JPH0472041B2 - - Google Patents

Info

Publication number
JPH0472041B2
JPH0472041B2 JP59001865A JP186584A JPH0472041B2 JP H0472041 B2 JPH0472041 B2 JP H0472041B2 JP 59001865 A JP59001865 A JP 59001865A JP 186584 A JP186584 A JP 186584A JP H0472041 B2 JPH0472041 B2 JP H0472041B2
Authority
JP
Japan
Prior art keywords
rotor
stress
turbine
turbine rotor
thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59001865A
Other languages
Japanese (ja)
Other versions
JPS60147501A (en
Inventor
Hajime Toritani
Naoaki Shibashita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP186584A priority Critical patent/JPS60147501A/en
Publication of JPS60147501A publication Critical patent/JPS60147501A/en
Publication of JPH0472041B2 publication Critical patent/JPH0472041B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/007Preventing corrosion

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、蒸気タービンの高圧、中圧タービン
に使用されるタービンロータに係り、特に、ロー
タ母材の表面に肉盛し、強度を向上するようにし
たタービンロータに関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a turbine rotor used in a high-pressure or intermediate-pressure steam turbine. This invention relates to a turbine rotor.

〔発明の背景〕 近年、増大する電力需要を効率よく補うために
蒸気タービン発電装置は著しく大容量化されてい
る。またこれにともなつて電力需要の昼夜の差を
補うために、従来ベースロードとして運転されて
きた発電装置にも頻繁な起動停止、負荷変化が要
求されてきている。
[Background of the Invention] In recent years, the capacity of steam turbine power generation devices has been significantly increased in order to efficiently compensate for the increasing demand for electric power. In addition, in order to compensate for the difference in power demand between day and night, power generation equipment that has traditionally been operated as a base load is required to start and stop frequently and change its load.

上記の起動停止、負荷変化に伴い、タービンロ
ータ(以下ロータと称呼する)には熱応力が生
じ、特にロータのデイスクつけ根には応力集中が
発生する。従つて、ロータの寿命を向上するため
には、該ロータの強度、都にデイスクつけ根の表
面の強度を向上させる必要がある。又、タービン
の長期間使用によりロータが疲労した場合、これ
を適宜再生する手段も要請されていた。しかしな
がら、従来技術では簡便、かつ有効な手段がな
く、ロータの信頼性、寿命の低下を招く欠点があ
つた。
With the above-mentioned startup/stop and load changes, thermal stress occurs in the turbine rotor (hereinafter referred to as rotor), and stress concentration occurs particularly at the base of the rotor's disk. Therefore, in order to improve the life of the rotor, it is necessary to improve the strength of the rotor, and especially the strength of the surface of the base of the disk. There is also a need for a means for appropriately regenerating the rotor when it becomes fatigued due to long-term use of the turbine. However, the prior art lacks a simple and effective means, and has the drawback of reducing the reliability and life of the rotor.

すなわち、第1図は、4フロー型の代表的蒸気
タービンの蒸気流路を示す。ボイラーからの蒸気
5はまず高圧段落1を通り、再びボイラー51で
加熱されて中圧段落2に入る。以後、クロスオー
バ管3を通つて低圧段落4を通過しコンデンサー
へ導かれる。
That is, FIG. 1 shows a steam flow path of a typical four-flow type steam turbine. Steam 5 from the boiler first passes through high pressure stage 1, is heated again by boiler 51, and enters medium pressure stage 2. Thereafter, it passes through the crossover pipe 3, passes through the low pressure stage 4, and is led to the condenser.

この蒸気タービンにおいて、起動時、停止時ま
たは、負荷変動時に蒸気温度変化によりタービン
ロータに熱応力が発生する。ここで第2図a,b
にて、その熱応力発生過程を説明する。
In this steam turbine, thermal stress is generated in the turbine rotor due to changes in steam temperature during startup, shutdown, or load fluctuations. Here, Figure 2 a, b
The thermal stress generation process will be explained below.

第2図aは横軸に時間を示し、縦軸にロータお
よびロータまわりの温度を示したものであり、第
2図bは、同じく横軸に時間を表示し、縦軸にロ
ータに生ずる応力を示したものである。共に冷機
起動の場合を示す。
Figure 2a shows time on the horizontal axis and the rotor and the temperature around the rotor on the vertical axis, and Figure 2b shows time on the horizontal axis and the stress generated in the rotor on the vertical axis. This is what is shown. Both figures show the case of cold start.

