JP5311719B2 - Induction hardening method, mechanical member, rolling member, and manufacturing method of mechanical member - Google Patents

Induction hardening method, mechanical member, rolling member, and manufacturing method of mechanical member Download PDF

Info

Publication number
JP5311719B2
JP5311719B2 JP2006067486A JP2006067486A JP5311719B2 JP 5311719 B2 JP5311719 B2 JP 5311719B2 JP 2006067486 A JP2006067486 A JP 2006067486A JP 2006067486 A JP2006067486 A JP 2006067486A JP 5311719 B2 JP5311719 B2 JP 5311719B2
Authority
JP
Japan
Prior art keywords
temperature
quenching
workpiece
cooling
induction hardening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006067486A
Other languages
Japanese (ja)
Other versions
JP2007239087A (en
JP2007239087A5 (en
Inventor
喜久男 前田
工 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2006067486A priority Critical patent/JP5311719B2/en
Publication of JP2007239087A publication Critical patent/JP2007239087A/en
Publication of JP2007239087A5 publication Critical patent/JP2007239087A5/en
Application granted granted Critical
Publication of JP5311719B2 publication Critical patent/JP5311719B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Description

本発明は高周波焼入方法、機械部材および転動部材に関し、より特定的には、高周波加熱により被処理物を加熱して焼入を行なう高周波焼入方法、および高周波焼入方法により焼入が実施されて作製される機械部材および転動部材に関するものである。   The present invention relates to an induction hardening method, a mechanical member, and a rolling member, and more specifically, induction hardening by heating a workpiece by induction heating and induction hardening, and induction hardening by induction hardening. The present invention relates to a mechanical member and a rolling member that are manufactured by being implemented.

近年、転がり軸受やハブ、等速ジョイントなどの転動部品やシャフト(軸)などを含む機械部品が使用される産業機械、輸送機械などの高性能化に伴い、機械部品が使用される環境は一層過酷になっている。そのため、機械部品を構成する軌道輪、転動体などの転動部材や軸などを含む機械部材に対しては、さらなる高強度化や長寿命化、特に過酷な環境下における高強度化や長寿命化が求められている。   In recent years, the environment in which machine parts are used is increasing with the improvement in performance of industrial machines and transport machines that use rolling bearings such as rolling bearings, hubs, constant velocity joints, and machine parts including shafts. It has become even more severe. Therefore, for mechanical members including rolling elements such as race rings and rolling elements and shafts that make up mechanical parts, higher strength and longer life, especially higher strength and longer life in harsh environments. Is required.

機械部品が使用される環境は多岐にわたり、たとえば高温環境下で使用される場合には潤滑不良による表面損傷の発生、腐食環境下で用いられる場合には腐食による損傷の発生が問題となる。また、高速で運転される機械部品においては、クリープへの対策として、高い嵌め合いで部材同士が嵌合されて使用される場合が多く、表面に引張応力が作用した状態で使用されることに起因した強度低下が問題となる。   The environment in which machine parts are used is diverse. For example, surface damage due to poor lubrication occurs when used in a high temperature environment, and damage due to corrosion occurs when used in a corrosive environment. Also, in machine parts that operate at high speed, as a countermeasure against creep, members are often fitted with high fit and used in a state where tensile stress acts on the surface. The resulting decrease in strength becomes a problem.

これに対し、機械部材を構成する素材の改良や、機械部材の表面に圧縮応力を生じさせること等を目的として浸炭焼入や高周波焼入による表面硬化処理などを実施することにより、機械部材の高強度化や長寿命化を達成する対策が提案されている。(たとえば特許文献1〜5参照)。
特開2005−291340号公報 特開2000−80446号公報 特開2002−102927号公報 特開2005−299854号公報 特開平6−57324号公報
On the other hand, by carrying out surface hardening treatment by carburizing quenching or induction hardening for the purpose of improving the material constituting the machine member or generating a compressive stress on the surface of the machine member, Measures for achieving high strength and long life have been proposed. (For example, see Patent Documents 1 to 5).
JP 2005-291340 A JP 2000-80446 A JP 2002-102927 A JP 2005-299854 A JP-A-6-57324

しかし、浸炭焼入や高周波焼入による表面硬化処理では、機械部材の内部が硬化されていないため、剛性や強度の面で必ずしも十分とはいえない。たとえば、転動部材である転がり軸受の軌道輪や転動体においては、内部の強度が不十分であることに起因したケースクラックの発生や、大きな荷重が作用した場合の割れ強度の不足等の問題がある。また、シャフトにおいては、内部の強度が不十分であることに起因して、ねじり強度が不十分となる等の問題がある。また、耐食性や耐熱性などの向上を目的として、機械部材を構成する鋼にクロム(Cr)などの合金元素を多く含む高合金鋼が採用される場合、素材の焼入性が高くなるため、高周波焼入により機械部材の表層部のみを焼入硬化するという対策には、熱処理の制御が難しいという問題点がある。   However, the surface hardening treatment by carburizing and induction hardening is not necessarily sufficient in terms of rigidity and strength because the inside of the mechanical member is not hardened. For example, in rolling rings and rolling elements of rolling bearings that are rolling members, there are problems such as the occurrence of case cracks due to insufficient internal strength and insufficient crack strength when a large load is applied. There is. In addition, the shaft has problems such as insufficient torsional strength due to insufficient internal strength. In addition, for the purpose of improving corrosion resistance and heat resistance, when high alloy steel containing a large amount of alloy elements such as chromium (Cr) is adopted for steel constituting the mechanical member, the hardenability of the material is increased, The countermeasure of quenching and hardening only the surface layer portion of the machine member by induction hardening has a problem that it is difficult to control the heat treatment.

さらに、素材の改良による対策は、素材コストの上昇を招来し、また、処理時間の長い浸炭焼入やその他の複雑な熱処理工程を採用することは、製造コストの上昇を招来する。これは、近年のコスト低減の要求に反するものであり、当該対策の採用に大きな障害となる。   Furthermore, measures by improving the material cause an increase in material cost, and adopting carburizing and quenching with a long processing time or other complicated heat treatment process causes an increase in manufacturing cost. This is contrary to the recent demand for cost reduction and is a major obstacle to the adoption of the countermeasure.

そこで、本発明の一の目的は、製造コストの上昇を抑制しつつ、被処理物を高強度化、長寿命化することが可能な高周波焼入方法を提供することである。また、本発明の他の目的は、製造コストの上昇を抑制しつつ、過酷な環境下においても高強度、長寿命な機械部材および転動部材を提供することである。   Therefore, an object of the present invention is to provide an induction hardening method capable of increasing the strength and extending the life of an object to be processed while suppressing an increase in manufacturing cost. Another object of the present invention is to provide a mechanical member and a rolling member that have a high strength and a long life even in a harsh environment while suppressing an increase in manufacturing cost.

本発明の一の局面における高周波焼入方法は、高周波加熱により被処理物の全体を加熱してA点以上の温度からM点以下の温度に冷却することにより、被処理物の全体を焼入硬化する高周波焼入方法である。当該高周波焼入方法は、被処理物の温度が調節される温度制御工程と、被処理物において、圧縮応力を付与すべき部位である応力付与部がA点以上の温度である高温焼入温度に加熱されており、かつ応力付与部以外の部位である焼入制御部がA1点以上の温度であって、高温焼入温度よりも低い温度である低温焼入温度に加熱されている状態から、被処理物をM点以下の温度に冷却することにより、被処理物の全体を焼入硬化する焼入制御工程とを備えている。 In the induction hardening method in one aspect of the present invention, the whole object to be treated is heated by high frequency heating and cooled from a temperature of A 1 point or higher to a temperature of M S point or lower, whereby the whole object to be treated is cooled. This is an induction hardening method for quench hardening. The induction hardening method includes a temperature control step in which the temperature of the object to be processed is adjusted, and a high temperature quenching in which the stress applying part, which is a part to which compressive stress is to be applied, is at a temperature of A 1 point or higher. A state in which the quenching control unit that is heated to a temperature and is a part other than the stress applying unit is at a temperature of A1 or higher and is heated to a low-temperature quenching temperature that is lower than the high-temperature quenching temperature. And a quenching control step of quenching and hardening the entire workpiece by cooling the workpiece to a temperature equal to or lower than the MS point.

一般に、高周波焼入処理においては、被処理物の表層部の一部のみが加熱され、A点以上の温度からM点以下の温度に冷却することにより焼入硬化される。ここで、焼入硬化により被処理物を構成する鋼がマルテンサイト変態すると、当該変態は体積の膨張を伴うため、焼入硬化された表層部に極めて高い圧縮応力が残留する。その結果、当該表層部の一部は硬度が高いだけでなく、亀裂の発生および成長が抑制されるため、被処理物に高い疲労強度を付与することで長寿命化することができる。 In general, in the induction hardening process, only a part of the surface layer portion of the workpiece is heated, and is hardened by hardening from a temperature of A 1 point or higher to a temperature of M S point or lower. Here, when the steel constituting the object to be processed by quench hardening undergoes martensitic transformation, the transformation involves expansion of the volume, so that extremely high compressive stress remains in the hardened and hardened surface layer portion. As a result, a portion of the surface layer portion has not only high hardness but also crack generation and growth are suppressed, so that a long life can be obtained by imparting high fatigue strength to the workpiece.

しかし、上述のような近年の過酷化した機械部材の使用環境を考慮すると、表層部の一部のみを焼入硬化する高周波焼入が実施された機械部材では、焼入硬化されていない他の部分の強度不足に起因する問題点が生じている。   However, in consideration of the recent severe use environment of mechanical members as described above, in mechanical members subjected to induction hardening that quenches and hardens only a part of the surface layer portion, other hardened and hardened other members There is a problem due to insufficient strength of the part.

これに対し、本発明者は、被処理物(機械部材)の表層部の一部に圧縮応力を残存させることによる疲労強度の向上と、その他の部分の硬度向上による全体の強度の確保とを両立する熱処理方法に関して鋭意検討し、以下の知見を得た。   On the other hand, the present inventor has improved the fatigue strength by leaving the compressive stress in a part of the surface layer portion of the object to be processed (mechanical member), and securing the overall strength by improving the hardness of other portions. As a result of intensive studies on compatible heat treatment methods, the following findings were obtained.

すなわち、被処理物の全体がA点以上の温度からM点以下の温度に冷却されることにより、被処理物全体が焼入硬化される場合であっても、部位によって異なった加熱温度から冷却して焼入硬化することにより、被処理物を構成する鋼の素地中に固溶する炭素の濃度(固溶炭素濃度)を部位によって変化させ、所望の部位に実用上十分な大きさの圧縮応力を付与することができる。つまり、所望の部位の固溶炭素濃度を相対的に他の部位に比べて大きくすることで、焼入による当該部位の膨張率を他の部位に比べて大きくし、当該部位に圧縮応力を残存させることが可能である。 That is, the heating temperature entire article to be treated by being cooled to a temperature below M S point from the temperature of the one or more points A, even if the entire article to be treated is quench-hardened, a different by site By cooling and quenching and hardening, the concentration of carbon dissolved in the steel substrate constituting the object to be processed (solid solution carbon concentration) is changed depending on the part, and is practically large enough for the desired part. The compressive stress can be imparted. In other words, by increasing the solute carbon concentration of the desired part relative to other parts, the expansion rate of the part due to quenching is made larger than other parts, and compressive stress remains in the part. It is possible to make it.

