JPS59115128A - Shrink-fitted rotor - Google Patents

Shrink-fitted rotor

Info

Publication number
JPS59115128A
JPS59115128A JP22952982A JP22952982A JPS59115128A JP S59115128 A JPS59115128 A JP S59115128A JP 22952982 A JP22952982 A JP 22952982A JP 22952982 A JP22952982 A JP 22952982A JP S59115128 A JPS59115128 A JP S59115128A
Authority
JP
Japan
Prior art keywords
rotor
temperature
shrink
rotor shaft
quenching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22952982A
Other languages
Japanese (ja)
Inventor
Isao Izumi
泉 勲
Kazunari Kimura
和成 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP22952982A priority Critical patent/JPS59115128A/en
Publication of JPS59115128A publication Critical patent/JPS59115128A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P11/00Connecting or disconnecting metal parts or objects by metal-working techniques not otherwise provided for 
    • B23P11/02Connecting or disconnecting metal parts or objects by metal-working techniques not otherwise provided for  by first expanding and then shrinking or vice versa, e.g. by using pressure fluids; by making force fits
    • B23P11/025Connecting or disconnecting metal parts or objects by metal-working techniques not otherwise provided for  by first expanding and then shrinking or vice versa, e.g. by using pressure fluids; by making force fits by using heat or cold

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To improve the resisting limit for the fretting fatigue of a rotor shaft and prevent generation of cracks by applying from the tempering temperature, the low-temperature quenching treatment onto the parts of the rotor shaft which is applied with shrink fit, and allowing a compression residual stress to internally exist on the surface layer at the above-described part of the rotor. CONSTITUTION:A rotor shaft 10 is applied with a series of heat treatment consisting of normalizing, quenching, and tempering, and then heated up to about 630 deg.C. As the final tempering treatment at a temperature rising speed of 40 deg.C per hour by coils 12 and 13, and kept at this temperature for 24hr, and then applied with low-temperature quenching by oil cooling. Each compression residual stress internally exists on each surface of the predetermined range 11a for shrink fit to sleeve and the predetermined range 11b for shrink fit of coupling because of the temperature difference between the inner part and the surface layer in the above-described low-temperature quenching. The structure of the surface layer is the same to the quenching structure of the inner part. With such a constitution, the resisting limit for fretting fatigue of the rotor shaft is improved, and the generation of cracks can be prevented.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は焼ばめロータに係り、特に焼はめ接合面でのフ
レッティング疲労による亀裂発生を防止した焼ばめロー
タに関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a shrink-fit rotor, and more particularly to a shrink-fit rotor that prevents cracking caused by fretting fatigue at a shrink-fit joint surface.

〔発明の技術的背景と問題点〕[Technical background and problems of the invention]

従来の蒸気タービンの中高圧部のタービンロータは、第
1図に示されるように高Cr合金銅のロータ軸1のジャ
ーナル部2にCr−Mo−V材等の低合金鋼製スリーブ
3が焼ばめされている。このスリーブ3は、ホワイトメ
タル4で内張すされた軸受5により支持されている。上
記ジャーナル部2の端部には、スリーブ3と同様の低合
金鋼製カップリング6が焼ばめされ、このカップリング
6とジャーナル部2との間にはキー7が設けられている
。このタービンの運転時には、軸受5に潤滑油が連続的
−に注油される。ところが、この潤滑油中に混入された
固い異物がジャーナル摺動部8に入り込むと高Cr合金
銅のジャーナル部2の熱伝導率が低合金鋼のスリーブ3
やカップリング6のそれよりも小さいため、上記異物注
入部が摩擦により局部的に加熱される。これにより、摺
動部8に局部的なかじり現象や溶着現象が生じ、ジャー
ナル部2が損傷してしまうことがある。
As shown in FIG. 1, in a conventional turbine rotor for the medium and high pressure section of a steam turbine, a sleeve 3 made of low alloy steel such as Cr-Mo-V material is attached to a journal part 2 of a rotor shaft 1 made of high Cr alloy copper. It is fitted. This sleeve 3 is supported by a bearing 5 lined with white metal 4. A low alloy steel coupling 6 similar to the sleeve 3 is shrink-fitted to the end of the journal portion 2, and a key 7 is provided between the coupling 6 and the journal portion 2. When the turbine is in operation, the bearing 5 is continuously filled with lubricating oil. However, when hard foreign matter mixed in this lubricating oil enters the journal sliding part 8, the thermal conductivity of the journal part 2 made of high Cr alloy copper becomes lower than the sleeve 3 made of low alloy steel.
Since the foreign matter injection section is smaller than that of the coupling 6 and the coupling 6, the foreign matter injection section is locally heated due to friction. As a result, local galling or welding may occur in the sliding portion 8, and the journal portion 2 may be damaged.

他方、四−夕軸1のジャーナル部20表面には、ロータ
の自重によるたわみや微小のアシイメントの誤差などの
原因により、ロータの回転中に繰り返し曲げ応力が作用
すると共に、スリーブ3やカツブリング6の焼ばめ面圧
も作用している。このような原因により引張応力が作用
しているジャーナル部2にはフレッティング疲労現象が
発生する。
On the other hand, bending stress is repeatedly applied to the surface of the journal portion 20 of the four-way shaft 1 during rotation of the rotor due to deflection due to the rotor's own weight, minute alignment errors, etc. Shrink fit surface pressure is also at play. Due to such causes, a fretting fatigue phenomenon occurs in the journal portion 2 on which tensile stress is applied.

このフレッティング疲労現象とは、相対的な繰り返し微
小滑りを生じている接触面において繰り返し摩擦力や外
力により繰り返し応力が存在したとき疲労損傷が蓄積す
る現象をいう。このフレッティング疲労により、ロータ
軸1のジャーナル部2には第2図に示されるように亀裂
9が生じる恐れがある。特に上記潤滑油中の異物による
ジャーナル部の損傷は上記フレッティング疲労により一
層増進され亀裂9を促進する。このような亀裂が生じた
焼ばめロータは安全性の点から取替えを必要とし、蒸気
タービンの運転停止を招来するという問題がある。
This fretting fatigue phenomenon refers to a phenomenon in which fatigue damage accumulates when repeated stress is present due to repeated frictional force or external force on contact surfaces where relative repeated microslips occur. This fretting fatigue may cause cracks 9 to occur in the journal portion 2 of the rotor shaft 1, as shown in FIG. In particular, damage to the journal portion caused by foreign matter in the lubricating oil is further aggravated by the fretting fatigue and promotes cracks 9. A shrink-fitted rotor with such cracks needs to be replaced from a safety point of view, and there is a problem in that the steam turbine will stop operating.

〔発明の目的〕[Purpose of the invention]

そこで本発明の目的は焼ばめ接合面でのフレッティング
疲労による亀裂発生を防止した焼ばめロータを提供する
ことにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a shrink-fit rotor that prevents cracks from occurring due to fretting fatigue at the shrink-fit joint surface.

〔発明の概要〕 この目的を達成するために、本発明はロータ軸の表面に
引張応力が作用している状態の下でフレッティング疲労
現象が発生する点に着目し、焼ばめが行われるロータ軸
の部位を焼戻し温度から低温焼入れ処理を施して上記部
位のロータ表面層に圧縮残留応力を内在させ、この圧縮
残留応力により外部から加えられる引張応力を軽減する
ようにしたものである。
[Summary of the Invention] In order to achieve this object, the present invention focuses on the fact that fretting fatigue phenomenon occurs when tensile stress is applied to the surface of the rotor shaft, and shrink fitting is performed. The rotor shaft portion is subjected to a low-temperature quenching treatment from the tempering temperature to create compressive residual stress in the rotor surface layer at the above-mentioned portion, and this compressive residual stress reduces the tensile stress applied from the outside.

〔発明の実施例〕[Embodiments of the invention]

以下に本発明に係る焼ばめロータの一実施例を図面を参
照して説明する。
An embodiment of a shrink-fit rotor according to the present invention will be described below with reference to the drawings.

本発明に係るロータの熱処理方法を示す第3図において
、ロータ軸10のジャーナル部11は第1図に示された
スリーブ3とカップリング6とが夫々焼ばめられる予定
の領域11aとllbとに高周波コイル12と13が巻
かれている。上記両領域11aと11b以外の領域11
cにはアンチセメンタイト14が被覆されている。この
ロータ軸10は、焼ならし、焼入れおよび焼入しの一連
の熱処理が施され、この一連の熱処理の最終である焼戻
処理として、上記コイル12 、13により毎時40℃
の昇温速度で約630℃まで加熱しこの温度で冴時間保
持した後、油冷による低温焼入処理を行う。この低温焼
入によって上記スリーブ焼ばめ予定領域11aとカップ
リング焼ばめ予定領域11bは内部と表面層との間の温
度差からその表面層に圧縮残留応力が内在する。なお、
上記表面層の組織は内部の焼戻し組織と同一となってい
る。またアンチセメンタイト14で被覆された領域11
cには圧縮残留応力が内在しない。こうして局部的に低
温焼入れ処理されたロータlOのジャーナル部11には
、毎時20℃の昇温速度で250°〜300 ℃  ま
で加熱し3〜10時間保持されたスリーブとカップリン
グが焼ばめされる。以上のように、ロータ軸1oのジャ
ーナル部11の焼ばめ領域即ち、焼ばめ接合面11a、
llbの表面層に圧縮残留応力を内在させたので、ター
ビンの運転によってロータジャーナル部11に引張応力
が作用しても、この引張応力は上記圧縮残留応力により
相殺軽減され、フレッティング疲労に起因する亀裂の発
生を防止できる。
In FIG. 3 showing the rotor heat treatment method according to the present invention, the journal portion 11 of the rotor shaft 10 is arranged in areas 11a and llb where the sleeve 3 and the coupling 6 shown in FIG. 1 are to be shrink-fitted, respectively. High frequency coils 12 and 13 are wound around. Area 11 other than the above two areas 11a and 11b
c is coated with anticementite 14. This rotor shaft 10 is subjected to a series of heat treatments of normalizing, hardening, and quenching, and as the final tempering treatment of this series of heat treatments, the coils 12 and 13 are heated at 40°C per hour.
After heating to approximately 630° C. at a temperature increase rate of 100° C. and holding at this temperature for a certain period of time, a low-temperature quenching treatment by oil cooling is performed. Due to this low-temperature quenching, compressive residual stress exists in the surface layer of the sleeve shrink-fit area 11a and the coupling shrink-fit area 11b due to the temperature difference between the inside and the surface layer. In addition,
The structure of the surface layer is the same as the internal tempered structure. In addition, a region 11 covered with anticementite 14
c has no inherent compressive residual stress. The journal portion 11 of the rotor 10, which has been locally low-temperature hardened in this way, is shrink-fitted with a sleeve and a coupling that are heated to 250° to 300°C at a heating rate of 20°C per hour and held for 3 to 10 hours. Ru. As described above, the shrink fit area of the journal portion 11 of the rotor shaft 1o, that is, the shrink fit joint surface 11a,
Since the compressive residual stress is built into the surface layer of the ILB, even if tensile stress is applied to the rotor journal portion 11 due to turbine operation, this tensile stress is offset by the compressive residual stress and is reduced, resulting in fretting fatigue. It can prevent the occurrence of cracks.

上記低温焼入処理により生成した圧縮残留応力の具体例
を以下に示す。
A specific example of the compressive residual stress generated by the above-mentioned low-temperature quenching treatment is shown below.

第4図は、平行部が8.0 mm直径の円柱状高Cr合
金鋼製試験片に焼戻温度630℃からの低温焼入処理を
施こしたときの表面層の応力状態を示している。同図か
ら明らかなように表面から約0.25mm付近までの表
面層に圧縮残留応力が分布し、その圧縮残留応力は0.
1 mm近傍の深さにおいて最高値約50 ’/−を呈
している。
Figure 4 shows the stress state of the surface layer when a cylindrical high Cr alloy steel specimen with a parallel part diameter of 8.0 mm was subjected to low-temperature hardening treatment at a tempering temperature of 630°C. . As is clear from the figure, compressive residual stress is distributed in the surface layer up to about 0.25 mm from the surface, and the compressive residual stress is 0.25 mm.
It exhibits a maximum value of about 50'/- at a depth of around 1 mm.

次に本発明に係るロータの7レツテイング疲労と従来の
ロータのフレッティング疲労との対照実験結果を示す。
Next, the results of a comparison experiment between fretting fatigue of the rotor according to the present invention and fretting fatigue of a conventional rotor will be shown.

この実験は、(5)フレッティングなしの従来のロータ
材と、(81面圧を付与してフレッティングを起生した
従来のロータ材と、(0面圧を付与してフレッティング
を起生じた本発明に係る、即ち上記低温焼入処理を施こ
したロータ材とについて、回転曲げ疲労試験による疲労
耐久限(隻−)を測足したものである。この実験結果を
下の表に示す。
This experiment was conducted using (5) a conventional rotor material without fretting, a conventional rotor material (which caused fretting by applying 81 surface pressure), and (a conventional rotor material which caused fretting by applying 0 surface pressure). For the rotor material according to the present invention, that is, the rotor material subjected to the above-mentioned low-temperature quenching treatment, the fatigue durability limit (-) was measured by a rotating bending fatigue test.The results of this experiment are shown in the table below. .

なお上表において応力比とは((B)または(Qの疲労
耐久限)/(囚の疲労耐久限)であり、増加率とは、(
(C1の疲労耐久限−(旬の疲労耐久限)/((B)の
疲労耐久限)である。
In the above table, the stress ratio is ((B) or (fatigue endurance limit of Q)/(fatigue endurance limit of prisoner), and the rate of increase is (
(Fatigue endurance limit of C1 - (seasonal fatigue endurance limit)/(fatigue endurance limit of (B)).

上表から明らかなように、従来のロータ材に7レツテイ
ングが生じた場合の疲労耐久限は、フレッティングなし
の場合の0.36に低下するのに対して本発明によるロ
ータ材では0.6までしか低下せず、従来のロータ材に
フレッティングを起こした場合に比較して66%の増加
が認められる。
As is clear from the above table, the fatigue durability limit when fretting occurs in the conventional rotor material decreases to 0.36 in the case without fretting, whereas it decreases to 0.6 in the rotor material according to the present invention. This is a 66% increase compared to when fretting occurs in conventional rotor material.

なお、本実施例は、高Cr合金鋼製ロータと低合金鋼の
Cr−Mo−V製スリーブ、カップリングを用いたが、
他の鋼種を用いてもよく、また原子力ロータホイールの
キー溝部の応力腐食割れの防止にも本発明の低温焼入処
理は有効である。
In this example, a rotor made of high Cr alloy steel and a sleeve and coupling made of Cr-Mo-V made of low alloy steel were used.
Other steel types may be used, and the low temperature quenching treatment of the present invention is also effective in preventing stress corrosion cracking in the keyway portion of nuclear rotor wheels.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明によると焼ばめ
が施こされるロータ軸の部位を焼戻し温度から低温焼入
処理を行い、上記部位のロータ表面層に圧縮残留応力を
内在させこの圧縮残留応力によって引張応力を軽減させ
るので、ロータ軸の回転中の繰り返し曲げ応力や摩擦力
がロータ表面に重畳してもフレッティング疲労耐久限を
向上でき亀裂発生を防止できる。よって焼ばめロータの
信頼性を向上できる。
As is clear from the above description, according to the present invention, the portion of the rotor shaft to which the shrink fit is performed is subjected to low-temperature quenching treatment from the tempering temperature, and compressive residual stress is created in the rotor surface layer at the above-mentioned portion. Since tensile stress is reduced by compressive residual stress, fretting fatigue durability can be improved and cracking can be prevented even if repeated bending stress and frictional force are superimposed on the rotor surface during rotation of the rotor shaft. Therefore, the reliability of the shrink-fit rotor can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の焼ばめロータを示す縦断面図、第2図は
焼ばめロータにおけるフレッティング疲労亀裂発生部位
を示す縦断面図、第3図は本発明に係る焼ばめロータに
熱処理を施こす方法を示す正面図、第4図は低温焼入処
理により生ずる圧縮残留応力の分布を示すグラフである
。 10・・・ロータ、11・・・ジャーナル部、lla・
・・スリース焼ばめ予定領域、llb・・・カップリン
グ焼ばめ予定領域、12 、13・・・高周波コイル。
Fig. 1 is a longitudinal sectional view showing a conventional shrink-fit rotor, Fig. 2 is a longitudinal sectional view showing a fretting fatigue crack occurrence site in the shrink-fit rotor, and Fig. 3 is a longitudinal sectional view showing a shrink-fit rotor according to the present invention. FIG. 4, which is a front view showing the method of heat treatment, is a graph showing the distribution of compressive residual stress caused by the low temperature quenching treatment. 10... Rotor, 11... Journal section, lla.
... Sleeve shrink fit area, llb... Coupling shrink fit area, 12, 13... High frequency coil.

Claims (1)

【特許請求の範囲】[Claims] スリーブやカンプリング停の筒状部材がロータ軸上に焼
ばめられた焼ばめロータにおいて、上記筒状部材が焼ば
めされるロータ軸の部位を焼戻し温度から低温焼入れし
、上記部位のロータ軸の表面層に圧縮残留応力を内在さ
せたことを特徴とする焼ばめロータ。
In a shrink-fit rotor in which a cylindrical member such as a sleeve or a compression stop is shrink-fitted onto the rotor shaft, the portion of the rotor shaft to which the cylindrical member is shrink-fitted is quenched at a low temperature from the tempering temperature. A shrink-fit rotor characterized by having compressive residual stress built into the surface layer of the rotor shaft.
JP22952982A 1982-12-23 1982-12-23 Shrink-fitted rotor Pending JPS59115128A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22952982A JPS59115128A (en) 1982-12-23 1982-12-23 Shrink-fitted rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22952982A JPS59115128A (en) 1982-12-23 1982-12-23 Shrink-fitted rotor

Publications (1)

Publication Number Publication Date
JPS59115128A true JPS59115128A (en) 1984-07-03

Family

ID=16893592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22952982A Pending JPS59115128A (en) 1982-12-23 1982-12-23 Shrink-fitted rotor

Country Status (1)

Country Link
JP (1) JPS59115128A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109689280A (en) * 2016-09-16 2019-04-26 日产自动车株式会社 The heat treatment method and assemble method of gomphosis part
CN111082615A (en) * 2020-02-20 2020-04-28 沈阳新城石油机械制造有限公司 Machining method of linear motor rotor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109689280A (en) * 2016-09-16 2019-04-26 日产自动车株式会社 The heat treatment method and assemble method of gomphosis part
CN111082615A (en) * 2020-02-20 2020-04-28 沈阳新城石油机械制造有限公司 Machining method of linear motor rotor

Similar Documents

Publication Publication Date Title
US9487843B2 (en) Method for producing a bearing ring
US20160153496A1 (en) Method for heat-treating a ring-shaped member, method for producing a ring-shaped member, ring-shaped member, bearing ring, rolling bearing, and method for producing a bearing ring
EP0179539A1 (en) Turbine rotor units and method of producing the same
JP3351041B2 (en) Rolling bearing
EP2772555A1 (en) Ring-shaped member heat treatment method and ring-shaped member manufacturing method
CA1087643A (en) Torsion bar and method of forming the same
EP0294813B1 (en) Antifriction bearing and alternator incorporating same for use in vehicles
US4687556A (en) Preventing stress corrosion cracking of bearings
JPH0737820B2 (en) Manufacturing method of gear fitting member
JPS59115128A (en) Shrink-fitted rotor
JP3752577B2 (en) Manufacturing method of machine parts
US4180421A (en) Torsion bar and method of forming the same
JP2008208940A (en) Constant velocity universal joint component and its manufacturing method
JP5994377B2 (en) Radial rolling bearing inner ring and manufacturing method thereof
Kepple et al. Rolling element fatigue and macroresidual stress
US11270045B2 (en) Quantitative matching design method for structure heat treatment-hardness distribution
JP5311719B2 (en) Induction hardening method, mechanical member, rolling member, and manufacturing method of mechanical member
JP3114983B2 (en) Crawler pin and method of manufacturing the same
JPS61149502A (en) Turbine rotor
JP2020029609A (en) Treatment method for improving fretting fatigue strength
US1688705A (en) Method of heat-treating sucker rods
Yarasu et al. Dry Sliding Tribological Behavior of Cryotreated Cr–V Ledeburitic Tool Steel against CuSn6 Counterpart
Ramamoorthy et al. Improving the load-carrying capacity of interference fits
Sondar et al. Failure of a cooling water pump shaft
JPH0626495A (en) Manufacture of hydraulic pump