JPS60145670A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS60145670A
JPS60145670A JP215584A JP215584A JPS60145670A JP S60145670 A JPS60145670 A JP S60145670A JP 215584 A JP215584 A JP 215584A JP 215584 A JP215584 A JP 215584A JP S60145670 A JPS60145670 A JP S60145670A
Authority
JP
Japan
Prior art keywords
gate
metal
etched
gate metal
resist pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP215584A
Other languages
Japanese (ja)
Inventor
Shunji Nakao
中尾 俊二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP215584A priority Critical patent/JPS60145670A/en
Publication of JPS60145670A publication Critical patent/JPS60145670A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier

Abstract

PURPOSE:To enable the submicron gate length of a Schottky barrier gate type FET to be formed with good reproducibility and good controllability without decreasing the withstand voltage by a method wherein a gate metal is etched from an oblique direction. CONSTITUTION:An n type GaAs active layer 31 is formed on a semi-insulation GaAs substrate, and Al is evaporated as the gate metal 32. A photo resist pattern 33 is formed, and the Al film is etched to a vertical cross-sectional shape. Next, one side gate metal 33 is etched from above obliquely with directive ion beams 34 by using an angle theta calculated previously, thus obtaining a gate length LG finer than the width W of the photo resist pattern 33; thereafter, a drain electrode 36 is formed on the obliquely-etched side of the gte metal, and a source electrode 35 on the opposite side. A gate length of approx. 0.3mum can be formed by suitably selecting the line width of the photo resist pattern, the thickness of the gate metal, and the oblique-etching angle.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は半導体装置、特に(JaASなど化合物半導体
を用いたマイクロ波用ショットキー障壁ゲート型電界効
果トランジスタ(以下ME8I”E’rと称する)の製
法に関する。
[Detailed Description of the Invention] [Technical Field] The present invention relates to a semiconductor device, and particularly to a method for manufacturing a microwave Schottky barrier gate field effect transistor (hereinafter referred to as ME8I"E'r) using a compound semiconductor such as JaAS. .

〔従来技術〕[Prior art]

GaAs MBSFETにおいて、特に低雑音用のもの
は、そのゲート長Laが短いほど、またソース寄生抵抗
Rsが小さいほど、発振限界周波数fmaxが高くなシ
、雑音指数NFを低減できる。そのためLaが0.5μ
m以下、ソース・ゲート間距離も10μm以下のものが
実用化されている。
Among GaAs MBSFETs, especially those for low noise, the shorter the gate length La and the smaller the source parasitic resistance Rs, the higher the oscillation limit frequency fmax, and the lower the noise figure NF. Therefore, La is 0.5μ
A device with a source-to-gate distance of 10 μm or less has been put into practical use.

通常の光学露光によるマスクパターンの分野能は0.6
〜0.8μm程度の限界であることから、一般には第1
図(a)乃至(C) K示すように1.0μm程度の線
幅のホトレジストによるマスクパターン11を形成し、
これ金マスクとしてGaAs活性層10上に形成された
ショットキー接合メタル12tサイドエツチングして庇
14を形成することでサブミクロン長のゲートメタルを
つ<シ、その後、オーミックメタル15を蒸着しリフト
法でソース・ドレイン電極を形成している。あるいは、
第2図(a)乃至(C)に示すように、活性層20上に
形成された2層から成るゲートメタルの上層22を1.
0μm以上のマスクパターン21で形成し、上層をマス
クとして下層のショットキー接合メタル23をサイドエ
ツチングして庇24をククシ、その後、第1図と同じよ
うにしてオーミックメタルを形成する方法が用いられて
いる。ソース・ゲート間Mの制御についは、それぞれサ
イドエツチングによって出来だ庇14.24を利用し、
オーミックメタル15.25に蒸着後、リフトオフ法に
より自己整合的に行うことが多い。
The field ability of the mask pattern by normal optical exposure is 0.6
Since the limit is approximately 0.8 μm, generally the first
As shown in Figures (a) to (C) K, a mask pattern 11 of photoresist with a line width of about 1.0 μm is formed,
This is used as a gold mask to side-etch the Schottky junction metal 12t formed on the GaAs active layer 10 to form an eaves 14, thereby forming a submicron-long gate metal.After that, an ohmic metal 15 is vapor-deposited using a lift method. This forms the source and drain electrodes. or,
As shown in FIGS. 2(a) to 2(C), the upper layer 22 of the gate metal consisting of two layers formed on the active layer 20 is 1.
A method is used in which a mask pattern 21 of 0 μm or more is formed, the upper layer is used as a mask, the lower layer Schottky junction metal 23 is side-etched to form the eaves 24, and then an ohmic metal is formed in the same manner as shown in FIG. ing. Regarding the control of M between the source and the gate, use the eaves 14 and 24 made by side etching, respectively.
After vapor deposition on the ohmic metal 15.25, it is often performed in a self-aligned manner by a lift-off method.

