JP3669547B2 - Induction hardening method - Google Patents

Induction hardening method Download PDF

Info

Publication number
JP3669547B2
JP3669547B2 JP01620698A JP1620698A JP3669547B2 JP 3669547 B2 JP3669547 B2 JP 3669547B2 JP 01620698 A JP01620698 A JP 01620698A JP 1620698 A JP1620698 A JP 1620698A JP 3669547 B2 JP3669547 B2 JP 3669547B2
Authority
JP
Japan
Prior art keywords
wall surface
uneven
heated
induction
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01620698A
Other languages
Japanese (ja)
Other versions
JPH11217627A (en
Inventor
嘉昌 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Neturen Co Ltd
Original Assignee
Neturen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neturen Co Ltd filed Critical Neturen Co Ltd
Priority to JP01620698A priority Critical patent/JP3669547B2/en
Publication of JPH11217627A publication Critical patent/JPH11217627A/en
Application granted granted Critical
Publication of JP3669547B2 publication Critical patent/JP3669547B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Heat Treatment Of Articles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、被処理物に形成された凹凸部を硬化させる高周波焼入方法に関する。
【0002】
【従来の技術】
従来から自動車などに転がり軸受が広く使用されている。この転がり軸受は、内輪(インナーレース)と外輪(アウターレース)との間で複数個の玉やころが転動するものであり、外輪の内壁面には、これらの玉やころが嵌り込んで転動するための溝が形成されている。この溝では玉やころが転動するので、溝の壁面が摩耗し易い。このため、通常、溝の壁面には高周波焼入れなどによって硬化層が形成されて摩耗しにくくなっている。
【0003】
上記した溝の壁面を高周波焼入れによって硬化するに当っては、外輪の内側に誘導加熱コイルを入れてその内壁面を焼入温度まで誘導加熱し、その後、内壁面に冷却液を噴出して急冷する。この方法によれば、溝の壁面だけでなく、外輪の内壁面の全体が硬化される。内壁面の全体のうち、溝の壁面以外の面(内球面)には内輪が接触するので、内球面も硬化されて摩耗しにくくなることは好ましい。
【0004】
ところが、溝の内壁面は内球面よりも引っ込んだ位置にある。このため、外輪の内側に入れられた誘導加熱コイルと溝の内壁面との間隔は、この誘導加熱コイルと内球面との間隔よりも広い。即ち、溝の内壁面よりも内球面のほうが誘導加熱コイルに近く、溝の内壁面よりも内球面のほうが深くまで加熱される。従って、溝の内壁面を所定の硬化層深さにするためにこの内壁面を所定深さまで焼入温度に加熱した場合、内球面は内壁面よりも深い位置まで焼入温度に加熱される。この結果、内球面における硬化層深さは、溝の内壁面における硬化層深さよりも深くなる。
【0005】
【発明が解決しようとする課題】
このように、内球面と溝の内壁面とで硬化層深さが相違すると、この相違に起因して、焼入後の外輪に歪みが生じたり割れが発生したりするおそれがある。
【0006】
本発明は、上記事情に鑑み、被処理物に肉厚の異なる部分が形成されていても、その部分の硬化層深さを均一にできる高周波焼入方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するための本発明の高周波焼入方法は、内壁面もしくは外壁面のいずれか一方に凹凸部が形成されると共に、壁面のうち、この凹凸部の裏側に相当する部分に無凹凸部が形成された筒状の被処理物の前記凹凸部を高周波焼入れする高周波焼入方法において、
(1)上記凹凸部を誘導加熱するに当り、上記無凹凸部も加熱することを特徴とするものである。
【0008】
ここで、
(2)上記無凹凸部を加熱する際に、この無凹凸部が変態点未満の温度になるようにこの無凹凸部を加熱してもよい。
【0009】
また、
(3)上記無凹凸部が500℃以上600℃以下の範囲内の温度になるようにこの無凹凸部を加熱してもよい。
【0010】
さらに、
(4)上記凹凸部と上記無凹凸部とを同時に誘導加熱してもよい。
【0011】
さらにまた、
(5)上記凹凸部と上記無凹凸部を誘導加熱するタイミングをずらしてもよい。
さらにまた、
(6)上記凹凸部と上記無凹凸部とを誘導加熱した後に上記被処理物を急冷するに当り、上記凹凸部及び上記無凹凸部双方に冷却液を噴出してこれらを同時に急冷してもよい。
【0012】
さらにまた、
(7)上記凹凸部と上記無凹凸部とを誘導加熱した後に上記被処理物を急冷するに当り、上記凹凸部だけに冷却液を噴出してこの凹凸部を急冷してもよい。
【0013】
ここで、無凹凸には、機械加工の精度などに起因する微小な凹凸は含まれないこととする。
【0014】
【発明の実施の形態】
以下、図面を参照して本発明の実施形態を説明する。
【0015】
図1は、転がり軸受の外輪と誘導加熱コイルを模式的に示す断面図であり、図2は、図1の外輪と誘導加熱コイルを模式的に示す正面図である。
【0016】
鋼製の外輪(本発明にいう被処理物の一例である)10には、内輪(図示せず)が入り込む中空部12が形成されており、この中空部12は壁14で囲まれている。壁14は、内壁面20と、内壁面20とは反対側の外壁面30を有している。
【0017】
内壁面20には、外輪10の長さ方向(矢印A方向)に延びる溝22が周方向(矢印B方向)に等間隔で形成されている。溝22には玉やころ(図示せず)が嵌り込んで転動するので、溝22の壁面22aは摩耗し易い。また、内壁面20のうち、互いに隣り合う溝22の間は内球面24であり、この内球面24には内輪(図示せず)が接触する。内壁面20に溝22が形成されている結果、この内壁面20には、本発明にいう凹凸部が形成されていることとなる。
【0018】
一方、外壁面30には凹凸部が形成されておらず、機械加工に起因する微細な凹凸はあるものの、溝22などの無い無凹凸部になっている。従って、内壁面20の凹凸部の裏側に相当する部分は無凹凸部になっている。
【0019】
次に、外輪10の内壁面20を高周波焼入れして内球面24と溝22の壁面22aを硬化させる方法を説明する。
【0020】
外輪10の内壁面20を高周波焼入れする際は、先ず、中空部12に誘導加熱コイル40を挿入して内壁面20(凹凸部)を誘導加熱する。これにより、内壁面20は誘導加熱されるが、溝22の壁面22aよりも内球面24のほうが誘導加熱コイル40に近いので、壁面22aよりも内球面24のほうが深い位置まで焼入温度に加熱される。このように壁面22aと内球面24とで加熱層深さに差が生じたままで、冷却液を内壁面20に噴出して急冷した場合、硬化層深さにも差が生じる。この硬化層深さの差に起因して、外輪10に大きな歪(変形)が生じたり、外輪10が割れたりするおそれがある。
【0021】
そこで、ここでは、外壁面30の近傍に誘導加熱コイル50を配置して外壁面30の側からも(無凹凸部も)加熱する。外壁面30の側からみると、内球面24よりも溝22の壁面22aのほうが誘導加熱コイル50に近いので、誘導加熱コイル50による加熱では、内球面24よりも溝22の壁面22aのほうが加熱され易い。
【0022】