第2図aに示す如く、タービン起動時にはロー
タの第1段後蒸気温度6はほぼ室温の状態から実
線の如く立上る。又、ロータ表面温度7は点線で
示す如く、第1段後蒸気温度6からやや遅れ、同
じように立上る。又ロータ中心孔温度8は、一点
鎖線で示す如く、ロータ表面温度7から更に遅
れ、ほぼ同じように立上る。起動後からタービン
停止まで、上記の各温度は時間軸に平行に、かつ
同一温度に保持されて経過する。タービン停止時
には、まず、第1段後蒸気温度6がほぼ室温まで
下り、次に、ロータ表面温度7、ロータ中心孔温
度8が順次遅れて同じように下る。
As shown in FIG. 2a, when the turbine is started, the steam temperature 6 after the first stage of the rotor rises from approximately room temperature as shown by the solid line. Further, as shown by the dotted line, the rotor surface temperature 7 rises slightly behind the first stage post-steam temperature 6 in the same manner. Further, as shown by the dashed line, the rotor center hole temperature 8 lags further behind the rotor surface temperature 7 and rises at almost the same rate. From the time the turbine is started until the turbine is stopped, each of the above temperatures passes parallel to the time axis and is maintained at the same temperature. When the turbine is stopped, the first stage post-steam temperature 6 first decreases to approximately room temperature, and then the rotor surface temperature 7 and the rotor center hole temperature 8 decrease in the same manner with a delay.

第2図bは第2図aに示した温度変化に伴つ
て、ロータ内に生ずる応力を示したもので、ロー
タ母材の表面応力10は点線で示す如く、圧縮反
応となり、ロータ中心孔応力9は引張応力とな
る。ロータ母材の表面応力10の内、ロータのデ
イスクつけ根には応力集中が生じ、マイナス降伏
点12を越す圧縮応力が生ずる。このため、起動
後においても残留応力11が残る。又、タービン
停止時には、図示の如くロータ母材の表面応力1
0は引張応力となり、ロータ中心孔応力9は圧縮
応力となる。
Figure 2b shows the stress generated in the rotor due to the temperature change shown in Figure 2a.The surface stress 10 of the rotor base material becomes a compression reaction as shown by the dotted line, and the rotor center hole stress 9 is tensile stress. Among the surface stress 10 of the rotor base material, stress concentration occurs at the root of the rotor disk, resulting in compressive stress exceeding the minus yield point 12. Therefore, residual stress 11 remains even after startup. Also, when the turbine is stopped, the surface stress 1 of the rotor base material is reduced as shown in the figure.
0 becomes tensile stress, and rotor center hole stress 9 becomes compressive stress.

第3図はロータ13の概要を示すもので、高圧
段落1には主蒸気S1が通過し、中圧段落2には通
過した主蒸気S1が再加熱された再熱蒸気S2が通過
する。これ等の蒸気により、上記の如く、高圧段
落1の高圧初段デイスクつけ根Aおよび中圧段落
2の再熱初段デイスクつけ根Bには上記の如く応
力集中した熱応力が生じ、ロータ中心孔14にも
上記の熱応力が生ずる。
Figure 3 shows an overview of the rotor 13, in which main steam S 1 passes through high pressure stage 1, and reheated steam S 2, which is the main steam S 1 that has passed through it, passes through intermediate pressure stage 2 . do. These steams generate concentrated thermal stress at the base A of the high-pressure first-stage disc of the high-pressure stage 1 and the base B of the first-stage reheating disc of the intermediate-pressure stage 2, as described above, and also in the rotor center hole 14. The thermal stress described above occurs.