本発明の一の局面における高周波焼入方法によれば、温度制御工程において、被処理物の温度が調節されつつ、焼入制御工程において、圧縮応力を付与すべき部位である応力付与部が他の部位に比べて高い温度に加熱されている状態から、M点以下の温度に冷却されるため、応力付与部における固溶炭素濃度が相対的に他の部位に比べて高くなる。その結果、応力付与部には圧縮応力が付与され、疲労強度が向上する。一方、応力付与部以外の部位は、応力付与部よりは低温であるものの、A点以上の温度からM点以下の温度に冷却されて焼入硬化されるため、応力付与部以外の部位の強度も十分に確保される。その結果、被処理物を高強度化、長寿命化することができる。さらに、本発明の一の局面における高周波焼入方法は、処理時間の長い浸炭焼入やその他の複雑な熱処理工程を含む熱処理方法を採用するものではないため、製造コストを抑制しつつ、上記優れた特性を被処理物に付与することができる。また、被処理物の加熱に高周波加熱を利用することで、たとえば被処理物のうち誘導コイルに近い部位と遠い部位とで、被処理物の温度を変化させることが容易となる。 According to the induction hardening method in one aspect of the present invention, in the temperature control step, the temperature of the object to be processed is adjusted, and in the quenching control step, a stress applying portion that is a portion to which compressive stress is to be applied is provided. Since it is cooled to a temperature equal to or lower than the MS point from the state of being heated to a temperature higher than that of the part, the solid solution carbon concentration in the stress applying portion is relatively higher than that of the other part. As a result, compressive stress is applied to the stress applying portion, and the fatigue strength is improved. On the other hand, since the portions other than the stress applying portion are colder than the stress applying portion, the portions other than the stress applying portion are cooled to a temperature not higher than the M S point from the temperature of A 1 point or higher, and are hardened and hardened. Is sufficiently secured. As a result, it is possible to increase the strength and life of the workpiece. Furthermore, the induction hardening method according to one aspect of the present invention does not employ a heat treatment method including carburizing and quenching with a long treatment time or other complicated heat treatment steps, so that the above-described excellent performance can be achieved while suppressing manufacturing costs. Characteristics can be imparted to the workpiece. In addition, by using high-frequency heating for heating the object to be processed, for example, it becomes easy to change the temperature of the object to be processed between a part close to the induction coil and a part far from the induction coil.

以上より、本発明の一の局面における高周波焼入方法によれば、製造コストの上昇を抑制しつつ、被処理物を高強度化、長寿命化することが可能な高周波焼入方法を提供することができる。   As described above, according to the induction hardening method in one aspect of the present invention, there is provided an induction hardening method capable of increasing the strength and extending the life of an object to be processed while suppressing an increase in manufacturing cost. be able to.

上記一の局面における高周波焼入方法において好ましくは、温度制御工程は、被処理物の温度が測定される温度制御用測温工程と、温度制御用測温工程において測定された温度の情報に基づき、被処理物の加熱状態を制御するための温度制御信号が出力される温度調節工程と、温度制御信号に基づいて、高周波加熱により被処理物が加熱される加熱工程とを含んでいる。さらに、焼入制御工程は、被処理物の応力付与部および焼入制御部の温度が測定される焼入用測温工程と、焼入用測温工程において測定された温度の情報に基づき、応力付与部が高温焼入温度に加熱され、かつ焼入制御部が低温焼入温度に加熱されるように加熱時間が調節され、被処理物が冷却されるべきタイミングが決定されて冷却開始信号が出力される冷却タイミング調節工程と、冷却開始信号に基づいて、被処理物が冷却されることにより被処理物が焼入硬化される冷却工程とを含んでいる。   Preferably, in the induction hardening method according to the first aspect, the temperature control step is based on a temperature measurement temperature measurement step in which the temperature of the workpiece is measured and information on the temperature measured in the temperature control temperature measurement step. And a temperature adjusting step for outputting a temperature control signal for controlling the heating state of the workpiece, and a heating step for heating the workpiece by high-frequency heating based on the temperature control signal. Furthermore, the quenching control process is based on the temperature measurement process for quenching in which the temperature of the stress applying part and the quenching control part of the workpiece is measured, and the temperature information measured in the temperature measurement process for quenching, Heating time is adjusted so that the stress applying part is heated to the high-temperature quenching temperature and the quenching control part is heated to the low-temperature quenching temperature, the timing at which the workpiece should be cooled is determined, and a cooling start signal And a cooling process in which the workpiece is quenched and hardened by cooling the workpiece based on the cooling start signal.

高周波焼入においては、一般的な雰囲気炉のように炉内の雰囲気を介して被処理物が加熱される焼入方法とは異なり、被処理物が誘導加熱により直接加熱される。そのため、被処理物の温度を測定するためには、被処理物を直接測温する必要がある。しかし、高周波焼入設備には、被処理物を均一に加熱するため、被処理物を回転等させるための駆動機構が設けられている場合が多く、接触式の温度計の設置が困難である場合が多い。   In the induction hardening, unlike the quenching method in which the object to be processed is heated through the atmosphere in the furnace like a general atmosphere furnace, the object to be processed is directly heated by induction heating. Therefore, in order to measure the temperature of the workpiece, it is necessary to directly measure the temperature of the workpiece. However, induction hardening equipment is often provided with a drive mechanism for rotating the object to be processed to uniformly heat the object to be processed, and it is difficult to install a contact-type thermometer. There are many cases.

このように、高周波焼入においては被処理物の測温が容易ではなく、温度と時間との熱処理条件による熱処理の制御(温度制御)が難しい。そのため、一般に、高周波焼入においては、電力と時間との熱処理条件による熱処理の制御(電力制御)が採用される場合が多い。この電力制御による高周波焼入においては、被処理物に付与される加熱履歴が必ずしも明確ではない。   Thus, in induction hardening, it is not easy to measure the temperature of the workpiece, and it is difficult to control the heat treatment (temperature control) according to the heat treatment conditions of temperature and time. Therefore, in general, in the induction hardening, heat treatment control (power control) based on heat treatment conditions of electric power and time is often employed. In the induction hardening by this power control, the heating history applied to the workpiece is not always clear.

これに対し、本発明の一の局面における高周波焼入方法の好ましい態様では、温度制御工程において、被処理物の温度のデータがリアルタイムでフィードバックされて被処理物が所望の温度に加熱されるとともに、焼入制御工程において、被処理物の応力付与部および焼入制御部の両方の温度の情報がリアルタイムで取得され、これに基づいて冷却のタイミングを決定して、被処理物を焼入硬化することができる。そのため、応力付与部が高温焼入温度に加熱され、かつ焼入制御部が低温焼入温度に加熱されるように加熱時間を調節することが容易となる。   In contrast, in a preferred embodiment of the induction hardening method according to one aspect of the present invention, in the temperature control step, the temperature data of the workpiece is fed back in real time to heat the workpiece to a desired temperature. In the quenching control process, the temperature information of both the stress applying part and the quenching control part of the workpiece is acquired in real time, and the cooling timing is determined based on this information to quench and cure the workpiece. can do. Therefore, it becomes easy to adjust the heating time so that the stress applying part is heated to the high-temperature quenching temperature and the quenching control part is heated to the low-temperature quenching temperature.

ここで、焼入制御部は、たとえば被処理物において、磁束の侵入が最も少なく、温度上昇の小さい部位とすることができる。また、応力付与部に明確な圧縮応力を付与するためには、高温焼入温度は、低温焼入温度よりも20℃以上高い温度であることが好ましい。さらに、応力付与部に十分な圧縮応力を付与するためには、高温焼入温度は、低温焼入温度よりも50℃以上高い温度であることが、より好ましい。   Here, the quenching control unit can be a part where the penetration of the magnetic flux is the smallest and the temperature rise is small in the workpiece, for example. Moreover, in order to give a clear compressive stress to a stress provision part, it is preferable that high temperature quenching temperature is 20 degreeC or more higher than low temperature quenching temperature. Furthermore, in order to give a sufficient compressive stress to the stress applying part, it is more preferable that the high temperature quenching temperature is 50 ° C. or higher than the low temperature quenching temperature.

本発明の他の局面における高周波焼入方法は、高周波加熱により被処理物の全体を加熱してA点以上の温度からM点以下の温度に冷却することにより、被処理物の全体を焼入硬化する高周波焼入方法である。当該高周波焼入方法は、被処理物の温度が調節される温度制御工程と、被処理物において、圧縮応力を付与すべき部位である応力付与部がA点以上の温度である焼入温度に加熱されており、かつ応力付与部以外の部位である焼入制御部が応力付与部よりも短い時間、焼入温度に加熱されている状態から、被処理物をM点以下の温度に冷却することにより、被処理物の全体を焼入硬化する焼入制御工程とを備えている。 Induction hardening method according to another aspect of the present invention, by cooling the whole from heating to A 1 point or more temperature M S point below the temperature of the object to be processed by high-frequency heating, the whole of the object This is an induction hardening method for quench hardening. The induction hardening method includes a temperature control step in which the temperature of the object to be processed is adjusted, and a quenching temperature at which the stress applying part, which is a part to which compressive stress is to be applied, is at a temperature of A 1 point or higher. The workpiece is heated to the quenching temperature for a shorter time than the stress applying portion and the workpiece is heated to a temperature lower than the M S point. And a quenching control step of quenching and hardening the entire workpiece by cooling.