このように、内壁面20の側から誘導加熱コイル40で内壁面20を誘導加熱するだけでなく、外壁面30の側からも誘導加熱コイル50で外壁面30を加熱することにより、溝22の壁面22aと内球面24とにおける加熱層深さや温度分布を均一にする。即ち、誘導加熱コイル40,50の周波数や出力、加熱時間等を適宜に調整して、溝22の壁面22aと内球面24が同じ深さまで焼入温度に加熱されるようにする。
【0023】
内壁面20を誘導加熱コイル40で加熱するタイミングと外壁面30を誘導加熱コイル50で加熱するタイミングとは同時であってもよいし、ずらしてもよい。例えば、図3に示すように、外壁面30を加熱している途中から内壁面20の加熱を開始してもよい。また、図4に示すように、外壁面30の加熱が終了した後に内壁面20の加熱を開始してもよい。なお、これら外壁面30と内壁面20を加熱するタイミングは、被処理物の材質や形状などに応じて変更する。
【0024】
また、外壁面30が変態点未満の温度になるように加熱したほうが歪をいっそう低減できる。ただし、外壁面30を加熱する温度が低過ぎると、溝22の壁面22aと内球面24とを同じ深さにまで焼入温度に加熱する時間が長くなるので、加熱時間の点からは500℃以上600℃以下の範囲内の温度が好ましい。しかし、この温度は被処理物の肉厚によって適宜変更する。
【0025】
いずれの方法を用いるにしても溝22の壁面22aと内球面24を同じ深さにまで焼入温度に加熱し、冷却液を噴出して内壁面20を急冷する。この結果、内壁面20における硬化層深さは、溝22の壁面22aも内球面24も同じになる。このため、外輪10の歪が極めて少なくなり、歪を取り除くための研摩工程を無くすことができ、外輪10の生産コストを低減できる。
【0026】
冷却液を噴出して内壁面20を急冷するに当っては、内壁面20と外壁面30に同時に冷却液を噴出してもよいし、内壁面20にだけ冷却液を噴出してもよい。内壁面20と外壁面30に同時に冷却液を噴出した場合は、外輪10の歪がいっそう少なくなる。一方、内壁面20にだけ冷却液を噴出する場合は、「割れ」という観点からは好ましい。
【0027】
次に、図5、図6を参照して、実験例を説明する。
【0028】
図5は、実験に用いた外輪の硬化層深さを示す模式図であり、図6は、硬化層深さを示すグラフである。図6におけるa、b、c、dは、図5に示す矢印a、b、c、d方向から測定した硬度を表わす。また、これらの図では、図1、図2の構成要素と同一の構成要素には同一の符号が付されている。
【0029】
この実験で用いた外輪10の材質は、S53C(JIS規格)であり、外径Dは86mm、内径Hは67mmである。また、溝22の深さhは4.5mmである。
【0030】
内壁面20を加熱するに当っては、誘導加熱40(図1参照)を用いて120kW、10kHzで2秒間ほど加熱した。また、外壁面30を加熱するに当っては、誘導加熱コイル50(図1参照)を用いて50kW、6kHzで3秒間ほど加熱した。このようにして加熱した後に、内壁面20に冷却液を10秒間噴出して急冷した。この結果、内壁面20における硬化層60の深さは、図6に示すように、溝22の壁面22aも内球面24も同じになった。有効硬化層(Hv513以上)の深さは壁面22aも内球面24も約1.5mmであった。
【0031】
上記した実施形態では、被処理物として転がり軸受の外輪を挙げたが、外輪のように内壁面に凹凸部が形成された筒状の被処理物に限定されず、例えば、外壁面に凹凸部が形成されると共に、内壁面のうち、この凹凸部の裏側に相当する部分に無凹凸部が形成された筒状の被処理物にも本発明を適用でき、凹凸部を均一深さに硬化させられる。また、平板などの板状部材の一方の面に凹凸部が形成され、この凹凸部の裏側に相当する部分が無凹凸部になっている板状の被処理物にも本発明を適用でき、凹凸部を均一深さに硬化させられる。
【0032】
【発明の効果】
以上説明したように本発明の高周波焼入方法によれば、被処理物の凹凸部を誘導加熱するに当り、凹凸部の裏側にある無凹凸部も加熱するので、凹凸部における加熱深さが均一(実質的に同一)となり、凹凸部の硬化層深さを均一にできる。この結果、凹凸部の硬化層深さのばらつきに起因する被処理物の変形や歪を低減できる。このように被処理物の変形や歪を低減できるので、高周波焼入後の研摩工程を省略できることとなる。
【0033】
ここで、無凹凸部を加熱する際に、この無凹凸部が変態点未満の温度になるようにこの無凹凸部を加熱した場合は、被処理物の変形や歪をいっそう低減できる。
【0034】
また、凹凸部と無凹凸部とを同時に誘導加熱する場合は、高周波電源が大型のものとなるが、凹凸部における加熱深さを比較的短時間で均一にできる。
【0035】
さらに、凹凸部と無凹凸部を誘導加熱するタイミングをずらす場合は、高周波電源が小型のもので済む。
【0036】
さらにまた、凹凸部と無凹凸部とを誘導加熱した後に被処理物を急冷するに当り、凹凸部及び無凹凸部双方に冷却液を噴出してこれらを同時に急冷する場合は、被処理物の歪・変形がいっそう低減する。
【0037】
さらにまた、凹凸部と無凹凸部とを誘導加熱した後に被処理物を急冷するに当り、凹凸部だけに冷却液を噴出してこの凹凸部を急冷する場合は、「被処理物の割れ」という観点からは好ましい。
【図面の簡単な説明】
【図1】転がり軸受の外輪を模式的に示す断面図である。
【図2】図1の外輪を示す正面図である。
【図3】外壁面と内壁面を加熱するタイミングの一例を示すグラフである。
【図4】外壁面と内壁面を加熱するタイミングの他の例を示すグラフである。
【図5】実験に用いた外輪の硬化層深さを示す模式図である。
【図6】図5の外輪の硬化層深さを示すグラフである。
【符号の説明】
10 外輪
20 内壁面
22 溝
22a 溝の壁面
24 内球面
30 外壁面
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an induction hardening method for curing an uneven portion formed on an object to be processed.
[0002]
[Prior art]
Conventionally, rolling bearings have been widely used in automobiles and the like. In this rolling bearing, a plurality of balls and rollers roll between an inner ring (inner race) and an outer ring (outer race), and these balls and rollers are fitted on the inner wall surface of the outer ring. A groove for rolling is formed. Since balls and rollers roll in this groove, the wall surface of the groove is easily worn. For this reason, normally, a hardened layer is formed on the wall surface of the groove by induction hardening or the like, and is difficult to wear.
[0003]
When hardening the wall surface of the groove by induction hardening, an induction heating coil is placed inside the outer ring, the inner wall surface is induction-heated to the quenching temperature, and then a cooling liquid is jetted onto the inner wall surface to quench it. To do. According to this method, not only the wall surface of the groove but the entire inner wall surface of the outer ring is cured. Since the inner ring contacts the surface (inner spherical surface) other than the wall surface of the groove in the entire inner wall surface, it is preferable that the inner spherical surface is also hardened and hardly worn.