これらの方法は、サブミクロンゲート長の形成方法とし
て比較的簡単な製造プロセスではあるが、1)ゲート長
細がサイドエツチングによるために再現性、制御性が不
充分であり、2)ソース・ゲート間を短くすると、ゲー
ト・ドレイン間も短くなるために、ゲート耐圧、ドレイ
ン耐圧が低下するなどの欠点がある。
Although these methods are relatively simple manufacturing processes for forming submicron gate lengths, 1) the reproducibility and controllability are insufficient because the gate length is formed by side etching, and 2) the source gate length is If the gap is shortened, the gate-drain gap also becomes short, which has the disadvantage that the gate breakdown voltage and the drain breakdown voltage decrease.

〔発明の目的〕[Purpose of the invention]

本発明の目的はサブミクロンゲート長を耐圧を低下させ
ることなく再現性、制御性よく形成するショットキー障
壁ゲート型電界効果トランジスタの製造方法を提供する
ことにある。
An object of the present invention is to provide a method for manufacturing a Schottky barrier gate type field effect transistor in which a submicron gate length can be formed with good reproducibility and controllability without reducing breakdown voltage.

〔発明の構成〕[Structure of the invention]

本発明は、ゲートメタルを斜めからエツチングすること
を特徴とし、このことによ、91.0μm以上のホトレ
ジストパターンから1.0μm以下のゲート長を得ると
同時九、ソース・ゲート間距離に比ベゲート・ドレイン
間圧1?fA ffi長くする、いわゆるオフセットゲ
ート形成ができる。
The present invention is characterized in that the gate metal is etched diagonally, thereby obtaining a gate length of 1.0 μm or less from a photoresist pattern of 91.0 μm or more.・Drain pressure 1? It is possible to form a so-called offset gate to lengthen fA ffi.

〔実施例〕〔Example〕

以下、本発明の実施例を図面によシ詳MBK説明するO 第3図は本発明の一実施例による工程を説明するための
断面図である。まず、第3図(a)に示すよように、半
絶絶性GaAs基板(図示しない)にエピタキシャル成
長法あるいはイオン注入法でn型GaAs活性層31を
形成し、この上に、ゲートメタル32として例えばAA
を0.8μm厚みに蒸着紫する。次に、通常の光学露光
法により線幅W=1.0μmのホトレジストパターン3
3を形成し、露出したAl膜をCC1,ガスにより反応
性イオンエツチングする。このエツチング処理にょシ、
ホトレジストパターン33直下のAIMはそのパターン
と同じ幅を有した垂直な断面形状が得られる。
Hereinafter, embodiments of the present invention will be explained in detail with reference to the drawings. Fig. 3 is a sectional view for explaining the steps according to an embodiment of the present invention. First, as shown in FIG. 3(a), an n-type GaAs active layer 31 is formed on a semi-disruptive GaAs substrate (not shown) by epitaxial growth or ion implantation, and a gate metal 32 is formed on this. For example, A.A.
was vapor-deposited to a thickness of 0.8 μm. Next, a photoresist pattern 3 with a line width W=1.0 μm is formed using a normal optical exposure method.
3 is formed, and the exposed Al film is subjected to reactive ion etching using CC1 gas. This etching process
The AIM directly under the photoresist pattern 33 has a vertical cross-sectional shape having the same width as the pattern.

次に、第3図中)に示すように、予め算定した角度θ°
を用いて斜め上方よシ片側のゲートメタル33を方向性
イオンビーム34でエツチングする。
Next, as shown in Figure 3), the angle θ° calculated in advance is
The gate metal 33 on one side is etched diagonally upward using a directional ion beam 34.

これによって、ホトレジストパターン33幅Wより細い
ゲート長La <得ることができる。
As a result, a gate length La < which is smaller than the width W of the photoresist pattern 33 can be obtained.