本発明の他の局面における高周波焼入方法によれば、被処理物において、圧縮応力を付与すべき部位である応力付与部が、応力付与部以外の部位よりも、A点以上の温度である焼入温度に長い時間加熱されている。そのため、上記本発明の一の局面における高周波焼入方法と同様に、応力付与部においては、応力付与部以外の部位よりも相対的に固溶炭素濃度が高くなっている。その結果、応力付与部には圧縮応力が付与され、疲労強度が向上して長寿命化される。一方、応力付与部以外の部位は、応力付与部よりは短時間であるものの、A点以上の温度に加熱された状態からM点以下の温度に冷却されて焼入硬化されるため、応力付与部以外の部位の強度も十分に確保される。その結果、被処理物を高強度化、長寿命化することができる。さらに、本発明の他の局面における高周波焼入方法は、処理時間の長い浸炭焼入やその他の複雑な熱処理工程を含む熱処理方法を採用するものではないため、製造コストを抑制しつつ、上記優れた特性を被処理物に付与することができる。また、被処理物の加熱に高周波加熱を利用することで、たとえば被処理物のうち誘導コイルに近い部位と遠い部位とで、容易に被処理物が焼入温度に保持されている時間を変化させることができる。 According to the induction hardening method in another aspect of the present invention, in the workpiece, the stress applying portion, which is a portion to which compressive stress is to be applied, is at a temperature of A 1 point or more than the portion other than the stress applying portion. Heated to a certain quenching temperature for a long time. Therefore, similarly to the induction hardening method according to one aspect of the present invention, the solute carbon concentration is relatively higher in the stress applying portion than in the portion other than the stress applying portion. As a result, compressive stress is applied to the stress applying portion, and the fatigue strength is improved and the life is extended. On the other hand, since the portion other than the stress applying portion is a shorter time than the stress applying portion, it is quenched and hardened by being cooled to a temperature not higher than the MS point from a state heated to a temperature of A 1 point or higher. The strength of portions other than the stress applying portion is also sufficiently secured. As a result, it is possible to increase the strength and life of the workpiece. Furthermore, the induction hardening method according to another aspect of the present invention does not employ a heat treatment method including carburizing and quenching with a long treatment time or other complicated heat treatment steps, so that the above-described excellent performance can be achieved while suppressing manufacturing costs. Characteristics can be imparted to the workpiece. In addition, by using high-frequency heating for heating the workpiece, for example, the time during which the workpiece is held at the quenching temperature can be easily changed between the portion near the induction coil and the portion far from the induction coil. Can be made.

以上より、本発明の他の局面における高周波焼入方法によれば、製造コストの上昇を抑制しつつ、被処理物を高強度化、長寿命化することが可能な高周波焼入方法を提供することができる。   As described above, according to the induction hardening method according to another aspect of the present invention, there is provided an induction hardening method capable of increasing the strength and extending the life of a workpiece while suppressing an increase in manufacturing cost. be able to.

上記本発明の他の局面における高周波焼入方法において好ましくは、温度制御工程は、被処理物の温度が測定される温度制御用測温工程と、温度制御用測温工程において測定された温度の情報に基づき、前記被処理物の加熱状態を制御するための温度制御信号が出力される温度調節工程と、温度制御信号に基づいて、高周波加熱により被処理物が加熱される加熱工程とを含んでいる。焼入制御工程は、被処理物の応力付与部および焼入制御部の温度が測定される焼入用測温工程と、焼入用測温工程において測定された温度の情報に基づき、応力付与部が焼入温度に加熱され、かつ焼入制御部が焼入温度に応力付与部よりも短い時間加熱されるように加熱時間が調節され、被処理物が冷却されるべきタイミングが決定されて冷却開始信号が出力される冷却タイミング調節工程と、冷却開始信号に基づいて、被処理物が冷却されることにより被処理物が焼入硬化される冷却工程とを含んでいる。   In the induction hardening method according to the other aspect of the present invention, preferably, the temperature control step includes a temperature control temperature measurement step in which the temperature of the workpiece is measured, and a temperature measured in the temperature control temperature measurement step. A temperature adjusting step for outputting a temperature control signal for controlling the heating state of the workpiece based on the information; and a heating step for heating the workpiece by high-frequency heating based on the temperature control signal. It is out. The quenching control process is based on the temperature measurement process for quenching in which the temperatures of the stress application part and quenching control part of the workpiece are measured, and the temperature information measured in the temperature measurement process for quenching. The heating time is adjusted so that the part is heated to the quenching temperature, and the quenching control part is heated to the quenching temperature for a shorter time than the stress applying part, and the timing for cooling the workpiece is determined. It includes a cooling timing adjustment step in which a cooling start signal is output and a cooling step in which the workpiece is quenched and hardened by cooling the workpiece based on the cooling start signal.

これにより、温度制御工程において、被処理物の温度のデータがリアルタイムでフィードバックされて被処理物が所望の温度に加熱されるとともに、焼入制御工程において、被処理物の応力付与部および焼入制御部の両方の温度の情報がリアルタイムで取得され、これに基づいて冷却のタイミングを決定して、被処理物を焼入硬化することができる。そのため、応力付与部が所望の時間、焼入温度に加熱され、かつ焼入制御部が応力付与部よりも短い時間、焼入温度に加熱されるように加熱時間を調節することが容易となる。   Thereby, in the temperature control process, the temperature data of the workpiece is fed back in real time to heat the workpiece to a desired temperature, and in the quenching control process, the stress applying portion and the quenching of the workpiece are quenched. Information on both temperatures of the control unit is acquired in real time, and based on this, the timing of cooling can be determined, and the workpiece can be hardened by hardening. Therefore, it becomes easy to adjust the heating time so that the stress applying part is heated to the quenching temperature for a desired time and the quenching control part is heated to the quenching temperature for a shorter time than the stress applying part. .

ここで、焼入制御部は、たとえば被処理物において、磁束の侵入が最も少なく、温度上昇の小さい部位とすることができる。また、応力付与部に明確な圧縮応力を付与するためには、焼入制御部が焼入温度またはそれ以上の温度に保持される時間は、応力付与部が焼入温度に保持される時間の1/3以下であることが好ましい。さらに、応力付与部に十分な圧縮応力を付与するためには、焼入制御部が焼入温度またはそれ以上の温度に保持される時間は、応力付与部が焼入温度に保持される時間の1/5以下であることが、より好ましい。   Here, the quenching control unit can be a part where the penetration of the magnetic flux is the smallest and the temperature rise is small in the workpiece, for example. Further, in order to give a clear compressive stress to the stress applying part, the time during which the quenching control part is held at the quenching temperature or higher is the time during which the stress applying part is held at the quenching temperature. It is preferable that it is 1/3 or less. Furthermore, in order to give a sufficient compressive stress to the stress applying part, the time during which the quench control part is held at the quenching temperature or higher is the time during which the stress applying part is held at the quenching temperature. It is more preferable that it is 1/5 or less.

本発明に従った機械部材は、上記本発明の高周波焼入方法により焼入硬化されて作製されたことを特徴とする。本発明の機械部材によれば、製造コストの上昇を抑制しつつ、被処理物を高強度化、長寿命化することが可能な上記本発明の高周波焼入方法により焼入硬化されていることにより、製造コストの上昇を抑制しつつ、過酷な環境下においても高強度、長寿命な機械部材を提供することができる。   The mechanical member according to the present invention is produced by quenching and hardening by the induction hardening method of the present invention. According to the mechanical member of the present invention, the workpiece is hardened and hardened by the induction hardening method of the present invention, which can increase the strength and extend the life of the object while suppressing an increase in manufacturing cost. Thus, it is possible to provide a mechanical member having high strength and a long life even under a severe environment while suppressing an increase in manufacturing cost.

本発明に従った転動部材は、上記本発明の高周波焼入方法により焼入硬化されて作製されたことを特徴とする。本発明の転動部材によれば、製造コストの上昇を抑制しつつ、被処理物を高強度化、長寿命化することが可能な上記本発明の高周波焼入方法により焼入硬化されていることにより、製造コストの上昇を抑制しつつ、過酷な環境下においても高強度、長寿命な転動部材を提供することができる。   The rolling member according to the present invention is produced by quenching and hardening by the induction hardening method of the present invention. According to the rolling member of the present invention, the workpiece is hardened and hardened by the induction hardening method of the present invention, which can increase the strength and extend the life of the object while suppressing an increase in manufacturing cost. Thus, it is possible to provide a rolling member having high strength and a long life even in a harsh environment while suppressing an increase in manufacturing cost.

なお、本発明の機械部材は、たとえば、ギア、シャフトの他、転がり軸受の軌道輪および転動体、等速ジョイントのアウターレース、インナーレースおよび転動体などの転動部材など、鋼からなる機械部材に適用することができる。   The mechanical members of the present invention are, for example, mechanical members made of steel such as gears and shafts, rolling rings and rolling elements of rolling bearings, rolling members such as outer races, inner races and rolling elements of constant velocity joints. Can be applied to.

以上の説明から明らかなように、本発明の高周波焼入方法によれば、製造コストの上昇を抑制しつつ、被処理物を高強度化、長寿命化することが可能な高周波焼入方法を提供することができる。さらに、本発明の機械部材および転動部材によれば製造コストの上昇を抑制しつつ、過酷な環境下においても高強度、長寿命な機械部材および転動部材を提供することができる。   As is clear from the above description, according to the induction hardening method of the present invention, there is provided an induction hardening method capable of increasing the strength and extending the life of the workpiece while suppressing an increase in manufacturing cost. Can be provided. Furthermore, according to the mechanical member and the rolling member of the present invention, it is possible to provide a mechanical member and a rolling member that have a high strength and a long life even under a severe environment while suppressing an increase in manufacturing cost.

以下、図面に基づいて本発明の実施の形態を説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付しその説明は繰返さない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following drawings, the same or corresponding parts are denoted by the same reference numerals, and description thereof will not be repeated.

(実施の形態1)
図1は、本発明の一実施の形態である実施の形態1における機械部材(転動部材)としての転がり軸受内輪の構成を示す概略断面図である。図1を参照して、実施の形態1における転がり軸受内輪の構成を説明する。
(Embodiment 1)
FIG. 1 is a schematic cross-sectional view showing a configuration of a rolling bearing inner ring as a mechanical member (rolling member) in the first embodiment which is an embodiment of the present invention. With reference to FIG. 1, the structure of the rolling bearing inner ring in Embodiment 1 is demonstrated.

図1を参照して、実施の形態1における転動部材としての転がり軸受内輪1は、円環状の形状を有している。そして、転がり軸受内輪1は、外周面1Aに転動体としての玉などが接触しつつ転走するための転走面1Cが形成されている。さらに、転がり軸受内輪1は、転がり軸受内輪1の内周部を貫通する軸などが接触し、当該軸と転がり軸受内輪1とが一体に回転可能となるように、当該軸などに対して転がり軸受内輪1を固定する内周面1Bを有している。   Referring to FIG. 1, a rolling bearing inner ring 1 as a rolling member in the first embodiment has an annular shape. The rolling bearing inner ring 1 is formed with a rolling surface 1C for rolling while a ball or the like as a rolling element is in contact with the outer peripheral surface 1A. Further, the rolling bearing inner ring 1 rolls with respect to the shaft or the like so that the shaft or the like penetrating the inner peripheral portion of the rolling bearing inner ring 1 comes into contact with the shaft and the rolling bearing inner ring 1 can rotate integrally. An inner peripheral surface 1B for fixing the bearing inner ring 1 is provided.