[0004]
However, the inner wall surface of the groove is in a position retracted from the inner spherical surface. For this reason, the distance between the induction heating coil placed inside the outer ring and the inner wall surface of the groove is wider than the distance between the induction heating coil and the inner spherical surface. That is, the inner spherical surface is closer to the induction heating coil than the inner wall surface of the groove, and the inner spherical surface is heated deeper than the inner wall surface of the groove. Therefore, when the inner wall surface is heated to the quenching temperature to a predetermined depth in order to make the inner wall surface of the groove have a predetermined hardened layer depth, the inner spherical surface is heated to the quenching temperature to a position deeper than the inner wall surface. As a result, the hardened layer depth on the inner spherical surface becomes deeper than the hardened layer depth on the inner wall surface of the groove.
[0005]
[Problems to be solved by the invention]
Thus, if the hardened layer depth is different between the inner spherical surface and the inner wall surface of the groove, the difference may cause distortion or cracking in the outer ring after quenching.
[0006]
In view of the above circumstances, an object of the present invention is to provide an induction hardening method capable of making the depth of a hardened layer uniform even when a portion having a different thickness is formed on a workpiece.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the induction hardening method of the present invention has an uneven portion formed on either the inner wall surface or the outer wall surface, and has no unevenness on the portion corresponding to the back side of the uneven portion of the wall surface. In the induction hardening method of induction hardening the concavo-convex part of the cylindrical object to be processed,
(1) In the induction heating of the uneven portion, the non-recessed portion is also heated.
[0008]
here,
(2) When the uneven portion is heated, the uneven portion may be heated so that the uneven portion has a temperature lower than the transformation point.
[0009]
Also,
(3) You may heat this uneven | corrugated part so that the said uneven | corrugated part may become the temperature in the range of 500 to 600 degreeC.
[0010]
further,
(4) The uneven portion and the non-protruded portion may be induction heated at the same time.
[0011]
Furthermore,
(5) You may shift the timing which carries out induction heating of the said uneven part and the said uneven part.
Furthermore,
(6) In quenching the workpiece after induction heating the concavo-convex portion and the non-concavo-convex portion, even if the cooling liquid is jetted to both the concavo-convex portion and the non-concavo-convex portion and these are simultaneously quenched Good.
[0012]
Furthermore,
(7) When the unevenness portion and the non-protrusion portion are induction-heated and the workpiece is rapidly cooled, the unevenness portion may be rapidly cooled by jetting a cooling liquid only to the unevenness portion.
[0013]
Here, it is assumed that the unevenness does not include minute unevenness caused by machining accuracy.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0015]
FIG. 1 is a cross-sectional view schematically showing an outer ring and an induction heating coil of a rolling bearing, and FIG. 2 is a front view schematically showing the outer ring and the induction heating coil of FIG.