次に、第4図に示す如く、ロータ13およびロ
ータ中心孔14には、点線で示す上記の熱応力1
5の他、一点鎖線で示す遠心応力16が作用す
る。従つて、その合成応力17(実線で示す)が
作用する。ロータ表面では、起動停止に伴う熱応
力15が遠心応力16に比べて非常に大きく、ロ
ータ表面の寿命管理はロータ表面の内のデイスク
つけ根に作用する熱応力15に基く低サイクル疲
労を考慮すればよい。又、ロータ中心孔14で
は、熱応力15による低サイクル疲労と、遠心応
力16によるクリープ寿命を考慮すればよい。
Next, as shown in FIG.
In addition to 5, a centrifugal stress 16 shown by a dashed line acts. Therefore, the resultant stress 17 (shown by the solid line) acts. On the rotor surface, the thermal stress 15 associated with starting and stopping is much larger than the centrifugal stress 16, and the lifespan of the rotor surface can be managed by considering low cycle fatigue based on the thermal stress 15 acting on the disk root within the rotor surface. good. Further, in the rotor center hole 14, low cycle fatigue due to thermal stress 15 and creep life due to centrifugal stress 16 may be taken into consideration.

上記の寿命管理に関しては、公知文献の存在し
例えば、a prior paker entitles“The
Operation of Large Steam Turbines to Limit
Cyclie Thermal Cracking”by D.P、Timo to
G.W Aarney(ASME Paker NO、67−WA/
PWR.publishes in 1967)が上げられるが、ター
ビンの安全運転のためにはロータの寿命管理が必
要であり、このためには、デイスクつけ根の応力
集中による熱応力を極力小さくすることが必要と
される。しかしながら、従来技術においては、簡
便、適切な手段がなく、タービンの信頼性、寿命
を低下させる原因となつていた。又、長時間使用
により疲労低下したロータを再生する適切の手段
もなく、問題とされていた。
Regarding the above-mentioned lifespan management, there are known documents such as a prior paker entitles “The
Operation of Large Steam Turbines to Limit
Cyclie Thermal Cracking”by DP, Timo to
GW Aarney (ASME Paker NO, 67−WA/
PWR.publishes in 1967), but for safe operation of the turbine it is necessary to manage the life of the rotor, and for this purpose it is necessary to minimize the thermal stress caused by stress concentration at the base of the disk. Ru. However, in the prior art, there is no simple and appropriate means, which causes a reduction in the reliability and life of the turbine. Furthermore, there is no suitable means for regenerating a rotor that has become fatigued due to long-term use, which has been a problem.

なお、ロータ表面にロータ母材より熱膨張係数
の大きな溶射材を溶射し、溶射材の方がロータ母
材に比べて熱膨張する力が大きいことを利用して
ロータ母材表面での熱応力を軽減させるものが実
開昭56−139801号により知られている。しかし乍
ら、熱応力によるクラツクは、表面の応力過大部
から入るため、ロータ母材の熱応力が低下しても
溶射材の表面からクラツクが入るおそれがあり、
ロータの寿命を向上させるために適切な手段とは
云えない。
In addition, a thermal spray material with a larger coefficient of thermal expansion than the rotor base material is sprayed onto the rotor surface, and the thermal stress on the rotor base material surface is reduced by taking advantage of the fact that the thermal spray material has a larger thermal expansion force than the rotor base material. A method for reducing this is known from Utility Model Application No. 56-139801. However, cracks due to thermal stress enter from the excessively stressed parts of the surface, so even if the thermal stress of the rotor base material decreases, there is a risk that cracks may enter from the surface of the sprayed material.
This cannot be said to be an appropriate means for improving the life of the rotor.

〔発明の目的〕[Purpose of the invention]

本発明は、上記の不具合を解決すべく創案され
たものであり、その目的は、タービンの信頼性お
よび寿命を向上すると共に、簡便の手段により再
生可能となるタービンロータを提供することにあ
る。
The present invention was devised to solve the above-mentioned problems, and its purpose is to provide a turbine rotor that improves the reliability and life of the turbine and can be regenerated by simple means.

〔発明の概要〕[Summary of the invention]

本発明は、上記の目的を達成するため、タービ
ンロータ表面の熱応力集中部にロータ母材より熱
膨張係数の小さい材料を肉盛形成してなるタービ
ンロータを特徴とする。
In order to achieve the above object, the present invention features a turbine rotor in which a material having a coefficient of thermal expansion smaller than that of the rotor base material is overlaid on a thermal stress concentration area on the surface of the turbine rotor.