そして、転がり軸受内輪1は、以下に説明する実施の形態1における高周波焼入方法により焼入硬化されて作製されている。そのため、応力付与部としての転走面1Cを含む転走領域1Dは、A点以上の温度である高温焼入温度に加熱されており、かつ応力付与部以外の部位である焼入制御部としての内周面1Bが、A点以上の温度であって、上記高温焼入温度よりも低い低温焼入温度に加熱されている状態から、M点以下の温度に冷却することにより焼入硬化されている。その結果、転走領域1Dは、転がり軸受内輪1のその他の領域よりも固溶炭素濃度が高くなっている。したがって、転走面1Cには、圧縮応力が付与されているとともに、転がり軸受内輪1は全体として焼入硬化されている。そのため、転がり軸受内輪1は、製造コストの上昇が抑制されつつ、過酷な環境下においても高強度、長寿命となっている。 And the rolling bearing inner ring | wheel 1 is hardened by the induction hardening method in Embodiment 1 demonstrated below, and is produced. Therefore, the rolling region 1D including the rolling surface 1C as the stress applying portion is heated to a high-temperature quenching temperature that is a temperature equal to or higher than A 1 and is a quenching control portion that is a portion other than the stress applying portion. As the inner peripheral surface 1B is heated to a low-temperature quenching temperature lower than the above-mentioned high-temperature quenching temperature at a temperature equal to or higher than A 1 point, it is quenched by cooling to a temperature below the MS point. It is cured. As a result, the rolling region 1D has a higher solute carbon concentration than other regions of the rolling bearing inner ring 1. Therefore, compressive stress is applied to the rolling surface 1C, and the rolling bearing inner ring 1 is hardened and hardened as a whole. Therefore, the rolling bearing inner ring 1 has high strength and long life even under harsh environments while suppressing an increase in manufacturing cost.

なお、転がり軸受内輪1をさらに高強度、長寿命とするためには、圧縮応力が付与される領域は表面だけでなく、ある程度の深さを有する領域であることが好ましく、具体的には転走領域1Dの転走面1Cからの深さは肉厚(転走面1Cに対して垂直な面における厚み)の1/20以上であることが好ましい。一方、転走領域1Dの深さが肉厚の1/3を超える場合、転走領域1Dに生じた圧縮応力に釣り合うように内周面1Bに生じる引張応力が大きくなり、内周面1Bの強度が許容範囲を超えて低下するおそれがある。そのため、転走領域の深さは、肉厚の1/3以下であることが好ましい。   In order to make the rolling bearing inner ring 1 have higher strength and longer life, the region to which the compressive stress is applied is preferably not only the surface but also a region having a certain depth. The depth of the running region 1D from the rolling surface 1C is preferably 1/20 or more of the wall thickness (thickness in a plane perpendicular to the rolling surface 1C). On the other hand, when the depth of the rolling region 1D exceeds 1/3 of the wall thickness, the tensile stress generated in the inner peripheral surface 1B is increased to balance the compressive stress generated in the rolling region 1D, and the inner peripheral surface 1B There is a risk that the strength falls below the allowable range. Therefore, the depth of the rolling region is preferably 1/3 or less of the wall thickness.

次に、本発明の一実施の形態である実施の形態1における高周波焼入設備について説明する。図2は、実施の形態1における高周波焼入設備の構成を示す概略図である。図2を参照して、本発明の実施の形態1における高周波焼入設備の構成を説明する。   Next, the induction hardening equipment in Embodiment 1 which is one embodiment of the present invention will be described. FIG. 2 is a schematic diagram showing the configuration of the induction hardening equipment in the first embodiment. With reference to FIG. 2, the structure of the induction hardening equipment in Embodiment 1 of this invention is demonstrated.

図2を参照して、実施の形態1における高周波焼入設備90は、高周波加熱により被処理物としての転がり軸受内輪1の全体を加熱して焼入硬化する高周波焼入方法に使用される高周波焼入設備である。当該高周波焼入設備90は、転がり軸受内輪1の温度を調節するための温度制御装置50と、加熱された転がり軸受内輪1が冷却されるべきタイミングを調節するための焼入制御装置60とを備えている。   With reference to FIG. 2, the induction hardening equipment 90 in Embodiment 1 is a high frequency used in an induction hardening method in which the entire rolling bearing inner ring 1 as an object to be processed is heated and hardened by induction heating. Quenching equipment. The induction hardening equipment 90 includes a temperature control device 50 for adjusting the temperature of the rolling bearing inner ring 1 and a quenching control device 60 for adjusting the timing at which the heated rolling bearing inner ring 1 should be cooled. I have.

温度制御装置50は、転がり軸受内輪1の温度データを取得し、転がり軸受内輪1の温度データに基づく温度の情報を出力する温度制御用測温装置としての第1放射温度計3と、第1放射温度計3に接続され、第1放射温度計3からの温度の情報に基づき転がり軸受内輪1の加熱状態を制御するための温度制御信号を出力する温度調節装置4と、温度調節装置4に接続され、温度調節装置4からの温度制御信号に基づき、高周波加熱により転がり軸受内輪1を加熱する加熱装置2とを含んでいる。加熱装置2に含まれる誘導コイルは、転がり軸受内輪1の外周側を取り囲むように配置されている。   The temperature control device 50 acquires temperature data of the rolling bearing inner ring 1 and outputs a temperature information based on the temperature data of the rolling bearing inner ring 1. A temperature controller 4 connected to the radiation thermometer 3 and outputting a temperature control signal for controlling the heating state of the rolling bearing inner ring 1 based on the temperature information from the first radiation thermometer 3, and the temperature controller 4 And a heating device 2 that heats the rolling bearing inner ring 1 by high-frequency heating based on a temperature control signal from the temperature control device 4. The induction coil included in the heating device 2 is disposed so as to surround the outer peripheral side of the rolling bearing inner ring 1.

焼入制御装置60は、焼入用測温装置としての第1放射温度計3および第2放射温度計5と、冷却タイミング調節装置6と、冷却装置7とを含んでいる。焼入用測温装置としての第1放射温度計3および第2放射温度計5は、転がり軸受内輪1の応力付与部である転走面1C(誘導コイルに対向する面)および焼入制御部である内周面1B(誘導コイルに対向する面の裏側の面)のそれぞれの温度データを取得し、転がり軸受内輪1の温度データに基づく温度の情報を出力する機能を有している。冷却タイミング調節装置6は、第1放射温度計3および第2放射温度計5に接続され、第1放射温度計3および第2放射温度計5からの温度の情報に基づき、転走面1Cが高温焼入温度に加熱され、かつ内周面1Bが低温焼入温度に加熱されるように加熱時間を調節し、転がり軸受内輪1が冷却されるべきタイミングを決定して冷却開始信号を出力する機能を有している。冷却装置7は、冷却タイミング調節装置6に接続され、冷却開始信号に基づいて、転がり軸受内輪1を冷却することにより転がり軸受内輪1を焼入硬化する機能を有している。冷却装置7は、たとえば冷却液を転がり軸受内輪1に噴射することにより冷却する焼入液噴出装置である。   The quenching control device 60 includes a first radiation thermometer 3 and a second radiation thermometer 5, a cooling timing adjusting device 6, and a cooling device 7 as temperature measuring devices for quenching. A first radiation thermometer 3 and a second radiation thermometer 5 as temperature measuring devices for quenching are a rolling surface 1C (surface facing the induction coil) and a quenching control unit which are stress applying portions of the rolling bearing inner ring 1. Each of the inner peripheral surface 1B (the surface on the back side of the surface facing the induction coil) is acquired, and temperature information based on the temperature data of the rolling bearing inner ring 1 is output. The cooling timing adjusting device 6 is connected to the first radiation thermometer 3 and the second radiation thermometer 5, and based on the temperature information from the first radiation thermometer 3 and the second radiation thermometer 5, the rolling surface 1 </ b> C is The heating time is adjusted so that the inner peripheral surface 1B is heated to the low-temperature quenching temperature while being heated to the high-temperature quenching temperature, the timing at which the rolling bearing inner ring 1 should be cooled is determined, and the cooling start signal is output. It has a function. The cooling device 7 is connected to the cooling timing adjusting device 6 and has a function of quenching and hardening the rolling bearing inner ring 1 by cooling the rolling bearing inner ring 1 based on a cooling start signal. The cooling device 7 is a quenching liquid jetting device that cools, for example, by spraying a cooling liquid onto the rolling bearing inner ring 1.

ここで、第1放射温度計3は、温度制御用測温装置と焼入制御用測温装置とを兼ねて設置されている。また、温度調節装置4および冷却タイミング調節装置6は、たとえばそれぞれパーソナルコンピュータであり、1台のパーソナルコンピュータで温度調節装置4と冷却タイミング調節装置6とを兼ねる構成であってもよい。   Here, the first radiation thermometer 3 is installed as both a temperature measuring device for temperature control and a temperature measuring device for quenching control. In addition, the temperature adjustment device 4 and the cooling timing adjustment device 6 are each a personal computer, for example, and one personal computer may serve as both the temperature adjustment device 4 and the cooling timing adjustment device 6.

なお、温度制御用測温装置および焼入用測温装置に用いる測温装置の種類は、上述のように放射温度計でもよいが、装置のレイアウト上可能であるならば熱電対などの接触式温度計でもよい。   The type of the temperature measuring device used for the temperature control temperature measuring device and the quenching temperature measuring device may be a radiation thermometer as described above, but if it is possible in the layout of the device, it is a contact type such as a thermocouple. A thermometer may be used.

次に、上述の高周波焼入設備を用いた本発明の一実施の形態である実施の形態1における高周波焼入方法について説明する。図3は、本発明の一実施の形態である実施の形態1における高周波焼入方法の概略を示す図である。   Next, the induction hardening method in Embodiment 1 which is one embodiment of the present invention using the above-described induction hardening equipment will be described. FIG. 3 is a diagram showing an outline of the induction hardening method according to the first embodiment which is one embodiment of the present invention.

図2および図3を参照して、本実施の形態における高周波焼入方法10は、高周波加熱により被処理物(転がり軸受内輪1)の全体を加熱してA点以上の温度からM点以下の温度に冷却することにより、転がり軸受内輪1を焼入硬化する高周波焼入方法である。高周波焼入方法10は、転がり軸受内輪1の温度が調節される温度制御工程20と、転がり軸受内輪1において、圧縮応力を付与すべき部位である応力付与部としての転走面1CがA点以上の温度である高温焼入温度に加熱されており、かつ転走面1C以外の部位である焼入制御部としての内周面1BがA点以上の温度であって、高温焼入温度よりも低い温度である低温焼入温度に加熱されている状態から、転がり軸受内輪1をM点以下の温度に冷却する焼入制御工程30とを備えている。 Referring to FIGS. 2 and 3, induction hardening process 10 in the present embodiment, the object to be treated by high-frequency heating M S point from the temperature of the one or more point A by heating the whole (the rolling bearing inner ring 1) This is an induction hardening method in which the rolling bearing inner ring 1 is quenched and hardened by cooling to the following temperature. The induction hardening method 10 includes a temperature control step 20 in which the temperature of the rolling bearing inner ring 1 is adjusted, and a rolling surface 1C as a stress applying portion that is a portion to which compressive stress is to be applied in the rolling bearing inner ring 1 is A 1. are heated to a high temperature quenching temperature is a temperature above the point, and the inner peripheral surface 1B of the quenching controller is a temperature not lower than a 1 point, which is a portion other than the rolling contact surface 1C, the high temperature hardening A quench control step 30 for cooling the rolling bearing inner ring 1 to a temperature not higher than the M S point from a state where it is heated to a low-temperature quenching temperature that is lower than the temperature.