[0016]
A hollow portion 12 into which an inner ring (not shown) enters is formed in a steel outer ring 10 (which is an example of an object to be treated according to the present invention), and this hollow portion 12 is surrounded by a wall 14. . The wall 14 has an inner wall surface 20 and an outer wall surface 30 opposite to the inner wall surface 20.
[0017]
Grooves 22 extending in the length direction (arrow A direction) of the outer ring 10 are formed in the inner wall surface 20 at equal intervals in the circumferential direction (arrow B direction). Since balls or rollers (not shown) fit into the groove 22 and roll, the wall surface 22a of the groove 22 is easily worn. Further, an inner spherical surface 24 is formed between adjacent grooves 22 in the inner wall surface 20, and an inner ring (not shown) is in contact with the inner spherical surface 24. As a result of the grooves 22 being formed in the inner wall surface 20, the inner wall surface 20 is provided with the uneven portions referred to in the present invention.
[0018]
On the other hand, the outer wall surface 30 is not formed with an uneven portion, and has a fine unevenness due to machining, but is an uneven portion without the groove 22 or the like. Therefore, a portion corresponding to the back side of the uneven portion of the inner wall surface 20 is a non-recessed portion.
[0019]
Next, a method of induction hardening the inner wall surface 20 of the outer ring 10 and hardening the inner spherical surface 24 and the wall surface 22a of the groove 22 will be described.
[0020]
When induction hardening the inner wall surface 20 of the outer ring 10, first, the induction heating coil 40 is inserted into the hollow portion 12 to inductively heat the inner wall surface 20 (uneven portion). As a result, the inner wall surface 20 is induction-heated. However, since the inner spherical surface 24 is closer to the induction heating coil 40 than the wall surface 22a of the groove 22, the inner spherical surface 24 is heated to a quenching temperature to a position deeper than the wall surface 22a. Is done. Thus, when the cooling liquid is jetted onto the inner wall surface 20 and rapidly cooled while the difference in the heating layer depth remains between the wall surface 22a and the inner spherical surface 24, a difference also occurs in the hardened layer depth. Due to the difference in the depth of the hardened layer, there is a possibility that a large strain (deformation) occurs in the outer ring 10 or the outer ring 10 is cracked.
[0021]
Therefore, here, the induction heating coil 50 is disposed in the vicinity of the outer wall surface 30 and is heated from the outer wall surface 30 side as well (the uneven portion). When viewed from the side of the outer wall surface 30, the wall surface 22 a of the groove 22 is closer to the induction heating coil 50 than the inner spherical surface 24, and therefore the wall surface 22 a of the groove 22 is heated more than the inner spherical surface 24 when heated by the induction heating coil 50. It is easy to be done.
[0022]
In this way, not only the inner wall surface 20 is induction-heated by the induction heating coil 40 from the inner wall surface 20 side, but also the outer wall surface 30 is heated by the induction heating coil 50 from the outer wall surface 30 side. The heating layer depth and temperature distribution in the wall surface 22a and the inner spherical surface 24 are made uniform. That is, the frequency and output of the induction heating coils 40 and 50, the heating time, and the like are appropriately adjusted so that the wall surface 22a of the groove 22 and the inner spherical surface 24 are heated to the quenching temperature to the same depth.