また、本発明は、タービンロータ表面の熱応力
集中部にロータ母材より熱膨張係数の小さい材料
を肉盛溶接し、該肉盛溶接部を円滑に仕上げた
後、焼鈍処理して形成されるタービンロータを特
徴とする。
In addition, the present invention is formed by overlay welding a material having a coefficient of thermal expansion smaller than that of the rotor base material on the thermal stress concentration area on the surface of the turbine rotor, and after finishing the overlay welded part smoothly, annealing is performed. Features a turbine rotor.

タービンロータ表面の熱応力は、表面材料の熱
膨張係数αに左右される。本発明はこの点に着目
し、ロータ表面の熱応力集中部にロータ母材より
熱膨張係数の小さい材料を肉盛形成し、その肉盛
材の熱膨張係数αが小さいことにより熱応力を低
下させる。
Thermal stresses on the turbine rotor surface depend on the thermal expansion coefficient α of the surface material. Focusing on this point, the present invention builds up a material with a coefficient of thermal expansion smaller than that of the rotor base material on the thermal stress concentration area of the rotor surface, and reduces thermal stress by building up the overlay material with a small coefficient of thermal expansion α. let

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図面に基づき説明す
る。
Embodiments of the present invention will be described below based on the drawings.

まず、本実施例の概要を説明する。 First, an overview of this embodiment will be explained.

第5図に示す如く、高圧段落1(中圧段落2の
場合も同様であるが、以下省略する)のロータ1
3の表面には表面輪郭19a,19bで示す表面
部19が形成され、特に、高圧初段デイスクつけ
根(A丸印で示す)は応力集中を緩和すべく弧状
に形成されている。本実施例では、表面輪郭部1
9a,19bと上記高圧初段デイスクつけ根の弧
状部を図示の斜線の如く、輪郭20から適宜の厚
みだけ肉盛したものから形成せしめ、肉盛部18
a,18b,18cを形成したものである。肉盛
材料としては、ロータ13の母材がCr−Mo−V
鋼の如き低クロム鋼の場合には、12Cr鋼の如き
高クロム鋼を用いるのが望ましい。12Cr鋼は公
知の如く、Cr−Mo−V鋼に較べ、熱膨脹係数が
小さい材料である。上記肉盛後に、表面を円滑に
仕上げることにより、肉盛表面強度を向上するこ
とができる。又、ロータ13の母材表面形状の
内、高圧初段ロータデイスクつけ根部は、上記の
如く応力集中しやすい部分のため、特に、この部
分を肉盛し、円滑形状に仕上げ、かつ焼鈍処理し
て応力歪を除去し、強度の高いタービンロータを
形成することができる。
As shown in FIG. 5, the rotor 1 of the high pressure stage 1 (the same applies to the intermediate pressure stage 2, but will be omitted below).
A surface portion 19 shown by surface contours 19a and 19b is formed on the surface of 3, and in particular, the root of the high-pressure first stage disk (indicated by circle A) is formed in an arc shape to alleviate stress concentration. In this embodiment, the surface contour portion 1
9a, 19b and the arcuate portion of the base of the high-pressure first-stage disk are formed by building up an appropriate thickness from the contour 20, as shown by diagonal lines in the figure, to form the building up portion 18.
a, 18b, and 18c are formed. As for the overlay material, the base material of the rotor 13 is Cr-Mo-V.
In the case of low chromium steels such as steel, it is desirable to use high chromium steels such as 12Cr steel. As is well known, 12Cr steel is a material with a smaller coefficient of thermal expansion than Cr-Mo-V steel. After the build-up, the surface strength of the build-up can be improved by smoothing the surface. In addition, among the surface shapes of the base material of the rotor 13, the base of the high-pressure first stage rotor disk is a part where stress tends to concentrate as described above, so this part is particularly overlaid, finished into a smooth shape, and annealed. It is possible to eliminate stress and strain and form a turbine rotor with high strength.

次に、本実施例を詳細に説明する。 Next, this embodiment will be explained in detail.

まず、理論的根拠を記載する。 First, the rationale will be described.

一般に、ロータ表面の熱応力δTは下記に示され
る。
Generally, the thermal stress δT on the rotor surface is shown below.

δT=α・E/1−ν(Ta−Ts) ここで、αはロータ材の熱膨脹係数、Eはロー
タの縦弾性係数、νはロータのポアソン比、Ta
はロータの平均温度、Tsはロータの表面温度を
示す。
δ T = α・E/1−ν(Ta−Ts) Here, α is the coefficient of thermal expansion of the rotor material, E is the longitudinal elastic modulus of the rotor, ν is Poisson's ratio of the rotor, Ta
is the average temperature of the rotor, and Ts is the surface temperature of the rotor.

上式よりロータ材の熱膨脹係数αが小さけれ
ば、それだけロータ表面の熱応力δTが小さくな
る。
From the above equation, the smaller the thermal expansion coefficient α of the rotor material, the smaller the thermal stress δ T on the rotor surface.

12Cr鋼は、Cr−Mo−V鋼に比べ上記の如く熱
膨脹係数αが20%も小さい。しかしながら、
12Cr鋼は高クロム鋼であり、ロータ13全体を
12Cr鋼で製作することは、高価のものとなり、
かつ加工性もやや劣る。従つて、所要箇所のみを
肉盛形成したのが本実施例のポイントである。
As mentioned above, 12Cr steel has a thermal expansion coefficient α that is 20% smaller than that of Cr-Mo-V steel. however,
12Cr steel is a high chromium steel, and the entire rotor 13 is
Manufacturing from 12Cr steel is expensive;
Moreover, the processability is also slightly inferior. Therefore, the key point of this embodiment is to build up only the required locations.

本実施例では、ロータ母材表面の熱応力の大き
い部分に、上記の如く肉盛部18a,18b,1
8cを形成し、肉盛部18a,18b,18cの
表面をロータ13の形状に沿つて円滑に仕上げた
ものから形成される。
In this embodiment, as described above, the built-up parts 18a, 18b, 1
8c, and the surfaces of the built-up parts 18a, 18b, and 18c are smoothly finished along the shape of the rotor 13.

肉盛部18a,18b,18cの箇所、肉厚等
は、タービンの容量、段落の位置、形状等によ
り、適宜設定される。
The location, wall thickness, etc. of the built-up portions 18a, 18b, 18c are appropriately set depending on the capacity of the turbine, the position and shape of the stage, etc.

本実施例で、低クロム鋼Cr−Mo−Vに対し、
12Cr鋼を用いたが、勿論これに限定するもので
ない。又、ロータ13の母材がCr−Mo−V鋼以
外の低クロム鋼に対しても、これに見合う低熱膨
脹係数の高クロム鋼が適宜設定される。
In this example, for low chromium steel Cr-Mo-V,
Although 12Cr steel was used, it is of course not limited to this. Furthermore, even if the base material of the rotor 13 is a low chromium steel other than Cr-Mo-V steel, a high chromium steel with a correspondingly low coefficient of thermal expansion is appropriately set.

次に、併合発明の実施例を説明する。上記の如
く、ロータ13には、高圧初段デイスクつけ根の
如き応力集中部が存在する。この部分は上記の如
く円弧状に形成されているが、既存の形状では不
十分の場合に、更に、この部分を肉盛し、円滑な
形状に仕上げ、かつ、焼鈍処理をしたものであ
る。肉盛仕上げと焼鈍による組織の平準化、歪除
去により、より強度を向上することができる。こ
の場合、肉盛材料は前記の如く、ロータ母材より
熱膨張係数の低いものとする。
Next, an example of the merged invention will be described. As described above, the rotor 13 has stress concentration areas such as the base of the high-pressure first stage disk. This portion is formed into an arc shape as described above, but if the existing shape is insufficient, this portion is further overlaid, finished into a smooth shape, and annealed. Strength can be further improved by leveling the structure and removing distortion through overlay finishing and annealing. In this case, the overlay material should have a lower coefficient of thermal expansion than the rotor base material, as described above.

又、上記肉盛は、新規製作するロータ13にの
み適用するものでなく、使用によりその表層部の
強度が疲労劣化したロータ13の再生にも適用さ
れる。応力集中により疲労劣化した場合を公知の
手段(磁気探傷、カラーチエツク、目視等)によ
り見出し、この部分をスキンカツトした後、上記
肉盛を行ない、円滑に仕上げた後、焼鈍処理する
ことにより強度の高いロータ13が再生される。
Moreover, the above-mentioned overlay is not only applied to the newly manufactured rotor 13, but also applied to the regeneration of the rotor 13 whose surface layer strength has deteriorated due to fatigue due to use. Cases of fatigue deterioration due to stress concentration are detected by known means (magnetic flaw detection, color check, visual inspection, etc.), and after skin-cutting the area, the above-mentioned overlay is performed, and after a smooth finish, annealing is performed to improve the strength. The tall rotor 13 is regenerated.