このあと、第3図(C)に示すように、マスクとなった
ホトレジストパターン33を有機溶剤等で除去し、第3
図(d)に示すようにゲートメタルの斜めエッチした側
にドレイン電極36、その反対側にソース電極35を形
成する。
After that, as shown in FIG. 3(C), the photoresist pattern 33 that served as a mask is removed using an organic solvent or the like, and the third
As shown in Figure (d), a drain electrode 36 is formed on the obliquely etched side of the gate metal, and a source electrode 35 is formed on the opposite side.

以上のように、所望のゲート長Lc(5得る場合、La
はホトレジストの線幅W1ゲートメタル厚みtcおよび
方向性イオンビームの入射角度rから以下の関係式が成
り立つ。
As described above, when obtaining the desired gate length Lc (5, La
The following relational expression holds true from the line width W1 of the photoresist, the gate metal thickness tc, and the incident angle r of the directional ion beam.

tG La=W −− anO 例えばLG=0.3μmを得るには、w== 1.04
m 。
tG La=W -- anO For example, to obtain LG=0.3 μm, w== 1.04
m.

to=0,38mの場合、θ冨49°の斜めエツチング
すればよい。
When to=0.38m, diagonal etching with a θ depth of 49° is sufficient.

ところで、単にゲート長Loのみを細くするとゲート寄
生抵抗RGが大きくなシ、電力利得や雑音指数が悪化す
る。一般に、 Raとゲートメタルの比抵抗ρM1ゲー
トメタルノリみto、ゲート1陽zの関係は次式で表わ
される。
By the way, if only the gate length Lo is reduced, the gate parasitic resistance RG becomes large, and the power gain and noise figure deteriorate. Generally, the relationship between Ra, gate metal resistivity ρM1, gate metal thickness to, and gate 1 positive z is expressed by the following equation.

つまり、1(Gはゲートメタルの断面4Y< (Laと
tGのff<)に逆比例する。
In other words, 1 (G is inversely proportional to the gate metal cross section 4Y<(ff< of La and tG).

通常、 Lc金短縮する場合、RGが、その分、増加し
ないようにtGr厚くするが、第1図に示す従来の方法
ではサイドエツチングの加工性からtG は0、6〜0
.8 μm程;寞である。f反に、t c= 0.8 
μmトしてLo20.5μmから0.3μmに短縮する
と、それぞれのり1笛4責は0.40μm月2から0.
24μm2で40チ小さくなる。
Normally, when Lc gold is shortened, tGr is thickened so that RG does not increase accordingly, but in the conventional method shown in Figure 1, tG is 0.6 to 0 due to the workability of side etching.
.. Approximately 8 μm; On the contrary, t c = 0.8
If we shorten Lo2 from 0.5 μm to 0.3 μm, each glue 1 whistle 4 times will be 0.40 μm month 2 to 0.3 μm.
24 μm2 is 40 inches smaller.

で、従来の矩形断面を有するゲートメタルに比べ大幅に
Rcを改善できる。
Therefore, Rc can be significantly improved compared to conventional gate metals having a rectangular cross section.

以上、詳細に説明したように本発明によれば、通常の光
学露光法で形成した1、0μm以上のホトレジストパタ
ーンの線幅、ゲートメタルの厚みおよび余1めエッチ角
度を適当に選ぶことにより、0.3μm程度のゲート長
が形成され、またゲート・ドレイン間距離がゲート・ソ
ース間距離よす長いため、ソース寄生抵抗を低く抑えた
まま、高いドレイン耐圧を得ることができる。更には、
ゲート長を短縮してもゲート寄生抵抗を増大させること
のない逆台形状のゲートメタル形成ができるなど数々の
効果がある。
As described above in detail, according to the present invention, by appropriately selecting the line width of the photoresist pattern of 1.0 μm or more formed by a normal optical exposure method, the thickness of the gate metal, and the extra etch angle, Since a gate length of about 0.3 μm is formed and the distance between the gate and drain is longer than the distance between the gate and source, a high drain breakdown voltage can be obtained while keeping the source parasitic resistance low. Furthermore,
This has many advantages, including the ability to form an inverted trapezoidal gate metal without increasing gate parasitic resistance even if the gate length is shortened.