そして、温度制御工程20は、転がり軸受内輪1の温度が測定される温度制御用測温工程23と、温度制御用測温工程23において測定された温度の情報に基づき、転がり軸受内輪1の加熱状態を制御するための温度制御信号が出力される温度調節工程24と、温度制御信号に基づいて、高周波加熱により転がり軸受内輪1が加熱される加熱工程22とを含んでいる。   And the temperature control process 20 is based on the temperature measurement temperature measurement process 23 in which the temperature of the rolling bearing inner ring 1 is measured and the temperature information measured in the temperature control temperature measurement process 23. The temperature control process 24 in which the temperature control signal for controlling a state is output, and the heating process 22 in which the rolling bearing inner ring | wheel 1 is heated by high frequency heating based on a temperature control signal are included.

焼入制御工程30は、焼入用測温工程35と、冷却タイミング調節工程36と、冷却工程37とを含んでいる。焼入用測温工程35では、転がり軸受内輪1の転走面1Cおよび内周面1Bの温度が測定される。冷却タイミング調節工程36では、焼入用測温工程35において測定された温度の情報に基づき、転走面1Cが高温焼入温度に加熱され、かつ内周面1Bが低温焼入温度に加熱されるように加熱時間が調節され、転がり軸受内輪1が冷却されるべきタイミングが決定されて冷却開始信号が出力される。冷却工程37では、冷却開始信号に基づいて、転がり軸受内輪1が冷却されることにより転がり軸受内輪1が焼入硬化される。   The quenching control process 30 includes a quenching temperature measurement process 35, a cooling timing adjustment process 36, and a cooling process 37. In the quenching temperature measurement step 35, the temperatures of the rolling surface 1C and the inner peripheral surface 1B of the rolling bearing inner ring 1 are measured. In the cooling timing adjustment step 36, the rolling surface 1C is heated to the high-temperature quenching temperature and the inner peripheral surface 1B is heated to the low-temperature quenching temperature based on the temperature information measured in the quenching temperature measurement step 35. The heating time is adjusted so that the timing at which the rolling bearing inner ring 1 should be cooled is determined, and a cooling start signal is output. In the cooling step 37, the rolling bearing inner ring 1 is quenched and hardened by cooling the rolling bearing inner ring 1 based on the cooling start signal.

実施の形態1における高周波焼入設備90を用いて実施の形態1における高周波焼入方法10によって被処理物としての転がり軸受内輪1を焼入硬化することにより、転走面1Cにおける固溶炭素濃度が相対的に他の部位に比べて高くなる。その結果、転走面1Cには圧縮応力が付与され、疲労強度が向上するとともに、転走面1C以外の部位も、A点以上の温度からM点以下の温度に冷却されて焼入硬化されるため、強度が十分に確保される。その結果、転がり軸受内輪1を高強度化、長寿命化することができる。 The solid solution carbon concentration on the rolling surface 1C is obtained by quenching and hardening the rolling bearing inner ring 1 as an object to be processed by the induction hardening method 10 in the first embodiment using the induction hardening equipment 90 in the first embodiment. Becomes relatively higher than other parts. As a result, rolling the contact surface 1C compressive stress is applied, thereby improving the fatigue strength, the rolling surface part other than 1C also, quenching is cooled from a temperature of more than 1 point A to M S point below the temperature Since it is cured, sufficient strength is ensured. As a result, the rolling bearing inner ring 1 can have high strength and a long life.

さらに、実施の形態1における高周波焼入方法は、処理時間の長い浸炭焼入やその他の複雑な熱処理工程を含む熱処理方法を採用するものではないため、製造コストを抑制しつつ、上記優れた特性を転がり軸受内輪1に付与することができる。また、転がり軸受内輪1の加熱に高周波加熱を利用することで、転がり軸受内輪1のうち誘導コイルに近い部位(転走面1C)と遠い部位(内周面1B)とで、容易に転がり軸受内輪1の温度を変化させることができる。   Furthermore, the induction hardening method according to the first embodiment does not employ a heat treatment method including carburizing and quenching with a long treatment time or other complicated heat treatment steps, so that the above-described excellent characteristics can be achieved while suppressing manufacturing costs. Can be applied to the rolling bearing inner ring 1. Further, by using high frequency heating for heating the rolling bearing inner ring 1, the rolling bearing inner ring 1 can be easily rolled at a part close to the induction coil (rolling surface 1C) and a part far away (inner peripheral surface 1B). The temperature of the inner ring 1 can be changed.

さらに、温度制御工程20において、転がり軸受内輪1の温度のデータがリアルタイムでフィードバックされて転がり軸受内輪1が所望の温度に加熱されるとともに、焼入制御工程30において、転走面1Cおよび内周面1Bの両方の温度の情報がリアルタイムで取得され、これに基づいて冷却のタイミングを決定して、転がり軸受内輪1を焼入硬化することができる。そのため、転走面1Cが高温焼入温度に加熱され、かつ内周面1Bが低温焼入温度に加熱されるように加熱時間を調節することが容易となる。   Furthermore, in the temperature control process 20, the temperature data of the rolling bearing inner ring 1 is fed back in real time to heat the rolling bearing inner ring 1 to a desired temperature, and in the quenching control process 30, the rolling surface 1C and the inner circumference are heated. Information on both temperatures of the surface 1B is acquired in real time, and based on this, the timing of cooling can be determined, and the rolling bearing inner ring 1 can be hardened and hardened. Therefore, it becomes easy to adjust the heating time so that the rolling surface 1C is heated to the high-temperature quenching temperature and the inner peripheral surface 1B is heated to the low-temperature quenching temperature.

以上より、実施の形態1における高周波焼入方法によれば、製造コストの上昇を抑制しつつ、転がり軸受内輪1を高強度化、長寿命化することが可能な高周波焼入方法を提供することができる。   From the above, according to the induction hardening method in the first embodiment, there is provided an induction hardening method capable of increasing the strength and extending the life of the rolling bearing inner ring 1 while suppressing an increase in manufacturing cost. Can do.

なお、A点とは鋼を加熱した場合に、鋼の組織がフェライトからオーステナイトに変態を開始する温度に相当する点をいう。また、M点とはオーステナイト化した鋼が冷却される際に、マルテンサイト化を開始する温度に相当する点をいう。 Note that the point A when heated steel refers to a point that the structure of the steel corresponds to the temperature to start the transformation from ferrite to austenite. Further, the M S point when the steel was austenitized is cooled, it refers to a point corresponding to a temperature to initiate the martensite.

(実施の形態2)
次に、本発明の一実施の形態である実施の形態2における高周波焼入方法、高周波焼入設備および機械部材(転動部材)について説明する。実施の形態2における高周波焼入方法、高周波焼入設備および機械部材(転動部材)は、基本的には実施の形態1における高周波焼入方法、高周波焼入設備および機械部材(転動部材)と同様の構成を有している。
(Embodiment 2)
Next, an induction hardening method, induction hardening equipment, and a mechanical member (rolling member) according to Embodiment 2, which is an embodiment of the present invention, will be described. The induction hardening method, induction hardening equipment and mechanical member (rolling member) in the second embodiment are basically the induction hardening method, induction hardening equipment and mechanical member (rolling member) in the first embodiment. It has the same composition as.

しかし、実施の形態2における高周波焼入方法は、焼入制御工程30において、高周波焼入設備90は、焼入制御装置60において、実施の形態1とは異なっている。また、実施の形態2における機械部材(転動部材)としての転がり軸受内輪1は、これに起因して、実施の形態1の転がり軸受内輪1とは異なっている。   However, the induction hardening method in the second embodiment is different from the first embodiment in the induction control equipment 30 in the induction control process 30 and in the induction control apparatus 60. Further, the rolling bearing inner ring 1 as the mechanical member (rolling member) in the second embodiment is different from the rolling bearing inner ring 1 in the first embodiment due to this.

すなわち、実施の形態2における高周波焼入設備90においては、焼入制御装置60の冷却タイミング調節装置6は、第1放射温度計3および第2放射温度計5に接続され、第1放射温度計3および第2放射温度計5からの温度の情報に基づき、転走面1Cが焼入温度に加熱され、かつ内周面1Bが当該焼入温度に転走面1Cよりも短い時間加熱されるように加熱時間を調節し、転がり軸受内輪1が冷却されるべきタイミングを決定して冷却開始信号を出力する機能を有している。また、実施の形態2における高周波焼入方法10においては、焼入制御工程30の冷却タイミング決定工程36では、焼入用測温工程35において測定された温度の情報に基づき、転走面1Cが焼入温度に加熱され、かつ内周面1Bが当該焼入温度に転走面1Cよりも短い時間加熱されるように、加熱時間が調節され、転がり軸受内輪1が冷却されるべきタイミングが決定されて冷却開始信号が出力される。   That is, in the induction hardening equipment 90 according to the second embodiment, the cooling timing adjusting device 6 of the quenching control device 60 is connected to the first radiation thermometer 3 and the second radiation thermometer 5, and the first radiation thermometer. 3 and the temperature information from the second radiation thermometer 5, the rolling surface 1C is heated to the quenching temperature, and the inner peripheral surface 1B is heated to the quenching temperature for a shorter time than the rolling surface 1C. Thus, the heating time is adjusted, the timing at which the rolling bearing inner ring 1 should be cooled is determined, and the cooling start signal is output. Moreover, in the induction hardening method 10 in Embodiment 2, in the cooling timing determination process 36 of the quench control process 30, based on the temperature information measured in the quenching temperature measurement process 35, the rolling surface 1C is formed. The heating time is adjusted so that the inner circumferential surface 1B is heated to the quenching temperature and heated to the quenching temperature for a shorter time than the rolling surface 1C, and the timing at which the rolling bearing inner ring 1 should be cooled is determined. Then, a cooling start signal is output.

実施の形態2における高周波焼入設備90を用いて実施の形態2における高周波焼入方法10によって被処理物としての転がり軸受内輪1を焼入硬化することにより、転走面1Cにおける固溶炭素濃度が相対的に他の部位に比べて高くなる。その結果、転走面1Cには圧縮応力が付与され、疲労強度が向上するとともに、転走面1C以外の部位も、A点以上の温度からM点以下の温度に冷却されて焼入硬化されるため、強度が十分に確保される。その結果、転がり軸受内輪1を高強度化、長寿命化することができる。 The solid solution carbon concentration on the rolling surface 1C is obtained by quenching and hardening the rolling bearing inner ring 1 as an object to be processed by the induction hardening method 10 in the embodiment 2 using the induction hardening equipment 90 in the embodiment 2. Becomes relatively higher than other parts. As a result, rolling the contact surface 1C compressive stress is applied, thereby improving the fatigue strength, the rolling surface part other than 1C also, quenching is cooled from a temperature of more than 1 point A to M S point below the temperature Since it is cured, sufficient strength is ensured. As a result, the rolling bearing inner ring 1 can have high strength and a long life.