上記の肉盛技術は、従来より一般に採用されて
いるもので、特に高度の技術を必要とするもので
なく、簡便に実施することができる。
The above-mentioned overlaying technique is one that has been generally employed in the past, does not require particularly sophisticated techniques, and can be easily implemented.

なお、低熱膨脹係数のクロム鋼を用いた上記実
施例の場合には、熱応力を約20%低減でき、寿命
を大幅に向上することができる。
In addition, in the case of the above embodiment using chromium steel with a low coefficient of thermal expansion, thermal stress can be reduced by about 20%, and the life can be significantly improved.

〔発明の効果〕〔Effect of the invention〕

以上の説明によつて明らかの如く、本発明によ
れば、タービンの信頼性、寿命を大巾に向上し得
ると共に、簡便の手段によりロータを再生し得る
効果が上げられる。
As is clear from the above description, according to the present invention, the reliability and life of the turbine can be greatly improved, and the rotor can be regenerated by simple means.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は4フロー型蒸気タービンの概要系統
図、第2図aは、起動、運転、停止時の蒸気温
度、ロータ表面温度、ロータ中心孔温度の時間的
変化を示す線図、第2図bは第2図aの温度変化
に対応するロータ応力発生の時間変化を示す線
図、第3図は高圧段落および中圧段落の近傍のロ
ータの断面図、第4図はタービン冷媒起動時のロ
ータに負荷される応力分布図、第5図は本発明一
実施例を示すロータ断面図である。 1……高圧段落、2……中圧段落、6……第1
段後蒸気温度、7……ロータ表面温度、8……ロ
ータ中心孔温度、9……ロータ中心孔応力、10
……ロータ表面応力、11……残留応力、12…
…マイナス降伏点、13……ロータ、14……ロ
ータ中心孔、15……熱応力、16……遠心応
力、17……合成応力、18a,18b,18c
……肉盛部、19……表面部、19a,19b…
…外面輪郭、20……輪郭。
Figure 1 is a schematic system diagram of a 4-flow steam turbine. Figure 2a is a diagram showing temporal changes in steam temperature, rotor surface temperature, and rotor center hole temperature during startup, operation, and shutdown. b is a diagram showing the time change in rotor stress generation corresponding to the temperature change in Fig. 2a, Fig. 3 is a cross-sectional view of the rotor near the high-pressure stage and intermediate-pressure stage, and Fig. 4 is a diagram showing the time when the turbine refrigerant is started. FIG. 5 is a sectional view of a rotor showing an embodiment of the present invention. 1... High pressure stage, 2... Medium pressure stage, 6... First
Post-stage steam temperature, 7... Rotor surface temperature, 8... Rotor center hole temperature, 9... Rotor center hole stress, 10
...Rotor surface stress, 11...Residual stress, 12...
...Minus yield point, 13...Rotor, 14...Rotor center hole, 15...Thermal stress, 16...Centrifugal stress, 17...Combined stress, 18a, 18b, 18c
... Overlay part, 19... Surface part, 19a, 19b...
...external contour, 20...contour.

Claims (1)

【特許請求の範囲】 1 タービンロータ表面の熱応力集中部に該ロー
タの母材より熱膨張係数の小さい材料を肉盛形成
してなるタービンロータ。 2 タービンロータ母材はCr−Mo−V銅で、肉
盛材は12Cr鋼からなる特許請求の範囲第1項に
記載のタービンロータ。 3 熱膨張係数がタービンロータ母材より20%小
さい肉盛材をタービンロータ表面の熱応力集中部
に肉盛形成してなる特許請求の範囲第1項に記載
のタービンロータ。 4 タービンロータ表面の熱応力集中部にロータ
母材より熱膨張係数の小さい材料を肉盛溶接し、
該肉盛部を円滑に仕上げた後、焼鈍処理して形成
されるタービンロータ。
[Scope of Claims] 1. A turbine rotor in which a material having a coefficient of thermal expansion smaller than that of a base material of the rotor is overlaid on a thermal stress concentration area on the surface of the turbine rotor. 2. The turbine rotor according to claim 1, wherein the turbine rotor base material is made of Cr-Mo-V copper and the overlay material is made of 12Cr steel. 3. The turbine rotor according to claim 1, wherein a build-up material whose coefficient of thermal expansion is 20% smaller than that of the turbine rotor base material is built-up on the thermal stress concentration area on the surface of the turbine rotor. 4 Overlay welding a material with a smaller coefficient of thermal expansion than the rotor base material to the thermal stress concentration area on the turbine rotor surface,
The turbine rotor is formed by smoothing the built-up portion and then annealing it.
JP186584A 1984-01-11 1984-01-11 Turbine rotor Granted JPS60147501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP186584A JPS60147501A (en) 1984-01-11 1984-01-11 Turbine rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP186584A JPS60147501A (en) 1984-01-11 1984-01-11 Turbine rotor

Publications (2)

Publication Number Publication Date
JPS60147501A JPS60147501A (en) 1985-08-03
JPH0472041B2 true JPH0472041B2 (en) 1992-11-17

Family

ID=11513438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP186584A Granted JPS60147501A (en) 1984-01-11 1984-01-11 Turbine rotor

Country Status (1)

Country Link
JP (1) JPS60147501A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2739343B2 (en) * 1989-06-12 1998-04-15 本田技研工業株式会社 Hybrid turbine rotor
US5739912A (en) * 1991-04-26 1998-04-14 Nippon Telegraph And Telephone Corporation Object profile measuring method and apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5799207A (en) * 1980-12-10 1982-06-19 Hitachi Ltd Production of rotor shaft
JPS599129A (en) * 1982-07-08 1984-01-18 Fuji Electric Co Ltd Stress relieving annealing method of turbine rotor material
JPS599127A (en) * 1982-07-08 1984-01-18 Fuji Electric Co Ltd Stress relieving annealing method of turbine rotor material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56139801U (en) * 1980-03-25 1981-10-22

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5799207A (en) * 1980-12-10 1982-06-19 Hitachi Ltd Production of rotor shaft
JPS599129A (en) * 1982-07-08 1984-01-18 Fuji Electric Co Ltd Stress relieving annealing method of turbine rotor material
JPS599127A (en) * 1982-07-08 1984-01-18 Fuji Electric Co Ltd Stress relieving annealing method of turbine rotor material

Also Published As

Publication number Publication date
JPS60147501A (en) 1985-08-03

Similar Documents

Publication Publication Date Title
US5351395A (en) Process for producing turbine bucket with water droplet erosion protection
US5033938A (en) Repaired turbine blade and method of repairing
EP1770182B1 (en) High-strength heat resisting cast steel, method of producing the steel, and applications of the steel
CN101341001A (en) Method of producing a welded rotor of a low-pressure steam turbine by means of build-up welding and stress-free annealing
US5795412A (en) Method of manufacturing and repairing a blade made of α-β titanium
CN106424136A (en) Titanium-steel composite plate with IF steel as middle layer and manufacturing method thereof
JP2008536050A (en) Steam turbine equipment components, steam turbine equipment, and utilization and manufacturing methods of steam turbine equipment components
JP2000282808A (en) Steam turbine facility
Bhatt et al. Performance enhancement in coal fired thermal power plants. Part II: steam turbines
EP2584149A2 (en) Turbine blade with erosion shield plate
JPH0472041B2 (en)
JP2001317301A (en) Steam turbine rotor and its manufacturing method
US11708770B2 (en) Turbine casing component and repair method therefor
CN106391707A (en) Titanium-steel clad plate using IF steel as middle layer and preparation method of titanium-steel clad plate
US9358609B2 (en) Process for producing a turbine housing and turbine housing
JPS5974310A (en) Steam turbine plant
JPH0777004A (en) Assembled rotor for steam turbine
JPS6160875A (en) Manufacture of material for turbine
JPS60159305A (en) Turbine nozzle box
JPH0529761B2 (en)
JP2004308552A (en) Repairing method of turbine rotor, and turbine rotor
JP3891920B2 (en) Welding material, welding method using the same, and turbine rotor
GB2255920A (en) "parts for and methods of repairing turbine blades"
Clinch Some operating experiences with high-pressure steam power plant
Patchell et al. Discussion on “Some recent developments in large steam turbine practice”