尚、GaAs以外の他の化合物半導体であっても全く同
様な製造方法が適用できることは当然のことである。
It goes without saying that the same manufacturing method can be applied to other compound semiconductors other than GaAs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)乃至(C)および第2図(a)乃至(C)
はそれぞれ従来のGaAs MH8FETの製造方法の
工程を説明するための断面図である。 第3図は本発明の一実施例による工程を説明するための
断面図である。 10・・・・・・n型GaAs活性層、11・・・・・
・ホトレジスト、12・・・・・・ゲートメタル、14
・・・・・・庇、15・・・・・・オーミックメタル、
20・・・・・・n型GaAs活性層、21・・・・・
・ホトレジスト、22・・・・・・上層のゲートメタル
、23・・・・・・下層のゲートメタル、24・・・・
・・庇、25・・・・・・オーミックメタル、31・・
・・・・n型GaAs活性層、32・・・・・・ゲート
メタル、33・・・・・・ホトレジスト、34・・・・
・・方向性イオンビーム、35・・・・・・ソース主、
断、36・・・・・・ドレイン電極。 1 代理人 弁理士 内 原 晋75..4’、、’%。 第1図 (C) 第2閉
Figures 1 (a) to (C) and Figures 2 (a) to (C)
These are cross-sectional views for explaining the steps of a conventional GaAs MH8FET manufacturing method. FIG. 3 is a sectional view for explaining a process according to an embodiment of the present invention. 10... n-type GaAs active layer, 11...
・Photoresist, 12...Gate metal, 14
... Eave, 15 ... Ohmic Metal,
20...n-type GaAs active layer, 21...
・Photoresist, 22... Upper layer gate metal, 23... Lower layer gate metal, 24...
... Eaves, 25 ... Ohmic Metal, 31 ...
...N-type GaAs active layer, 32...Gate metal, 33...Photoresist, 34...
...Directional ion beam, 35... Source main,
Disconnection, 36...Drain electrode. 1 Agent: Susumu Uchihara, patent attorney 75. .. 4',,'%. Figure 1 (C) 2nd close

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上に金属を堆積し、該金属上に所定幅のホト
レジスト全役け、該ホトレジストをマスクKg出した金
属を選択的にエツチングし、さらに斜め上方よシ金属を
エツチングして該ホトレジストの幅よ仄紳い幅を有する
金属層全形成することを特徴とする半導体装置の製造方
法。
A metal is deposited on a semiconductor substrate, a photoresist of a predetermined width is deposited on the metal, the metal is selectively etched with the photoresist exposed as a mask, and the metal is further etched diagonally upward to increase the width of the photoresist. A method for manufacturing a semiconductor device, characterized in that a metal layer having a narrow width is entirely formed.
JP215584A 1984-01-10 1984-01-10 Manufacture of semiconductor device Pending JPS60145670A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP215584A JPS60145670A (en) 1984-01-10 1984-01-10 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP215584A JPS60145670A (en) 1984-01-10 1984-01-10 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS60145670A true JPS60145670A (en) 1985-08-01

Family

ID=11521457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP215584A Pending JPS60145670A (en) 1984-01-10 1984-01-10 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS60145670A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016167600A (en) * 2009-08-28 2016-09-15 トランスフォーム インコーポレーテッド Semiconductor device having field plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016167600A (en) * 2009-08-28 2016-09-15 トランスフォーム インコーポレーテッド Semiconductor device having field plate

Similar Documents

Publication Publication Date Title
JP2778600B2 (en) Method for manufacturing semiconductor device
JPS5950567A (en) Manufacture of field effect transistor
US4377899A (en) Method of manufacturing Schottky field-effect transistors utilizing shadow masking
US4997779A (en) Method of making asymmetrical gate field effect transistor
US4843024A (en) Method of producing a Schottky gate field effect transistor
JPH05121448A (en) Compound semiconductor device and its manufacture
US5231040A (en) Method of making a field effect transistor
JPS60145670A (en) Manufacture of semiconductor device
JP3144089B2 (en) Method for manufacturing field effect transistor
JPH02142143A (en) Manufacture of filed effect transistor
JP2900436B2 (en) Method for manufacturing semiconductor device
JP2557432B2 (en) Field effect transistor
JPH0684950A (en) Manufacture of field effect transistor
JPH0817850A (en) Gate electrode of field-effect transistor and manufacture thereof
JPS61228674A (en) Semiconductor device and manufacture thereof
JPH03203246A (en) Method of manufacturing semiconductor device
JP3153560B2 (en) Method for manufacturing semiconductor device
JPS63181477A (en) Manufacture of semiconductor device
JPS6161550B2 (en)
JPH0653246A (en) Manufacture of field effect transistor
JPS616870A (en) Manufacture of field-effect transistor
JPS6258154B2 (en)
JPH0797634B2 (en) Field effect transistor and manufacturing method thereof
JPH0439941A (en) Field-effect transistor
JPH02191343A (en) Compound semiconductor device and its manufacture