さらに、実施の形態2における高周波焼入方法は、処理時間の長い浸炭焼入やその他の複雑な熱処理工程を含む熱処理方法を採用するものではないため、製造コストを抑制しつつ、上記優れた特性を転がり軸受内輪1に付与することができる。また、転がり軸受内輪1の加熱に高周波加熱を利用することで、転がり軸受内輪1のうち誘導コイルに近い部位(転走面1C)と遠い部位(内周面1B)とで、焼入温度に保持される時間を変化させること容易となる。   Furthermore, since the induction hardening method in Embodiment 2 does not employ a heat treatment method including carburizing and quenching with a long treatment time or other complicated heat treatment steps, the above excellent characteristics can be achieved while suppressing manufacturing costs. Can be applied to the rolling bearing inner ring 1. In addition, by using high-frequency heating for heating the rolling bearing inner ring 1, the quenching temperature can be increased between the part close to the induction coil (rolling surface 1 </ b> C) and the part far away (inner peripheral surface 1 </ b> B) of the rolling bearing inner ring 1. It becomes easy to change the holding time.

さらに、温度制御工程20において、転がり軸受内輪1の温度のデータがリアルタイムでフィードバックされて転がり軸受内輪1が所望の温度に加熱されるとともに、焼入制御工程30において、転走面1Cおよび内周面1Bの両方の温度の情報がリアルタイムで取得され、これに基づいて冷却のタイミングを決定して、転がり軸受内輪1を焼入硬化することができる。そのため、転走面1Cが所望の時間、焼入温度に加熱され、かつ内周面1Bが転走面1Cよりも短い時間、当該焼入温度に加熱されるように加熱時間を調節することが容易となる。   Furthermore, in the temperature control process 20, the temperature data of the rolling bearing inner ring 1 is fed back in real time to heat the rolling bearing inner ring 1 to a desired temperature, and in the quenching control process 30, the rolling surface 1C and the inner circumference are heated. Information on both temperatures of the surface 1B is acquired in real time, and based on this, the timing of cooling can be determined, and the rolling bearing inner ring 1 can be hardened and hardened. Therefore, the heating time can be adjusted so that the rolling surface 1C is heated to the quenching temperature for a desired time and the inner peripheral surface 1B is heated to the quenching temperature for a shorter time than the rolling surface 1C. It becomes easy.

以上より、実施の形態2における高周波焼入設備により実施の形態2における高周波焼入方法を実施することにより、製造コストの上昇を抑制しつつ、転がり軸受内輪1を高強度化、長寿命化することができる。   As described above, by implementing the induction hardening method in Embodiment 2 using the induction hardening equipment in Embodiment 2, the rolling bearing inner ring 1 is increased in strength and extended in life while suppressing an increase in manufacturing cost. be able to.

以下、本発明の実施例について説明する。機械部材を構成する鋼がたとえば、JIS SUJ2などの軸受鋼やJIS S53Cなどの炭素鋼である場合であっても、本発明の高周波焼入方法は有効に適用することができるが、3質量%以上のクロムを含有する鋼(たとえばAISI M50、JIS SKH4、JIS SUS440C、JIS SUS420J2など)である場合、焼入の際の加熱温度が高くなるため(たとえば1000℃以上)、本発明の高周波焼入方法の制御が容易であり、適用に適している。   Examples of the present invention will be described below. Even when the steel constituting the mechanical member is, for example, a bearing steel such as JIS SUJ2 or a carbon steel such as JIS S53C, the induction hardening method of the present invention can be applied effectively, but 3% by mass. In the case of steel containing the above chromium (for example, AISI M50, JIS SKH4, JIS SUS440C, JIS SUS420J2, etc.), since the heating temperature during quenching becomes high (for example, 1000 ° C. or higher), induction hardening of the present invention is performed. The method is easy to control and suitable for application.

本実施例では、AISI M50を素材として採用し、本発明の高周波焼入方法の効果を確認する試験を実施した。以下、試験の方法について説明する。   In this example, AISI M50 was adopted as a material, and a test for confirming the effect of the induction hardening method of the present invention was performed. The test method will be described below.

本発明の実施例として、AISI M50の鋼材から外径φ60mm、内径φ45mm、幅t15mmのリング状試験片を作製した後、上述の実施の形態2の方法で焼入硬化を実施した。応力付与部は外周面、焼入制御部は内周面とした。また、加熱温度は外周面、内周面ともに1150℃とし、それぞれ1150℃に到達した後の時間を3水準に変化させて、焼入を実施した。   As an example of the present invention, a ring-shaped test piece having an outer diameter of φ60 mm, an inner diameter of φ45 mm, and a width of t15 mm was produced from a steel material of AISI M50, and then quenched and hardened by the method of the second embodiment. The stress applying portion was the outer peripheral surface, and the quenching control portion was the inner peripheral surface. The heating temperature was 1150 ° C. for both the outer peripheral surface and the inner peripheral surface, and the time after reaching 1150 ° C. was changed to three levels for quenching.

一方、比較例として、上記実施例と同様にAISI M50の鋼材から外径φ60mm、内径φ45mm、幅t15mmのリング状試験片を作製した後、雰囲気炉において1110℃に600秒間保持した後、急冷することにより焼入を実施した試験片も作製した。   On the other hand, as a comparative example, a ring-shaped test piece having an outer diameter of φ60 mm, an inner diameter of φ45 mm, and a width of t15 mm was produced from a steel material of AISI M50 as in the above example, and then held at 1110 ° C. in an atmosphere furnace for 600 seconds and then rapidly cooled. Thus, a test piece subjected to quenching was also produced.

そして、外周面および内周面の硬度、外周面の圧縮応力、外周面から内周面に向けての硬度分布および軸を圧入した場合のリング状試験片の転動疲労寿命を調査する試験を実施した。   And the test to investigate the rolling fatigue life of the ring-shaped specimen when the hardness of the outer peripheral surface and the inner peripheral surface, the compressive stress of the outer peripheral surface, the hardness distribution from the outer peripheral surface to the inner peripheral surface and the shaft is press-fitted Carried out.

次に、試験方法について説明する。外周面および内周面の硬度は、当該外周面および内周面の硬度をロックウェル硬度計により測定した。外周面の圧縮応力は、X線応力測定装置により、周方向に平行な応力を測定した。硬度分布は、焼入硬化されたリング状試験片を外周面に垂直な面で切断し、ビッカース硬度計を用い、外周面直下から内周面に向けて外周面に垂直な方向に硬度を測定することにより、調査した。さらに、軸を圧入した場合のリング状試験片の転動疲労寿命は、以下のように調査した。   Next, the test method will be described. Regarding the hardness of the outer peripheral surface and the inner peripheral surface, the hardness of the outer peripheral surface and the inner peripheral surface was measured with a Rockwell hardness meter. The compressive stress of the outer peripheral surface was measured by a stress parallel to the circumferential direction using an X-ray stress measuring device. The hardness distribution is determined by cutting a hardened and hardened ring-shaped test piece along a surface perpendicular to the outer peripheral surface and using a Vickers hardness tester to measure the hardness in the direction perpendicular to the outer peripheral surface from directly under the outer peripheral surface toward the inner peripheral surface. To investigate. Furthermore, the rolling fatigue life of the ring-shaped test piece when the shaft was press-fitted was investigated as follows.

図4は、軸を圧入した場合のリング状試験片の転動疲労寿命を調査するために使用されたリング回転疲労試験機の構成を示す概略図である。図4を参照して、リング状試験片の転動疲労寿命の調査方法について説明する。   FIG. 4 is a schematic diagram showing the configuration of a ring rotation fatigue tester used for investigating the rolling fatigue life of a ring-shaped test piece when a shaft is press-fitted. A method for investigating the rolling fatigue life of the ring-shaped test piece will be described with reference to FIG.

図4を参照して、リング回転疲労試験機70は、円筒状の形状を有する駆動ロール73と、負荷ロール72と、案内ロール75とを備えている。駆動ロール73、負荷ロール72および案内ロール75は、回転軸が平行になるとともに、外周面がリング状試験片71に接触可能なように配置されている。そして、リング回転疲労試験機70は、給油ノズル74をさらに備えており、当該給油ノズル74により、試験片71に対して潤滑油を給油可能な構成となっている。   With reference to FIG. 4, the ring rotation fatigue testing machine 70 includes a drive roll 73 having a cylindrical shape, a load roll 72, and a guide roll 75. The drive roll 73, the load roll 72, and the guide roll 75 are arranged so that the rotation axes are parallel and the outer peripheral surface can contact the ring-shaped test piece 71. The ring rotation fatigue testing machine 70 further includes an oil supply nozzle 74, and the oil supply nozzle 74 can supply lubricating oil to the test piece 71.

転動疲労寿命試験は、内周に軸76が圧入されたリング状試験片71が、駆動ロール73、負荷ロール72および案内ロール75に外周面において接触するようにセットされ、駆動ロール73および負荷ロール72により径方向に圧縮される応力を負荷されつつ、駆動ロール73が回転することにより駆動され、案内ロール75に案内されて回転することにより実施された。そして、外周面に割れが発生するまでの時間を調査し、当該時間を転動疲労寿命とした。試験片の形状は、外径φ60mm、内径φ45mm、幅t15mm、荷重107.8kN、回転速度4000rpm、潤滑油はタービン油VG68とした。また、圧入される軸は内径φ45mmに対して80μmおよび120μm太いものの2水準とし、その結果、リング状試験片71の外周面における嵌め合い応力はそれぞれ200MPaおよび310MPaの2水準となった。試験はそれぞれの軸について2個ずつ実施された。   In the rolling fatigue life test, a ring-shaped test piece 71 having a shaft 76 press-fitted on the inner periphery is set so as to come into contact with the drive roll 73, the load roll 72, and the guide roll 75 on the outer peripheral surface. This was implemented by being driven by the rotation of the drive roll 73 and being guided by the guide roll 75 and rotating while being subjected to stress compressed in the radial direction by the roll 72. And the time until a crack generate | occur | produces in an outer peripheral surface was investigated, and the said time was made into the rolling fatigue life. The test piece had an outer diameter of 60 mm, an inner diameter of 45 mm, a width of t15 mm, a load of 107.8 kN, a rotation speed of 4000 rpm, and the lubricating oil was turbine oil VG68. In addition, the press-fit shafts were two levels of 80 μm and 120 μm thick with respect to an inner diameter of 45 mm, and as a result, the fitting stress on the outer peripheral surface of the ring-shaped test piece 71 was two levels of 200 MPa and 310 MPa, respectively. Two tests were performed for each axis.

次に、上記試験の結果について説明する。表1は、本発明の実施例および比較例の外周面および内周面の硬度、外周面の圧縮応力を、各試験片の焼入条件とともに示す表である。表1を参照して、実施例A〜Cの外周面の硬度は61〜61.5HRC、比較例の外周面の硬度は61.5HRCとなっており、ほぼ同一の硬度となっていた。一方、内周面の硬度は、加熱時間が長いほど高硬度となっているが、最も硬度の低い実施例Aでも52HRC以上の硬度を有しており、転走面として使用されるような過酷な条件で使用されない限り、十分な硬度となっている。また、内周面の加熱時間に対する外周面の加熱時間の比が大きいほど、外周面の圧縮応力が大きくなっており、内周面と外周面との加熱時間が同じである比較例では、圧縮応力は0となっていた。   Next, the results of the above test will be described. Table 1 is a table showing the hardness of the outer peripheral surface and the inner peripheral surface and the compressive stress of the outer peripheral surface of the examples and comparative examples of the present invention, together with the quenching conditions of each test piece. With reference to Table 1, the hardness of the outer peripheral surface of Examples A to C was 61 to 61.5 HRC, and the hardness of the outer peripheral surface of the comparative example was 61.5 HRC, which was almost the same hardness. On the other hand, the hardness of the inner peripheral surface is higher as the heating time is longer, but even Example A, which has the lowest hardness, has a hardness of 52 HRC or more, and is as severe as being used as a rolling surface. Unless it is used under the proper conditions, the hardness is sufficient. Also, the larger the ratio of the heating time of the outer peripheral surface to the heating time of the inner peripheral surface, the greater the compressive stress of the outer peripheral surface, and in the comparative example where the heating time of the inner peripheral surface and the outer peripheral surface is the same, compression The stress was zero.

Figure 0005311719
Figure 0005311719

図5は、実施例Aのリング状試験片の外周面直下から内周面に向けての外周面に垂直な方向における硬度分布の測定結果を示す図である。図5において、横軸は外周面からの深さ、縦軸は硬度を示している。図5を参照して、リング状試験片の硬度分布について説明する。   FIG. 5 is a diagram showing the measurement results of the hardness distribution in the direction perpendicular to the outer peripheral surface from directly below the outer peripheral surface to the inner peripheral surface of the ring-shaped test piece of Example A. In FIG. 5, the horizontal axis represents the depth from the outer peripheral surface, and the vertical axis represents the hardness. With reference to FIG. 5, the hardness distribution of the ring-shaped test piece will be described.

図5を参照して、内周面と外周面との硬度差の最も大きい実施例Aの試験片においても、表層部のみを焼入硬化する一般的な高周波焼入方法で焼入硬化された部材において、表面直下に形成される硬度が急激に低下する領域は形成されておらず、むしろ硬度が徐々に低下する浸炭焼入された部材に近い硬度分布となっている。このことから、本発明の高周波焼入方法で焼入硬化された機械部材においては、大きな荷重が作用した場合に、硬度が急激に低下する領域で生じる内部割れが抑制されていることが分かる。   Referring to FIG. 5, the test piece of Example A having the largest hardness difference between the inner peripheral surface and the outer peripheral surface was also hardened by a general induction hardening method in which only the surface layer portion was hardened and hardened. In the member, the region where the hardness formed immediately below the surface is not rapidly decreased, but rather has a hardness distribution close to that of a carburized and quenched member in which the hardness gradually decreases. From this, it can be seen that in the mechanical member quenched and hardened by the induction hardening method of the present invention, when a large load is applied, internal cracks occurring in a region where the hardness sharply decreases are suppressed.

表2および表3は、外周面における嵌め合い応力が、それぞれ200MPaおよび310MPaである場合の転動疲労寿命試験の結果を、外周面に付与された圧縮応力の大きさとともに示す表である。   Tables 2 and 3 are tables showing the results of the rolling fatigue life test when the fitting stress on the outer peripheral surface is 200 MPa and 310 MPa, respectively, together with the magnitude of the compressive stress applied to the outer peripheral surface.

Figure 0005311719
Figure 0005311719

Figure 0005311719
Figure 0005311719

表2を参照して、外周面の嵌め合い応力が200MPaである場合、外周面の圧縮応力が大きいほど、寿命が長くなっていることが分かる。そして、本発明の実施例の寿命は、比較例の寿命の3倍以上となっている。ここで、表中の「>300」は、試験開始から300時間経過後においても外周面に割れが発生せず、試験を中止したことを示している。   With reference to Table 2, when the fitting stress of an outer peripheral surface is 200 MPa, it turns out that the lifetime becomes long, so that the compressive stress of an outer peripheral surface is large. And the lifetime of the Example of this invention is 3 times or more of the lifetime of a comparative example. Here, “> 300” in the table indicates that the test was stopped without cracking on the outer peripheral surface even after 300 hours had elapsed from the start of the test.

表3を参照して、外周面の嵌め合い応力が310MPaである場合、外周面における嵌め合いの応力が高くなったことに伴い、表2の場合よりも寿命が全体として低下している。しかし、この場合でも、本発明の実施例の寿命は、比較例の寿命の3倍以上となっている。   Referring to Table 3, when the fitting stress on the outer peripheral surface is 310 MPa, the life is reduced as a whole as compared with the case of Table 2 as the fitting stress on the outer peripheral surface is increased. However, even in this case, the life of the example of the present invention is more than three times the life of the comparative example.

以上より、本発明の高周波焼入方法により焼入硬化された機械部材は、部材内部において急激な硬度低下が存在せず、かつ部材全体において十分な硬度を有している。そのため、大きな荷重が作用した場合でも部材の内部における内部割れの発生や塑性変形が抑制されることが分かった。また、本発明の高周波焼入方法により焼入硬化された機械部材は、表面の所望の部位に十分な大きさの圧縮応力を付与することができるため、たとえば嵌め合いが大きく、表面に引張応力が作用するような環境下で使用される場合であっても、長寿命な機械部材となっていることが分かった。   As described above, the mechanical member quenched and hardened by the induction hardening method of the present invention does not have a sharp decrease in hardness inside the member, and has a sufficient hardness in the entire member. Therefore, it was found that even when a large load is applied, the occurrence of internal cracks and plastic deformation inside the member are suppressed. In addition, since the mechanical member quenched and hardened by the induction hardening method of the present invention can apply a sufficiently large compressive stress to a desired portion of the surface, for example, the fit is large, and the tensile stress is applied to the surface. It has been found that even when used in an environment in which the above works, the machine member has a long life.

今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。   The embodiments and examples disclosed herein are illustrative in all respects and should not be construed as being restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

本発明の高周波焼入方法、機械部材および転動部材は、高周波加熱により被処理物を加熱して焼入を行なう高周波焼入方法、焼入が実施されて作製される機械部材および転動部材に特に有利に適用され得る。   The induction hardening method, the mechanical member and the rolling member of the present invention are an induction hardening method in which an object to be processed is quenched by induction heating, a mechanical member and a rolling member produced by performing the quenching. Can be applied particularly advantageously.

実施の形態1における機械部材(転動部材)としての転がり軸受内輪の構成を示す概略断面図である。FIG. 3 is a schematic cross-sectional view showing a configuration of a rolling bearing inner ring as a mechanical member (rolling member) in the first embodiment. 実施の形態1における高周波焼入設備の構成を示す概略図である。It is the schematic which shows the structure of the induction hardening equipment in Embodiment 1. FIG. 実施の形態1における高周波焼入方法の概略を示す図である。It is a figure which shows the outline of the induction hardening method in Embodiment 1. FIG. 軸を圧入した場合のリング状試験片の転動疲労寿命を調査するために使用されたリング回転疲労試験機の構成を示す概略図である。It is the schematic which shows the structure of the ring rotation fatigue testing machine used in order to investigate the rolling fatigue life of the ring-shaped test piece at the time of press-fitting a shaft. 実施例Aのリング状試験片の外周面直下から内周面に向けての外周面に垂直な方向における硬度分布の測定結果を示す図である。It is a figure which shows the measurement result of the hardness distribution in the direction perpendicular | vertical to the outer peripheral surface from the directly outer peripheral surface of the ring-shaped test piece of Example A toward an inner peripheral surface.

符号の説明Explanation of symbols

1 転がり軸受内輪、1A 外周面、1B 内周面、1C 転走面、1D 転走領域、2 加熱装置、3 第1放射温度計、4 温度調節装置、5 第2放射温度計、6 冷却タイミング調節装置、7 冷却装置、10 高周波焼入方法、20 温度制御工程、22 加熱工程、23 温度制御用測温工程、24 温度調節工程、30 焼入制御工程、35 焼入用測温工程、36 冷却タイミング決定工程、50 温度制御装置、60 焼入制御装置、70 リング回転疲労試験機、71 リング状試験片、72 負荷ロール、73 駆動ロール、74 給油ノズル、75 案内ロール、76 軸、90 高周波焼入設備。   DESCRIPTION OF SYMBOLS 1 Rolling bearing inner ring, 1A outer peripheral surface, 1B inner peripheral surface, 1C rolling surface, 1D rolling area, 2 Heating device, 3 1st radiation thermometer, 4 Temperature control device, 5 2nd radiation thermometer, 6 Cooling timing Control device, 7 Cooling device, 10 Induction hardening method, 20 Temperature control process, 22 Heating process, 23 Temperature control process for temperature control, 24 Temperature control process, 30 Quenching control process, 35 Temperature measurement process for quenching, 36 Cooling timing determination process, 50 temperature control device, 60 quenching control device, 70 ring rotation fatigue tester, 71 ring-shaped test piece, 72 load roll, 73 drive roll, 74 oil supply nozzle, 75 guide roll, 76 axis, 90 high frequency Quenching equipment.

Claims (7)

高周波加熱により被処理物の全体を加熱してA点以上の温度からM点以下の温度に冷却することにより、前記被処理物の全体を焼入硬化する高周波焼入方法であって、
前記被処理物の温度が調節される温度制御工程と、
前記被処理物において、前記被処理物の表面を含む圧縮応力を付与すべき部位である応力付与部がA点以上の温度である高温焼入温度に加熱されており、かつ前記応力付与部以外の部位であり、前記被処理物の表面を含む焼入制御部がA点以上の温度であって、前記高温焼入温度よりも低い温度である低温焼入温度に加熱されている状態から、前記被処理物をM点以下の温度に冷却することにより、前記被処理物の全体を焼入硬化する焼入制御工程とを備えた、高周波焼入方法。
An induction hardening method in which the whole object to be treated is hardened and hardened by heating the whole object by high frequency heating and cooling from a temperature of A 1 point or more to a temperature of M S point or less,
A temperature control step in which the temperature of the workpiece is adjusted;
In the object to be processed, a stress applying part which is a part to which compressive stress including the surface of the object to be processed is applied is heated to a high-temperature quenching temperature which is a temperature of A 1 point or more, and the stress applying part site der except is, the quenching controller including the surface of the object to be treated is at a temperature of more than 1 point a, and is heated to a low temperature quenching temperature is a temperature lower than the hot quenching temperature An induction hardening method comprising: a quenching control step of quenching and hardening the entire workpiece by cooling the workpiece to a temperature equal to or lower than the MS point from the state.
前記温度制御工程は、
前記被処理物の温度が測定される温度制御用測温工程と、
前記温度制御用測温工程において測定された温度の情報に基づき、前記被処理物の加熱状態を制御するための温度制御信号が出力される温度調節工程と、
前記温度制御信号に基づいて、前記高周波加熱により前記被処理物が加熱される加熱工程とを含み、
前記焼入制御工程は、
前記被処理物の前記応力付与部および前記焼入制御部の温度が測定される焼入用測温工程と、
前記焼入用測温工程において測定された温度の情報に基づき、前記応力付与部が前記高温焼入温度に加熱され、かつ前記焼入制御部が前記低温焼入温度に加熱されるように加熱時間が調節され、前記被処理物が冷却されるべきタイミングが決定されて冷却開始信号が出力される冷却タイミング調節工程と、
前記冷却開始信号に基づいて、前記被処理物が冷却されることにより前記被処理物が焼入硬化される冷却工程とを含む、請求項1に記載の高周波焼入方法。
The temperature control step includes
A temperature control temperature measurement step in which the temperature of the object to be processed is measured,
Based on the temperature information measured in the temperature control temperature measurement step, a temperature adjustment step for outputting a temperature control signal for controlling the heating state of the workpiece,
A heating step in which the object to be processed is heated by the high-frequency heating based on the temperature control signal,
The quench control process includes
A quenching temperature measurement step in which the temperature of the stress applying portion and the quenching control portion of the workpiece is measured,
Based on the temperature information measured in the quenching temperature measurement step, the stress applying part is heated to the high-temperature quenching temperature, and the quenching control part is heated to the low-temperature quenching temperature. A cooling timing adjustment step in which time is adjusted, a timing at which the workpiece is to be cooled is determined, and a cooling start signal is output;
The induction hardening method of Claim 1 including the cooling process in which the said to-be-processed object is quench-hardened by cooling the said to-be-processed object based on the said cooling start signal.
高周波加熱により被処理物の全体を加熱してA点以上の温度からM点以下の温度に冷却することにより、前記被処理物の全体を焼入硬化する高周波焼入方法であって、
前記被処理物の温度が調節される温度制御工程と、
前記被処理物において、前記被処理物の表面を含む圧縮応力を付与すべき部位である応力付与部がA点以上の温度である焼入温度に加熱されており、かつ前記応力付与部以外の部位であり、前記被処理物の表面を含む焼入制御部が前記応力付与部よりも短い時間、前記焼入温度に加熱されている状態から、前記被処理物をM点以下の温度に冷却することにより、前記被処理物の全体を焼入硬化する焼入制御工程とを備えた、高周波焼入方法。
An induction hardening method in which the whole object to be treated is hardened and hardened by heating the whole object by high frequency heating and cooling from a temperature of A 1 point or more to a temperature of M S point or less,
A temperature control step in which the temperature of the workpiece is adjusted;
In the object to be processed, a stress applying part which is a part to which compressive stress including the surface of the object to be processed is applied is heated to a quenching temperature which is a temperature of A 1 point or more, and other than the stress applying part sites der of is, the shorter time than the quenching controller said stress applying portion including the surface of the object, from a state which is heated to the quenching temperature, the treatment object M S following point An induction quenching method comprising: a quenching control step of quenching and hardening the entire workpiece by cooling to a temperature.
前記温度制御工程は、
前記被処理物の温度が測定される温度制御用測温工程と、
前記温度制御用測温工程において測定された温度の情報に基づき、前記被処理物の加熱状態を制御するための温度制御信号が出力される温度調節工程と、
前記温度制御信号に基づいて、前記高周波加熱により前記被処理物が加熱される加熱工程とを含み、
前記焼入制御工程は、
前記被処理物の前記応力付与部および前記焼入制御部の温度が測定される焼入用測温工程と、
前記焼入用測温工程において測定された温度の情報に基づき、前記応力付与部が前記焼入温度に加熱され、かつ前記焼入制御部が前記焼入温度に前記応力付与部よりも短い時間加熱されるように加熱時間が調節され、前記被処理物が冷却されるべきタイミングが決定されて冷却開始信号が出力される冷却タイミング調節工程と、
前記冷却開始信号に基づいて、前記被処理物が冷却されることにより前記被処理物が焼入硬化される冷却工程とを含む、請求項3に記載の高周波焼入方法。
The temperature control step includes
A temperature control temperature measurement step in which the temperature of the object to be processed is measured,
Based on the temperature information measured in the temperature control temperature measurement step, a temperature adjustment step for outputting a temperature control signal for controlling the heating state of the workpiece,
A heating step in which the object to be processed is heated by the high-frequency heating based on the temperature control signal,
The quench control process includes
A quenching temperature measurement step in which the temperature of the stress applying portion and the quenching control portion of the workpiece is measured,
Based on the temperature information measured in the quenching temperature measurement step, the stress applying unit is heated to the quenching temperature, and the quenching control unit is shorter than the stress applying unit at the quenching temperature. A cooling timing adjustment step in which a heating time is adjusted so that the workpiece is heated, a timing at which the workpiece is to be cooled is determined, and a cooling start signal is output;
The induction hardening method of Claim 3 including the cooling process by which the said to-be-processed object is quench-hardened by cooling the said to-be-processed object based on the said cooling start signal.
請求項1〜4のいずれか1項に記載の高周波焼入方法により焼入硬化されて作製されたことを特徴とする、機械部材。   A mechanical member produced by quenching and hardening by the induction hardening method according to any one of claims 1 to 4. 請求項1〜4のいずれか1項に記載の高周波焼入方法により焼入硬化されて作製されたことを特徴とする、転動部材。   A rolling member produced by quench hardening by the induction hardening method according to any one of claims 1 to 4. 請求項1〜4のいずれか1項に記載の高周波焼入方法により焼入硬化する工程を備えた、機械部材の製造方法。   The manufacturing method of a mechanical member provided with the process of quench-hardening with the induction hardening method of any one of Claims 1-4.
JP2006067486A 2006-03-13 2006-03-13 Induction hardening method, mechanical member, rolling member, and manufacturing method of mechanical member Expired - Fee Related JP5311719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006067486A JP5311719B2 (en) 2006-03-13 2006-03-13 Induction hardening method, mechanical member, rolling member, and manufacturing method of mechanical member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006067486A JP5311719B2 (en) 2006-03-13 2006-03-13 Induction hardening method, mechanical member, rolling member, and manufacturing method of mechanical member

Publications (3)

Publication Number Publication Date
JP2007239087A JP2007239087A (en) 2007-09-20
JP2007239087A5 JP2007239087A5 (en) 2009-04-02
JP5311719B2 true JP5311719B2 (en) 2013-10-09

Family

ID=38584908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006067486A Expired - Fee Related JP5311719B2 (en) 2006-03-13 2006-03-13 Induction hardening method, mechanical member, rolling member, and manufacturing method of mechanical member

Country Status (1)

Country Link
JP (1) JP5311719B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009041025A1 (en) 2007-09-28 2009-04-02 Ntn Corporation Quenching method and device of ring-shaped article
DE102018212775A1 (en) * 2018-07-31 2020-02-06 Aktiebolaget Skf bearing ring
CN112795858B (en) * 2020-12-28 2022-04-15 内蒙古千山重工有限公司 Device for treating stress of automobile aluminum alloy hub by adopting electromagnetic energy aging method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0651888B2 (en) * 1984-08-24 1994-07-06 トヨタ自動車株式会社 High-strength gear manufacturing method
JPS63230824A (en) * 1987-03-20 1988-09-27 Kawasaki Steel Corp Heat treatment for sleeve roll
JPH05320741A (en) * 1992-05-19 1993-12-03 Komatsu Ltd Induction heat treatment of cylindrical parts
JP3669547B2 (en) * 1998-01-28 2005-07-06 高周波熱錬株式会社 Induction hardening method
JP5319866B2 (en) * 2004-05-24 2013-10-16 株式会社小松製作所 Rolling member and manufacturing method thereof

Also Published As

Publication number Publication date
JP2007239087A (en) 2007-09-20

Similar Documents

Publication Publication Date Title
US9487843B2 (en) Method for producing a bearing ring
US20160153496A1 (en) Method for heat-treating a ring-shaped member, method for producing a ring-shaped member, ring-shaped member, bearing ring, rolling bearing, and method for producing a bearing ring
EP2772555A1 (en) Ring-shaped member heat treatment method and ring-shaped member manufacturing method
JP5045491B2 (en) Large rolling bearing
JP2006291250A (en) Rolling bearing unit for wheel supporting
JP5311719B2 (en) Induction hardening method, mechanical member, rolling member, and manufacturing method of mechanical member
JP2010025311A (en) Rolling bearing and method of manufacturing the same
JP2007182926A (en) Manufacturing method for needle-like roll bearing raceway member, needle-like roll bearing raceway member, and needle-like roll bearing
JP6023493B2 (en) Method of manufacturing bearing ring, bearing ring and rolling bearing
JP5534403B2 (en) Bearing rings and rolling bearings
WO2017073325A1 (en) Method for manufacturing bearing ring, and multi-row tapered roller bearing and manufacturing method therefor
JP2007182607A (en) Method for manufacturing rolling member for use in constant velocity joint, rolling member for use in constant velocity joint, and constant velocity joint
JP2010024492A (en) Heat-treatment method for steel, method for manufacturing machine component, and machine component
JP2007239072A (en) Rolling member manufacturing method, and rolling bearing manufacturing method
JP4904106B2 (en) Rolling parts
JP2007327112A (en) Machine member and rolling bearing
JP2009236145A (en) Steelmaking equipment bearing component, steelmaking rolling bearing, and steelmaking equipment
JP2007321895A (en) Rolling member for joint device, and rolling bearing for joint device
JP5721449B2 (en) Bearing rings and rolling bearings
JP5263862B2 (en) Machine Tools
JP2009235446A (en) Steel heat treatment method, manufacturing method of machine parts, machine parts and rolling bearing
JP2007321209A (en) Quench-hardening method, method for manufacturing machine component and machine component
JP2007284723A (en) Rolling member for automobile electrical equipment/auxiliary machinery, and rolling bearing for automobile electrical equipment/auxiliary machinery
JP2009235445A (en) Method for applying heat-treatment for steel, method for manufacturing machine part, machine part, and rolling bearing
JP2007217719A (en) Rolling member, rolling bearing and manufacturing methods thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090218

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130702

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5311719

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees