-pressure first-stage rotor disk is the area where stress is concentrated and easy to wear.
In particular, this portion is overlaid, finished into a smooth shape, and annealed to remove stress and strain, thereby forming a high-strength turbine rotor.

次に、本実施例を詳細に説明する。Next, this embodiment will be explained in detail.

まず、理論的根拠を記載する。First, the rationale will be described.

一般に、ロータ表面の熱応力δTは下記に示される。Generally, the thermal stress δT on the rotor surface is shown below.

ここで、αはロータ材の熱膨張係数、Eはロータの縦弾
性係数、νはロータのポアソン比、Tsはロータの平均
温度、Tsはロータの表面温度を示す。
Here, α is the thermal expansion coefficient of the rotor material, E is the longitudinal elastic modulus of the rotor, ν is the Poisson's ratio of the rotor, Ts is the average temperature of the rotor, and Ts is the surface temperature of the rotor.

上式よりロータ材の熱膨張係数αが小さければ、それだ
けロータ表面の熱応力δテが小さくなる。
From the above equation, the smaller the thermal expansion coefficient α of the rotor material, the smaller the thermal stress δte on the rotor surface.

12CrJ4は、Cr −M O−V鋼に比べ上記の如
く熱膨張係数αが20%も小さい。しかしながらJi:
zcrsは高クロム鋼で0、ロータ13全体を12Cr
鋼で製作することは、高1曲のものとなり、かつ加工性
も??劣る。従って、所要箇所のみを肉盛形成しのが本
実施例のポイントである。
As mentioned above, 12CrJ4 has a thermal expansion coefficient α that is 20% smaller than that of Cr-M OV steel. However, Ji:
zcrs is high chromium steel 0, the whole rotor 13 is 12Cr
Is it possible to make it with steel? ? Inferior. Therefore, the key point of this embodiment is to overlay only the required locations.

本実施例では、ロータ表面の熱応力の大きい部分に、上
記の如く肉盛部18a、18b、18cを形成し、肉盛
部18 a、 18 b、 18 cノ表面をロータ1
3の形状に沿って円滑に仕上げたもの− から形成され
る。
In this embodiment, the build-up parts 18a, 18b, and 18c are formed as described above on the parts of the rotor surface where thermal stress is large, and the surfaces of the build-up parts 18a, 18b, and 18c are connected to the rotor 1.
It is formed from a smooth finish that follows the shape of 3.

肉A部l & a、 18 b、 18 cの囚所、肉
厚等は、タービンの8着、段落の位置、形状等により、
適宜に設定される。
The prison, wall thickness, etc. of meat part A l & a, 18 b, 18 c depend on the 8th place of the turbine, the position and shape of the paragraph, etc.
It is set appropriately.

本実施例で、低クロム44 Cr −M o −Vに対
し、120rJ$t−用いたが、勿膚これに限定するも
のでない。父、ロータ13の母材がCr−MO−V鋼以
外の低クロム鋼に対しても、これに見合う低熱影j辰係
数の高クロム鋼が適宜設定される。
In this example, 120 rJ$t- was used for low chromium 44 Cr-Mo-V, but it is not limited to this, of course. Even if the base material of the rotor 13 is a low chromium steel other than Cr-MO-V steel, a high chromium steel with a correspondingly low thermal effect coefficient is appropriately set.

次に、併合発明の実施例を1説明する。上記の如く、ロ
ータ13には、旨圧す段ディスクっけ根の如き応力果中
部が存在する。この部分は上記シ〕如く円弧状に形成さ
れているが、段存の形目では不十分の場合に、更に、こ
の部分を肉盛し、円滑な形状に仕上げ、かつ、焼鈍処理
をしたものでるる。
Next, one embodiment of the combined invention will be described. As mentioned above, the rotor 13 has a stressed portion such as the root of a stepped disc that is under pressure. This part is formed into an arc shape as shown in [C] above, but if the stepped shape is not sufficient, this part is further overlaid, finished into a smooth shape, and annealed. Out.

肉盛仕上げと焼鈍による組、v&の平準化、歪除去によ
り、よシ強度を向上することができる。この場合、肉盛
材料はロータ13の母材と同一のものでもよく、上記の
如く、母材よシ熱l彫1辰係数の低いものでもよい。
The strength of the joint can be improved by overlay finishing and annealing, leveling V&, and removing distortion. In this case, the overlay material may be the same as the base material of the rotor 13, or as mentioned above, it may be a material that has a lower shear coefficient than the base material.

又、上記肉感は、新規製作するロータ13にの、み適用
するものでなく、使用によシその表ノ一部のiI匠が疲
労劣化したロータ13の再生にも通用される。応力集中
により疲労劣化した場合全公知の手段(磁気探傷、カラ
ーチェック、目視等)により見出し、この部分をスキン
カットした後、上記肉盛を行、りい、円滑に仕上げた後
、焼鈍処理することにより強度の高いロータ13が再生
される。
Furthermore, the above-mentioned physical sensation is not only applicable to newly manufactured rotors 13, but also to the remanufacturing of rotors 13 whose surfaces have deteriorated due to fatigue due to use. In case of fatigue deterioration due to stress concentration, detect by all known means (magnetic flaw detection, color check, visual inspection, etc.), skin-cut this area, perform the above-mentioned overlay, refill, smooth finish, and then annealing. As a result, the rotor 13 with high strength is regenerated.

上記の肉盛技術は、従来よシ一般に採用されているもの
で、%に高度の技術を必要とするものでなく、簡便に実
施することができる。
The above-mentioned overlaying technique is one that has been generally employed in the past, does not require highly sophisticated techniques, and can be easily implemented.

なi1低熱膨張係故のクロム鋼を用いた上記実施例の場
合には、熱応力を約20%低減でき、寿命を大幅に同上
することができる。
In the case of the above embodiment using chromium steel with a low thermal expansion coefficient, the thermal stress can be reduced by about 20%, and the service life can be significantly increased.

〔発明の効果〕〔Effect of the invention〕

以上の説明によって明らかの如く、本発明によれば、タ
ービンの信頴注、寿命を大巾に向上し得ると共に、簡便
の手段によりロータを再生し得る効果が上げられる。
As is clear from the above description, according to the present invention, the reliability and life of the turbine can be greatly improved, and the rotor can be regenerated by a simple means.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は4フロー型蒸気ターピ/の概要系統図、第2図
(a)は、起動、運転、停止時の蒸気温度、ロータ表面
温度、ロータ中心孔温度の時間的変化を示す線図、第2
図(b)は第2図(a)の温度変化に対応するロータ応
力発生の時間変化を示す線図、第3図は間圧段落および
中圧段落の近傍のロータの断面図、第4図はタービン冷
媒起動時のロータ断面図されるル6力分布図、第5図は
本発明一実施例を示すロータ断面図である。 1・・・高圧段落、2・・・中圧段落、6・・・第1没
後蒸気温度、7・・・ロータ表面温度、8・・・ロータ
中心孔温度、9・・・ロータ中心孔応力、lo・・・ロ
ータ表面心力、11・・・A留応力、12・・・マイナ
ス降伏点、13・・・ロータ、14・・・ロータ中心孔
、15・・・熱応力、16・・・遠心応力、17・・・
合成応力、18a。 18b、18c・・・肉盛部、19・*面部、19a。 19b・・・外面輪郭、20・・・輪郭。 代理人 弁理士 秋本正実 ] 摺?図 時間
Fig. 1 is a schematic system diagram of a 4-flow steam turret; Fig. 2 (a) is a diagram showing temporal changes in steam temperature, rotor surface temperature, and rotor center hole temperature at startup, operation, and stop; Second
Figure (b) is a diagram showing the change in rotor stress generation over time corresponding to the temperature change in Figure 2 (a), Figure 3 is a cross-sectional view of the rotor near the pressure stage and the intermediate pressure stage, and Figure 4. 5 is a sectional view of the rotor when the turbine refrigerant is started, and FIG. 5 is a sectional view of the rotor showing an embodiment of the present invention. 1... High pressure stage, 2... Medium pressure stage, 6... Steam temperature after first immersion, 7... Rotor surface temperature, 8... Rotor center hole temperature, 9... Rotor center hole stress , lo... Rotor surface center force, 11... A residual stress, 12... Minus yield point, 13... Rotor, 14... Rotor center hole, 15... Thermal stress, 16... Centrifugal stress, 17...
Resultant stress, 18a. 18b, 18c... Overlay part, 19*face part, 19a. 19b... External contour, 20... Contour. Agent: Patent Attorney Masami Akimoto] Suri? figure time

Claims (1)

【特許請求の範囲】 1、 ロータの表面に、該ロータの母材よシも熱膨張条
数の小さい材料を肉盛形成してなるタービンロータ。 2 上記材料が、上記ロータの母材が低クロム鋼の場合
に、高クロム鋼でるることを特徴とする特許請求の範囲
第1項に記載のタービンロータ。 3、 ロータの表面の応力集中部に肉盛溶接し、該肉盛
部を円滑に仕上げfc段、焼鈍処理して形成さ□ れる
タービンロータ。 4、上記応力集中部が、上記ロータのディスクつけ根で
あることを特徴とする特許請求の範囲第3項に記載のタ
ービンロータ。 5、上記応力集中部が、強度が波力低下した上記ロータ
の表層部をスキンカットした部分で−あると−2とを特
徴とする特許請求の範囲第3項に記載のタービンロータ
。 一17Q、Jbl−Li−J1%−’##1.n−J、
AbkJmJJx、1lal)’#故の小さい材料から
なること倉特畝とする特許請求の範囲第3項に記載のタ
ービンロータ。 7、 上記材料が、上記ロータの母材が低クロム鋼の場
合に、高クロム鋼であることを特徴とする特許請求の範
囲第6項に記載のタービンロータ。
[Scope of Claims] 1. A turbine rotor in which a material having a smaller thermal expansion thread number than the base material of the rotor is overlaid on the surface of the rotor. 2. The turbine rotor according to claim 1, wherein the material is high chromium steel when the base material of the rotor is low chromium steel. 3. A turbine rotor formed by overlay welding on the stress concentration area on the surface of the rotor, and then smoothing the overlay by finishing fc stage and annealing. 4. The turbine rotor according to claim 3, wherein the stress concentration portion is a root of a disk of the rotor. 5. The turbine rotor according to claim 3, wherein the stress concentration portion is a skin-cut portion of the surface layer of the rotor whose strength is reduced by wave force. -17Q, Jbl-Li-J1%-'##1. n-J,
The turbine rotor according to claim 3, wherein the ridges are made of a small material. 7. The turbine rotor according to claim 6, wherein the material is high chromium steel when the base material of the rotor is low chromium steel.
JP186584A 1984-01-11 1984-01-11 Turbine rotor Granted JPS60147501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP186584A JPS60147501A (en) 1984-01-11 1984-01-11 Turbine rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP186584A JPS60147501A (en) 1984-01-11 1984-01-11 Turbine rotor

Publications (2)

Publication Number Publication Date
JPS60147501A true JPS60147501A (en) 1985-08-03
JPH0472041B2 JPH0472041B2 (en) 1992-11-17

Family

ID=11513438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP186584A Granted JPS60147501A (en) 1984-01-11 1984-01-11 Turbine rotor

Country Status (1)

Country Link
JP (1) JPS60147501A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0312362A (en) * 1989-06-12 1991-01-21 Honda Motor Co Ltd Hybrid turbine rotor
US5739912A (en) * 1991-04-26 1998-04-14 Nippon Telegraph And Telephone Corporation Object profile measuring method and apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56139801U (en) * 1980-03-25 1981-10-22
JPS5799207A (en) * 1980-12-10 1982-06-19 Hitachi Ltd Production of rotor shaft
JPS599129A (en) * 1982-07-08 1984-01-18 Fuji Electric Co Ltd Stress relieving annealing method of turbine rotor material
JPS599127A (en) * 1982-07-08 1984-01-18 Fuji Electric Co Ltd Stress relieving annealing method of turbine rotor material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56139801U (en) * 1980-03-25 1981-10-22
JPS5799207A (en) * 1980-12-10 1982-06-19 Hitachi Ltd Production of rotor shaft
JPS599129A (en) * 1982-07-08 1984-01-18 Fuji Electric Co Ltd Stress relieving annealing method of turbine rotor material
JPS599127A (en) * 1982-07-08 1984-01-18 Fuji Electric Co Ltd Stress relieving annealing method of turbine rotor material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0312362A (en) * 1989-06-12 1991-01-21 Honda Motor Co Ltd Hybrid turbine rotor
US5739912A (en) * 1991-04-26 1998-04-14 Nippon Telegraph And Telephone Corporation Object profile measuring method and apparatus

Also Published As

Publication number Publication date
JPH0472041B2 (en) 1992-11-17

Similar Documents

Publication Publication Date Title
US5033938A (en) Repaired turbine blade and method of repairing
Baumann Some recent developments in large steam turbine practice
Jawad et al. Evaluation of tube-to-tubesheet junctions
EP1175956B1 (en) Metallic article with integral end band under compression and method for making
JPS60147501A (en) Turbine rotor
Bhatt et al. Performance enhancement in coal fired thermal power plants. Part II: steam turbines
JPS5974310A (en) Steam turbine plant
US2283901A (en) Turbine blading
Choi et al. A life assessment for steam turbine casing using inelastic analysis
Janssen et al. 35-year old splined-disc rotor design for large gas turbines
JPH0777004A (en) Assembled rotor for steam turbine
JPS5835204A (en) Diaphragm for steam turbine
JPS60159305A (en) Turbine nozzle box
JPS59150902A (en) Creep deterioration recovering method
JP3891920B2 (en) Welding material, welding method using the same, and turbine rotor
JPS5999002A (en) Steam turbin plant
JPS59115128A (en) Shrink-fitted rotor
Clinch Some operating experiences with high-pressure steam power plant
JPH10169408A (en) Seal structure of casing for steam turbine
JPS5970810A (en) Steam turbine
Horseman Parsons 500 and 660 MW steam turbines: operating experience and lessons learned
JPS5853602A (en) Rotor made of chrome steel
Johns et al. Turbine Remanufacture-One Option For Reliability And Efficiency Improvement.
JPS5938600A (en) Fatigue inhibitor for heat transmitting tube
Rodríguez et al. Aspects of remnant life assessment in old steam turbines