JPH0777004A - Assembled rotor for steam turbine - Google Patents

Assembled rotor for steam turbine

Info

Publication number
JPH0777004A
JPH0777004A JP22191293A JP22191293A JPH0777004A JP H0777004 A JPH0777004 A JP H0777004A JP 22191293 A JP22191293 A JP 22191293A JP 22191293 A JP22191293 A JP 22191293A JP H0777004 A JPH0777004 A JP H0777004A
Authority
JP
Japan
Prior art keywords
rotor
high temperature
stress corrosion
steam turbine
steam inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP22191293A
Other languages
Japanese (ja)
Inventor
Ryutaro Umagoe
龍太郎 馬越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP22191293A priority Critical patent/JPH0777004A/en
Publication of JPH0777004A publication Critical patent/JPH0777004A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To prevent any trouble by thermal stress and stress corrosion from being generated at the time of quick starting by axially-dividing a rotor at a hollow part formed at the steam inlet part of the rotor, and bolting them together. CONSTITUTION:The steam inlet part A of a turbine rotor is formed into a hollow shape, and is connected to the rotor before a dummy part B through stud reamer bolts 11 arranged in the peripheral direction. A high temperature part rotor is composed of heat resisting steel, and a low temperature part rotor is composed of SCC (Stress Corrosion Crack) resisting material. It is possible to improve heat utilization at the time of DSS (Daily Start and Stop) operation or WSS (Weekly Start and Stop) operation, and thermal fatigue resistance high temperature creep strength and stress corrosion crack resisting properties, thus to increase reliability of the rotors.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、主として急速起動が要
求される蒸気タービンのロータ構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention mainly relates to a rotor structure for a steam turbine which requires a quick start.

【0002】[0002]

【従来の技術】図3は従来の 75,000kW 単車室火力発電
用蒸気タービンロータの一例を示す側面図である。ロー
タは図の左側から軸継手(1),スラスト軸受(2),
ジャーナル軸受(3),グランド(4),複数個のダン
ミー(5),タービンディスク(6),グランド
(7),ジャーナル軸受(8)および軸継手(9)によ
って構成され、耐熱鋼鍛造素材から一体に削り出された
構造になっている。なお車室は高圧車室と低圧車室に分
割されている。
2. Description of the Related Art FIG. 3 is a side view showing an example of a conventional 75,000kW single-chamber thermal power generation steam turbine rotor. From the left side of the figure, the rotor is the shaft coupling (1), thrust bearing (2),
Composed of journal bearing (3), gland (4), a plurality of dammy (5), turbine disk (6), gland (7), journal bearing (8) and shaft coupling (9), made of heat-resistant steel forging material It has a structure that is carved out in one piece. The passenger compartment is divided into a high-pressure passenger compartment and a low-pressure passenger compartment.

【0003】[0003]

【発明が解決しようとする課題】[Problems to be Solved by the Invention]

1) 火力発電用蒸気タービンは、給電指令に基づいて
DSS(Daily Startand Stop)運用やWSS (Weekly
Start and Stop)運用をする場合が多い。これは電力需
要のばらつきに対応するためである。起動頻度が多いと
起動時の消費蒸気量が増え、プラントの熱利用率が低下
する。このため起動時間の短かい急速起動蒸気タービン
が要求される。しかし急速に起動すると、蒸気温度の上
昇に伴ってロータに過渡的な熱応力が発生し、この熱応
力による低サイクル熱疲労損傷が懸念されるため、起動
時間の短縮には限界があった。
1) Steam turbines for thermal power generation use DSS (Daily Start and Stop) operation and WSS (Weekly) based on the power supply command.
Start and Stop) is often used. This is to cope with variations in power demand. If the startup frequency is high, the amount of steam consumed at startup increases, and the heat utilization rate of the plant decreases. Therefore, a rapid start steam turbine having a short start time is required. However, when the engine is rapidly started, transient thermal stress is generated in the rotor as the steam temperature rises, and there is a concern of low cycle thermal fatigue damage due to this thermal stress, so there is a limit to the reduction of the starting time.

【0004】2) ロータの高温部には上記熱疲労と高
温クリープが発生し、低温部には応力をうけた状態で腐
食が促進される、いわゆる応力腐食によって、応力腐食
割れ(SCC:Stress Corrosion Crack)が発生する。
この高温クリープと低温SCCに対して、同時に対応で
きる材料は無いので、ロータを一体構造とすれば、いず
れかのトラブルが発生する恐れがあった。
2) Stress corrosion cracking (SCC) occurs due to so-called stress corrosion, in which the above-mentioned thermal fatigue and high temperature creep occur in the high temperature portion of the rotor, and corrosion is promoted in the low temperature portion under stress. Crack) occurs.
Since there is no material that can simultaneously cope with the high temperature creep and the low temperature SCC, if the rotor has an integral structure, there is a possibility that any trouble may occur.

【0005】[0005]

【課題を解決するための手段】本発明は、前記従来の課
題を解決するために、ロータの蒸気入口部を中空に形成
し、その中空部分で上記ロータを軸方向に分割するとと
もに、上記分割されたロータをボルト結合したことを特
徴とする蒸気タービンの組立ロータ;ならびに、ロータ
の高温部を耐熱鋼または耐熱合金,低温部を耐応力腐食
割れ材でそれぞれ製造し、それら高温部ロータと低温部
ロータをボルト結合したことを特徴とする蒸気タービン
の組立ロータを提案するものである。
In order to solve the above-mentioned conventional problems, the present invention forms a steam inlet portion of a rotor in a hollow manner and divides the rotor axially in the hollow portion, and further Rotor of a steam turbine, characterized by bolting the formed rotor; and a high temperature part of the rotor manufactured by heat resistant steel or heat resistant alloy, and a low temperature part by stress corrosion cracking resistant material The present invention proposes an assembled rotor for a steam turbine, characterized in that the partial rotors are bolted together.

【0006】[0006]

【作用】[Action]

1) 前記第1の解決手段においては、タービンロータ
の蒸気入口部を中空にしたので、ロータ最高温部の熱容
量が減少し、起動時のロータ熱応力が低下する。また、
ロータの半径方向の肉厚が薄いので、温度の不均一が軽
減され、その点でも熱応力が低下する。
1) In the first solving means, since the steam inlet portion of the turbine rotor is hollow, the heat capacity of the rotor highest temperature portion is reduced, and the rotor thermal stress at the time of startup is reduced. Also,
Since the thickness of the rotor in the radial direction is thin, the non-uniformity of temperature is reduced, and the thermal stress is reduced in that respect as well.

【0007】2) 前記第2の解決手段においては、耐
熱鋼または耐熱合金製の高温部ロータと耐SCC材製の
低温部ロータとをボルト結合した組立ロータとなってい
るので、熱疲労と高温クリープおよび応力腐食割れのい
ずれにも優れたタービンロータが得られる。
2) In the second means for solving the problems, since the rotor having a high temperature portion made of heat-resistant steel or a heat-resistant alloy and the rotor having a low temperature portion made of SCC material are bolted to each other, they are assembled rotors, so that thermal fatigue and high temperature A turbine rotor excellent in both creep and stress corrosion cracking can be obtained.

【0008】[0008]

【実施例】図1は本発明の第1実施例を示す縦断面図で
ある。この図において、タービンロータの蒸気入口部A
は中空に形成され、ダンミー部B以前のロータとは円周
方向に配設された植込リーマボルト(11)によって結
合されている。
1 is a vertical sectional view showing a first embodiment of the present invention. In this figure, the steam inlet portion A of the turbine rotor is shown.
Is hollow and is connected to the rotor in front of the dammy portion B by a reamer bolt (11) which is circumferentially arranged.

【0009】本実施例においては、タービンロータの蒸
気入口部Aが中空になっているので、ロータ最高温部の
熱容量が小さく、したがって起動時のロータ熱応力も低
い。またロータの半径方向の肉厚が薄いので、内外の温
度差が小さく、その点でも熱応力が低下する。
In this embodiment, since the steam inlet portion A of the turbine rotor is hollow, the heat capacity of the highest temperature portion of the rotor is small, and therefore the rotor thermal stress at startup is also low. Further, since the rotor is thin in the radial direction, the temperature difference between the inside and the outside is small, and the thermal stress is reduced in that respect as well.

【0010】なお、図1において、ロータの分割部分は
ダンミー部で分割しているが、中空部をダンミー部まで
伸ばしてグランド部で分割しボルト結合しても良い。ま
た、その他の部分で分割しても良い。
In FIG. 1, the divided portion of the rotor is divided by the dummy portion, but the hollow portion may be extended to the dummy portion and divided by the ground portion for bolt connection. Also, it may be divided at other portions.

【0011】次に図2は本発明の第2実施例を示す縦断
面図である。この図において、高温部ロータ(21)と
低温部ロータ(22)は、円周方向に配設されたリーマ
ボルト(23)によって結合されている。低温部ロータ
は3個のタービンディスクとシャフトによって構成され
ている。高温部ロータ(21)は耐熱鋼または耐熱合金
によって製造されており、低温部ロータ(22)は耐応
力腐食割れ(耐SCC)材で製造されている。
Next, FIG. 2 is a vertical sectional view showing a second embodiment of the present invention. In this figure, the high temperature part rotor (21) and the low temperature part rotor (22) are connected by a reamer bolt (23) arranged in the circumferential direction. The low temperature rotor is composed of three turbine disks and a shaft. The high temperature rotor (21) is made of heat resistant steel or heat resistant alloy, and the low temperature rotor (22) is made of stress corrosion cracking resistant (SCC resistant) material.

【0012】このように本実施例のタービンロータは、
耐熱鋼または耐熱合金製の高温部ロータと耐SCC材製
の低温部ロータとをボルト結合した組立ロータなので、
熱疲労と高温クリープおよび応力腐食割れのいずれにも
優れた特性を具えている。
In this way, the turbine rotor of this embodiment is
Since it is an assembled rotor in which a high temperature part rotor made of heat resistant steel or heat resistant alloy and a low temperature part rotor made of SCC resistant material are bolted together,
It has excellent properties for both thermal fatigue, high temperature creep and stress corrosion cracking.

【0013】[0013]

【発明の効果】本発明によれば下記の効果が得られる。 1) 従来に比べて起動時間を大幅に短縮することがで
き、DSS運転やWSS運転を行なう火力発電プラント
の熱利用率が向上する。
According to the present invention, the following effects can be obtained. 1) The start-up time can be significantly shortened compared to the conventional one, and the heat utilization rate of a thermal power plant that performs DSS operation or WSS operation is improved.

【0014】2) タービンロータの熱疲労と高温クリ
ープ強度および耐応力腐食割れ特性の向上により、ロー
タの信頼性が増す。
2) The reliability of the rotor is increased by improving the thermal fatigue, high temperature creep strength and stress corrosion cracking resistance of the turbine rotor.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明の1実施例を示す縦断面図であ
る。
FIG. 1 is a vertical sectional view showing an embodiment of the present invention.

【図2】図2は本発明の第2実施例を示す縦断面図であ
る。
FIG. 2 is a vertical sectional view showing a second embodiment of the present invention.

【図3】図3は従来の蒸気タービンロータの一例を示す
側面図である。
FIG. 3 is a side view showing an example of a conventional steam turbine rotor.

【符号の説明】[Explanation of symbols]

(1),(9) 軸継手 (2) スラスト軸受 (3),(8) ジャーナル軸受 (4),(7) グランド (5) ダンミー (6) タービンディスク (11) 植込リーマボルト (21) 高温部ロータ (22) 低温部ロータ (23) リーマボルト (A) 蒸気入口部 (B) ダンミー部 (1), (9) Shaft coupling (2) Thrust bearing (3), (8) Journal bearing (4), (7) Gland (5) Dammy (6) Turbine disk (11) Implanted reamer bolt (21) High temperature Section rotor (22) Low temperature section rotor (23) Reamer bolt (A) Steam inlet section (B) Dammy section

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ロータの蒸気入口部を中空に形成し、そ
の中空部分で上記ロータを軸方向に分割するとともに、
上記分割されたロータをボルト結合したことを特徴とす
る蒸気タービンの組立ロータ。
1. The rotor has a steam inlet portion formed hollow, and the hollow portion divides the rotor axially, and
An assembled rotor for a steam turbine, characterized in that the divided rotors are bolted together.
【請求項2】 ロータの高温部を耐熱鋼または耐熱合
金,低温部を耐応力腐食割れ材でそれぞれ製造し、それ
ら高温部ロータと低温部ロータをボルト結合したことを
特徴とする蒸気タービンの組立ロータ。
2. An assembly of a steam turbine characterized in that a high temperature portion of a rotor is manufactured by heat-resistant steel or a heat-resistant alloy, a low temperature portion is manufactured by a stress corrosion cracking resistant material, and the high temperature portion rotor and the low temperature portion rotor are bolted together. Rotor.
JP22191293A 1993-09-07 1993-09-07 Assembled rotor for steam turbine Withdrawn JPH0777004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22191293A JPH0777004A (en) 1993-09-07 1993-09-07 Assembled rotor for steam turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22191293A JPH0777004A (en) 1993-09-07 1993-09-07 Assembled rotor for steam turbine

Publications (1)

Publication Number Publication Date
JPH0777004A true JPH0777004A (en) 1995-03-20

Family

ID=16774109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22191293A Withdrawn JPH0777004A (en) 1993-09-07 1993-09-07 Assembled rotor for steam turbine

Country Status (1)

Country Link
JP (1) JPH0777004A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1785584A2 (en) * 2005-11-11 2007-05-16 General Electric Company Stacked steam turbine rotor assembly
JP2009216094A (en) * 2008-03-07 2009-09-24 General Electric Co <Ge> Steam turbine rotor and method of assembling the same
JP2015025459A (en) * 2014-10-28 2015-02-05 三菱重工業株式会社 Rotor of steam turbine
US9657574B2 (en) 2011-03-30 2017-05-23 Mitsubishi Heavy Industries, Ltd. Rotor of rotary machine and rotary machine
CN109844265A (en) * 2016-10-24 2019-06-04 英德科斯控股私人有限公司 It is suitable for the multiatage axial flow turbine run under low vapor (steam) temperature

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1785584A2 (en) * 2005-11-11 2007-05-16 General Electric Company Stacked steam turbine rotor assembly
JP2007132352A (en) * 2005-11-11 2007-05-31 General Electric Co <Ge> Rotor assembly for stacking type reactionary steam turbine
EP1785584A3 (en) * 2005-11-11 2014-03-26 General Electric Company Stacked steam turbine rotor assembly
JP2009216094A (en) * 2008-03-07 2009-09-24 General Electric Co <Ge> Steam turbine rotor and method of assembling the same
US9657574B2 (en) 2011-03-30 2017-05-23 Mitsubishi Heavy Industries, Ltd. Rotor of rotary machine and rotary machine
JP2015025459A (en) * 2014-10-28 2015-02-05 三菱重工業株式会社 Rotor of steam turbine
CN109844265A (en) * 2016-10-24 2019-06-04 英德科斯控股私人有限公司 It is suitable for the multiatage axial flow turbine run under low vapor (steam) temperature
CN109844265B (en) * 2016-10-24 2022-08-12 英德科斯控股私人有限公司 Multistage axial flow turbine suitable for operation at low steam temperatures

Similar Documents

Publication Publication Date Title
JP2835381B2 (en) gas turbine
RU2486344C2 (en) Rotary assembly of turbine, and rotor for rotary machine
US10400606B2 (en) Mistuned airfoil assemblies
US20090191053A1 (en) Diaphragm and blades for turbomachinery
US6059525A (en) Low strain shroud for a turbine technical field
JP2000337294A (en) Moving blade support structure from which stress is removed
JPH0921301A (en) Rotor
US6746204B2 (en) Turbine rotor
JP2004270684A (en) Drum, in particular, drum to constitute turbo-engine and compressor, and turbo-shaft engine including the drum
US3304052A (en) Rotor structure for an elastic fluid utilizing machine
US6276863B1 (en) Friction- and form-grip connection of rotating components
JP2001221012A (en) Steam turbine and generation equipment
KR102261350B1 (en) Methods and systems for securing turbine nozzles
JPH0777004A (en) Assembled rotor for steam turbine
US6632069B1 (en) Step of pressure of the steam and gas turbine with universal belt
US20110158814A1 (en) Turbine engine rotor blades and rotor wheels
US8517676B2 (en) Welded rotor of a gas turbine engine compressor
JPH0424081Y2 (en)
US8596970B2 (en) Assembly for a turbomachine
US8608447B2 (en) Disk for turbine engine
KR20080018821A (en) Methods and apparatus for fabricating a rotor for a steam turbine
US20230203959A1 (en) Bladed turbine stator for a turbine engine
US11739651B2 (en) Nozzle ring for a radial turbine and exhaust gas turbocharger including the same
EP2870364B1 (en) Supporting structure for a gas turbine engine
JPH10121903A (en) Gas tubine rotor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001107