[0023]
The timing for heating the inner wall surface 20 with the induction heating coil 40 and the timing for heating the outer wall surface 30 with the induction heating coil 50 may be the same or may be shifted. For example, as shown in FIG. 3, heating of the inner wall surface 20 may be started while the outer wall surface 30 is being heated. Further, as shown in FIG. 4, heating of the inner wall surface 20 may be started after the heating of the outer wall surface 30 is completed. In addition, the timing which heats these outer wall surfaces 30 and inner wall surfaces 20 changes according to the material, shape, etc. of a to-be-processed object.
[0024]
Further, the strain can be further reduced by heating the outer wall surface 30 to a temperature lower than the transformation point. However, if the temperature for heating the outer wall surface 30 is too low, the time for heating the wall surface 22a of the groove 22 and the inner spherical surface 24 to the quenching temperature becomes long. A temperature in the range of 600 ° C. or higher is preferable. However, this temperature is appropriately changed according to the thickness of the workpiece.
[0025]
Regardless of which method is used, the wall surface 22a of the groove 22 and the inner spherical surface 24 are heated to the quenching temperature to the same depth, and a cooling liquid is ejected to quench the inner wall surface 20 rapidly. As a result, the depth of the hardened layer on the inner wall surface 20 is the same for both the wall surface 22 a of the groove 22 and the inner spherical surface 24. For this reason, the distortion of the outer ring 10 is extremely reduced, the polishing step for removing the distortion can be eliminated, and the production cost of the outer ring 10 can be reduced.
[0026]
In order to rapidly cool the inner wall surface 20 by ejecting the coolant, the coolant may be ejected simultaneously to the inner wall surface 20 and the outer wall surface 30, or the coolant may be ejected only to the inner wall surface 20. When the coolant is jetted onto the inner wall surface 20 and the outer wall surface 30 simultaneously, the distortion of the outer ring 10 is further reduced. On the other hand, in the case where the coolant is jetted only to the inner wall surface 20, it is preferable from the viewpoint of “cracking”.
[0027]
Next, experimental examples will be described with reference to FIGS.
[0028]
FIG. 5 is a schematic diagram showing the depth of the hardened layer of the outer ring used in the experiment, and FIG. 6 is a graph showing the depth of the hardened layer. 6, a, b, c, and d represent the hardness measured from the directions of arrows a, b, c, and d shown in FIG. In these drawings, the same components as those in FIGS. 1 and 2 are denoted by the same reference numerals.
[0029]
The material of the outer ring 10 used in this experiment is S53C (JIS standard), the outer diameter D is 86 mm, and the inner diameter H is 67 mm. The depth h of the groove 22 is 4.5 mm.
[0030]
In heating the inner wall surface 20, the induction heating 40 (see FIG. 1) was used for heating for 2 seconds at 120 kW and 10 kHz. Moreover, when heating the outer wall surface 30, it was heated for about 3 seconds at 50 kW and 6 kHz using the induction heating coil 50 (refer FIG. 1). After heating in this way, the coolant was jetted onto the inner wall surface 20 for 10 seconds to quench. As a result, the depth of the hardened layer 60 on the inner wall surface 20 is the same for both the wall surface 22a of the groove 22 and the inner spherical surface 24, as shown in FIG. The depth of the effective hardened layer (Hv513 or higher) was about 1.5 mm for both the wall surface 22a and the inner spherical surface 24.
[0031]
In the above-described embodiment, the outer ring of the rolling bearing is cited as the object to be processed. However, the outer ring is not limited to a cylindrical object having an uneven part formed on the inner wall surface like the outer ring. For example, the uneven part is formed on the outer wall surface. In addition, the present invention can be applied to a cylindrical workpiece in which an uneven portion is formed on the inner wall surface corresponding to the back side of the uneven portion, and the uneven portion is cured to a uniform depth. Be made. In addition, the present invention can be applied to a plate-shaped object in which a concavo-convex portion is formed on one surface of a plate-like member such as a flat plate, and a portion corresponding to the back side of the concavo-convex portion is a non-concave portion, The uneven portion can be cured to a uniform depth.
[0032]
【The invention's effect】
As described above, according to the induction hardening method of the present invention, when the uneven portion of the workpiece is induction-heated, the uneven portion on the back side of the uneven portion is also heated. It becomes uniform (substantially the same), and the depth of the hardened layer of the uneven portion can be made uniform. As a result, it is possible to reduce deformation and distortion of the object to be processed due to variations in the hardened layer depth of the uneven portion. Thus, since deformation and distortion of the workpiece can be reduced, the polishing step after induction hardening can be omitted.
[0033]
Here, when the uneven portion is heated so that the uneven portion is heated to a temperature lower than the transformation point when the uneven portion is heated, the deformation and distortion of the workpiece can be further reduced.
[0034]
In addition, when the concavo-convex portion and the non-concavo-convex portion are simultaneously induction-heated, the high-frequency power source becomes large, but the heating depth in the concavo-convex portion can be made uniform in a relatively short time.
[0035]
Furthermore, when shifting the timing of induction heating of the uneven portion and the non-recessed portion, the high-frequency power source can be small.
[0036]
Furthermore, when rapidly cooling the object to be processed after induction heating of the uneven part and the uneven part, when cooling liquid is jetted to both the uneven part and the uneven part to quench them simultaneously, Distortion and deformation are further reduced.
[0037]
Furthermore, when rapidly cooling the object to be processed after induction heating of the uneven part and the uneven part, when the cooling liquid is jetted only to the uneven part to rapidly cool the uneven part, `` cracking of the object to be processed '' From the point of view, it is preferable.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view schematically showing an outer ring of a rolling bearing.
FIG. 2 is a front view showing the outer ring of FIG. 1;
FIG. 3 is a graph showing an example of timing for heating an outer wall surface and an inner wall surface.
FIG. 4 is a graph showing another example of timing for heating the outer wall surface and the inner wall surface.
FIG. 5 is a schematic diagram showing the depth of the hardened layer of the outer ring used in the experiment.
6 is a graph showing the depth of the hardened layer of the outer ring in FIG. 5. FIG.
[Explanation of symbols]
10 outer ring 20 inner wall surface 22 groove 22a groove wall surface 24 inner spherical surface 30 outer wall surface

Claims (1)

内壁面もしくは外壁面のいずれか一方に凹凸部が形成されると共に、壁面のうち、該凹凸部の裏側に相当する部分に無凹凸部が形成された筒状の被処理物の前記凹凸部を高周波焼入れする高周波焼入方法において、
前記凹凸部の側から該凹凸部を誘導加熱するに当り、
前記無凹凸部の表層部における温度が変態点未満の温度になるように該無凹凸部の側からも該無凹凸部を誘導加熱してこの誘導加熱によって前記凹凸部の凹部の表層部における温度を凸部の表層部における温度よりも高い温度に加熱することにより、該凹部における焼入温度に加熱された加熱層の深さと、該凸部における焼入温度に加熱された加熱層の深さとを均一にすることを特徴とする高周波焼入方法。
The concave-convex portion of the cylindrical object to be processed in which the concave-convex portion is formed on either the inner wall surface or the outer wall surface, and the concave-convex portion is formed on the portion corresponding to the back side of the concave-convex portion of the wall surface. In the induction hardening method of induction hardening,
In induction heating the uneven portion from the uneven portion side ,
The uneven surface portion is also heated from the surface of the uneven portion by induction heating so that the temperature of the surface portion of the uneven portion is lower than the transformation point. By heating to a temperature higher than the temperature at the surface layer portion of the convex portion, the depth of the heating layer heated to the quenching temperature at the concave portion, and the depth of the heating layer heated to the quenching temperature at the convex portion Induction hardening method characterized by uniformizing .
JP01620698A 1998-01-28 1998-01-28 Induction hardening method Expired - Fee Related JP3669547B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01620698A JP3669547B2 (en) 1998-01-28 1998-01-28 Induction hardening method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01620698A JP3669547B2 (en) 1998-01-28 1998-01-28 Induction hardening method

Publications (2)

Publication Number Publication Date
JPH11217627A JPH11217627A (en) 1999-08-10
JP3669547B2 true JP3669547B2 (en) 2005-07-06

Family

ID=11910051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01620698A Expired - Fee Related JP3669547B2 (en) 1998-01-28 1998-01-28 Induction hardening method

Country Status (1)

Country Link
JP (1) JP3669547B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5311719B2 (en) * 2006-03-13 2013-10-09 Ntn株式会社 Induction hardening method, mechanical member, rolling member, and manufacturing method of mechanical member
JP5438817B2 (en) * 2012-11-29 2014-03-12 三井造船株式会社 Heating site selective induction heating device

Also Published As

Publication number Publication date
JPH11217627A (en) 1999-08-10

Similar Documents

Publication Publication Date Title
JP2009203498A (en) High frequency-induction heating method, heating apparatus and bearing
JP2009197312A (en) Method for correcting deformation of annular member
US6153030A (en) Method for the manufacture of hollow shafts
JP4178980B2 (en) Method for heat treatment of annular member
JP3669547B2 (en) Induction hardening method
JP5446410B2 (en) Heat treatment method for annular workpiece
CN103572035A (en) Annular workpiece quenching method and quenching apparatus used in the method
JP2006328465A (en) Method for manufacturing bearing ring for rolling bearing, bearing ring for rolling bearing, and rolling bearing
JP5179203B2 (en) Heat treatment equipment for cylindrical metal members
JP6229223B2 (en) Method for manufacturing thin three-dimensional body
US20050039830A1 (en) Induction heat treatment method and coil and article treated thereby
JP6229226B2 (en) Heat treatment method
JP2009203525A (en) Production line for rolling bearing
JPH11140543A (en) Production of bearing ring
JPS63274713A (en) Heat treatment method for bar-like parts
JP2008106358A (en) Method for correcting heated deformation of annular body, and hardening method of annular body
JP2016089183A (en) Heat treatment method for workpiece
JP6630577B2 (en) Quenching method
JP2008240114A (en) Restrained quenching apparatus for thin plate member and method therefor
JPH0819469B2 (en) Heat treatment method for cylindrical wear resistant parts
JP3698883B2 (en) Induction hardening method and cooling jacket
JP2006009043A (en) Method and apparatus for surface-quenching raceway surface of outer ring of needle roller bearing by induction heating
KR102513574B1 (en) Mold for hot stamping and manufacturing method of hot stamping component
JP2005133214A (en) Heat treatment system
JPH0144770B2 (en)

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050407

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100422

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110422

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120422

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130422

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130422

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees