JPS60145378A - Method for regenerating exhausted electroless plating solution - Google Patents
Method for regenerating exhausted electroless plating solutionInfo
- Publication number
- JPS60145378A JPS60145378A JP29984A JP29984A JPS60145378A JP S60145378 A JPS60145378 A JP S60145378A JP 29984 A JP29984 A JP 29984A JP 29984 A JP29984 A JP 29984A JP S60145378 A JPS60145378 A JP S60145378A
- Authority
- JP
- Japan
- Prior art keywords
- phosphite
- soln
- sodium
- electroless plating
- calcium sulfate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/1601—Process or apparatus
- C23C18/1617—Purification and regeneration of coating baths
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemically Coating (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は無電解メッキ老化液の再生方法に関するもので
ある。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for regenerating an aged electroless plating solution.
一般に、次亜リン酸ソーダを還元剤とする無電解メッキ
浴は、メッキ処理の使用に従い、次(1)
第に次亜リン酸ソーダは酸化されて、亜リン酸ソーダの
濃度が増加するが、この亜リン酸ソーダの増加に併い、
メッキ速度の低下、析出する金属の機械的性質の劣化等
、メッキ皮膜の劣化のみならず、メッキ浴自体の自己分
解等の事情。In general, in an electroless plating bath using sodium hypophosphite as a reducing agent, following the use of the plating process, (1) Sodium hypophosphite is oxidized and the concentration of sodium phosphite increases. , along with this increase in sodium phosphite,
Not only deterioration of the plating film, such as a decrease in plating speed and deterioration of the mechanical properties of the deposited metal, but also self-decomposition of the plating bath itself.
により、いわゆる、メッキ浴の老化が生じ、やがてはメ
ッキ液としての使用に耐えなくなる問題がある。This causes the so-called aging of the plating bath, which eventually becomes unusable as a plating solution.
しかしながら、このめっき液は高価であるし、その上、
CODが高いため、これを少数回の使用により廃棄し、
新しいめっき液と変換することは産業上大きな損失であ
ることは明らかである。従って、この種技術分野におい
ては、めっき液を少数回の使用により廃棄するのではな
く、多数回にわたって繰返し使用し得る技術開発が強く
要望されている。However, this plating solution is expensive, and
Due to its high COD, it is discarded after being used a few times.
It is clear that converting to a new plating solution is a big loss for the industry. Therefore, in this type of technical field, there is a strong demand for the development of a technology that allows plating solutions to be used repeatedly many times, rather than being discarded after a few uses.
従来老化液の優れた再生方法はなく工業的に実施されて
いないが、例えば特公昭36−3557号公報にはCa
(OH)2又はこれとCa5O+の併用により亜りん
酸塩を分離する方法が述べられ(2)
ている。しかしながらこの方法は亜シん酸塩の除去率が
悪いのみならず液中に大量のカルシウム塩が溶出するた
め、弗化物を加えてカルシウム塩を沈澱除去すると云う
余分の手間が掛かる。Conventionally, there is no excellent method for regenerating aged liquid and it has not been implemented industrially, but for example, Japanese Patent Publication No. 36-3557 describes
A method for separating phosphite using (OH)2 or a combination of this and Ca5O+ has been described (2). However, this method not only has a poor removal rate of sulfite, but also a large amount of calcium salts are eluted into the solution, so it takes extra effort to add fluoride and remove the calcium salts by precipitation.
更にめっき液を再使用するときPHを調整するだめにか
なりの硫酸が必要となる。従って、めっき液中の塩濃度
の増加を早め、再生処理頻度の増大につながるので好捷
[7く々v’。Furthermore, when the plating solution is reused, a considerable amount of sulfuric acid is required to adjust the pH. Therefore, the increase in salt concentration in the plating solution is accelerated, leading to an increase in the frequency of regeneration treatment, which is advantageous.
又特開昭5fi−142866号公報は、過酸化水素に
より亜りん酸塩をりん酸塩捷で酸化する方法が提供され
ているが、この方法は液中の次亜りん酸塩までも酸化し
てし寸うのみならず酸化生成するりん酸塩の分離除去に
ついて何も触れていない、従ってこの方法は完成された
ものとはいい難い。Furthermore, JP-A-5FI-142866 provides a method of oxidizing phosphite with hydrogen peroxide in a phosphate solution, but this method does not oxidize even hypophosphite in the liquid. There is no mention of the separation and removal of phosphates that not only oxidize, but also oxidize. Therefore, this method cannot be said to be complete.
本発明者は、上記の要望に応えるべく鋭意研究を行った
結果、還元剤として次亜リン酸ソーダを少なくとも用い
た無電解−メッキの老化液にエチレンアミン系化合物の
存在下において硫酸カルシウムを加えて処理をすると、
酸化生成(3)
物たる亜リン酸イオンが不溶性カルシウム塩を容易に生
成して、亜リン酸イオンの除去率が著しく増加すること
を知見し、本発明を完成1.た。As a result of intensive research in response to the above-mentioned demands, the present inventors added calcium sulfate in the presence of an ethyleneamine compound to an aging solution for electroless plating that uses at least sodium hypophosphite as a reducing agent. When processed,
Oxidation Production (3) The present invention was completed based on the discovery that the main phosphite ion easily produces insoluble calcium salts, and the removal rate of phosphite ions increases significantly.1. Ta.
即ち、本発明は、還元剤として次亜リン酸ソーダを少な
くとも用いた無電解メッキの老化液を再生するにあたり
、エチレンアミン系化合物の存在下において硫酸カルシ
ウムを添加して、該老化液中に存在する亜リン酸イオン
を亜リン酸カルシウムとして生成せしめ、これを分離除
去することを特徴とする無電解メッキ老化液の再生方法
にかかる。That is, in the present invention, when regenerating an aging solution for electroless plating using at least sodium hypophosphite as a reducing agent, calcium sulfate is added in the presence of an ethyleneamine compound to reduce the amount of calcium sulfate present in the aging solution. The present invention relates to a method for regenerating an aged electroless plating solution, which is characterized in that phosphite ions are generated as calcium phosphite, and this is separated and removed.
本発明に係わる無電解メッキの老化液は、還元剤として
次亜リン酸ソーダ用いたもの(以下単に老化液という)
を対象とするものである。The aging solution for electroless plating according to the present invention uses sodium hypophosphite as a reducing agent (hereinafter simply referred to as aging solution).
The target is
通常、老化液に硫酸カルシウムを添加して次亜リン酸ソ
ーダの酸による亜リン酸イオンを亜リン酸カルシウムと
して沈澱させる場合、反応により、副生ずる硫酸ソーダ
の影響を受けて、亜リン酸カルシウムの溶解度が増大し
、再生効果が仲々期待できない。従って、消石灰などの
(4)
Ca″1供給体を同時に併用することにより、その欠点
を補っている。Normally, when calcium sulfate is added to an aging solution to precipitate phosphite ions caused by the acid of sodium hypophosphite as calcium phosphite, the solubility of calcium phosphite increases due to the influence of the by-produced sodium sulfate due to the reaction. However, the regeneration effect cannot be expected. Therefore, by simultaneously using a (4) Ca''1 supplying material such as slaked lime, this drawback is compensated for.
しかして、上記の反応をエチレンアミン系化合物の存在
下で行うと硫酸ソーダの影響は実質的になく、硫酸カル
シウムの添加のみで、充分に老化液中の亜リン酸イオン
を不溶化せしめ、これを分離除去することができる。However, when the above reaction is carried out in the presence of an ethyleneamine compound, there is virtually no effect of sodium sulfate, and the addition of calcium sulfate alone is sufficient to insolubilize the phosphite ions in the aging solution. Can be separated and removed.
従って、本発明によれば、エチレンアミン系化合物は、
従来メッキ浴組成において、錯化剤として用いられる場
合があるから、このような老化液の場合は、改めて該化
合物の添加は必要なく、そのまま適用できるので最も好
ましい0又、老化液中に該化合物が存在していなければ
、通常錯化剤として用いる程度の量又はそれ以上の量を
硫酸カルシウムの添加に際し老化液中に溶存させること
により、他の老化液も適用でいる老化液の場合は、カル
シウムに対する錯化力が強いので硫酸カルシウムの添加
量は、他(5)
ン、ジエチレントリアミン、トリエチレンテトラミン、
トリアミノエチルアミン等であり、それらは、1種又は
2種以上であっても差支えないO
特に好寸しくけエチレンジアミンがよい。Therefore, according to the present invention, the ethyleneamine compound is
In the conventional plating bath composition, it is sometimes used as a complexing agent, so in the case of such an aging solution, there is no need to add the compound again, and the compound can be applied as is. If calcium sulfate is not present, other aging fluids can also be applied by dissolving calcium sulfate in the aging fluid in an amount equal to or larger than that normally used as a complexing agent. Since it has a strong complexing power for calcium, the amount of calcium sulfate added is different from that of (5), diethylenetriamine, triethylenetetramine,
triaminoethylamine, etc., and they may be used alone or in combination of two or more. Ethylenediamine is particularly preferred.
他方、本発明で使用する硫酸カルシウムとしては、その
無水物、半水物、二水塩等いずれであってもよく、又、
その製造履歴は問わない。On the other hand, the calcium sulfate used in the present invention may be any of its anhydrides, hemihydrates, dihydrates, etc.
Its manufacturing history does not matter.
このように本発明にかかるメッキ老化液の再生方法は、
還元剤として次亜リン酸ソーダを用いた場合の老化液を
再生するものであるから、他の液 組成は特((限定さ
れることなく使用でき、又、メッキ金属としてはニッケ
ル又はニッケルーコバルト、ニッケルー銅、ニッケルー
亜鉛系合金などあげられ、それらの老化液に適用できる
。As described above, the method for regenerating aging plating solution according to the present invention is as follows:
Since the purpose is to regenerate an aged solution when sodium hypophosphite is used as a reducing agent, other liquid compositions may be used without limitation, and nickel or nickel-cobalt may be used as the plating metal. , nickel-copper, nickel-zinc alloys, etc., and can be applied to these aging solutions.
老化液の再生方法は次の方法による。The method for regenerating the aged liquid is as follows.
(6)
無電解メノギ老化液への硫酸カルシウムの添加は粉末の
15又はスラリー化したもののどぢらでもよいがスラリ
ー化1.たものが好せしい。(6) Calcium sulfate may be added to the electroless agate aging solution either in the form of a powder (15) or in the form of a slurry. I like things.
添加量は老化液中の亜りん酸塩と当モルから1.2倍モ
ル使用するが、当モルよりや\多口の方が亜りん酸塩の
除去率は良い。液のP Hば5が′
以上でよく6〜7が好捷しい。反応温度は40〜80°
Cがよく高温程除去率は良いが液の分解を考慮すると5
0〜60°Cが好せしい。反応時間は温度により差があ
るが30分〜2時間で充分である。The amount to be added is 1.2 times the molar equivalent to the phosphite in the aged solution, but the removal rate of phosphite is better if the molar amount is higher than the molar equivalent. The pH of the liquid should be 5 or more, and 6 to 7 is preferable. Reaction temperature is 40-80°
C is good and the removal rate is better at higher temperatures, but when considering the decomposition of the liquid, it is 5.
A temperature of 0 to 60°C is preferable. The reaction time varies depending on the temperature, but 30 minutes to 2 hours is sufficient.
又、反応を促進させるために、亜リン酸カルシウムを種
子とし7て少量加えて反応を行うと、反応時間を短縮で
き、又、亜リン酸塩の除去率も高くなる。In addition, in order to accelerate the reaction, if a small amount of calcium phosphite is added as a seed 7 and the reaction is carried out, the reaction time can be shortened and the removal rate of phosphite can also be increased.
反応終了後、生成した亜リン酸カルシウム及び未反応の
硫酸カルシウムを沈澱除去し、必要に応じて、液中の硫
酸ソーダを濃縮又は冷却j−て晶析除去する。After the reaction is completed, the produced calcium phosphite and unreacted calcium sulfate are removed by precipitation, and if necessary, the sodium sulfate in the liquid is crystallized and removed by concentrating or cooling.
本発明の無電解メッキ老化液の再生方法は、(7)
(1)溶存カルシウムを除去する必要がないので工程が
簡略化される。The method for regenerating an aged electroless plating solution of the present invention has the following advantages: (7) (1) Since there is no need to remove dissolved calcium, the process is simplified.
(2)亜りん酸塩の除去率が高いため、再生処理頻度が
少なくなり、経済的である。(2) Since the removal rate of phosphite is high, the frequency of regeneration treatment is reduced, making it economical.
(3) 中性又は弱酸性で処理するため、めっき液中の
次亜リン酸ソーダの酸化分解が押えられ、又再使用時の
PH調整に要する薬品も大巾に軽減できる。この事は亜
リン酸塩の除去処理につながり、経済的となる。(3) Since the plating solution is treated with neutral or weak acidity, oxidative decomposition of sodium hypophosphite in the plating solution is suppressed, and the amount of chemicals required for pH adjustment during reuse can be greatly reduced. This leads to the removal of phosphites and is economical.
等の利点がある。There are advantages such as
以下に実施例を挙げて具体的に説明する。This will be specifically explained below by giving examples.
(8)
(実施例1)
硫酸ニッケル0.114 mol/L %次亜りん酸ソ
ーダO1283mob/l 、亜りん酸ソーダ0゜8m
ot/l、硫酸ソーダ0.35 mob/l 、、酢酸
ソーダ0、14.7 mol/lおよびエチレンジア、
ミンo、55m o t7tを含有し、PH6,5から
成る無電解ニッケルめっき老化液にO08mob/l
(亜りん酸ソーダと尚喰)の硫酸カルシウム・2水塩を
粉末で添加し、液温50°Cで1時間攪拌し々から反応
させた後、沖過し、P液中の次亜りん酸ソーダ及び亜り
ん酸ソーダを酸化還元法により、又カルシウムをEl)
TA法により夫々定量した。(8) (Example 1) Nickel sulfate 0.114 mol/L % Sodium hypophosphite O 1283 mob/l, Sodium phosphite 0°8m
ot/l, sodium sulfate 0.35 mob/l, sodium acetate 0.14.7 mol/l and ethylenedia,
O08mob/l was added to the electroless nickel plating aging solution containing 55mot7t and pH 6.5.
Add calcium sulfate dihydrate (sodium phosphite and Naokoi) in powder form, stir and react for 1 hour at a liquid temperature of 50°C, then sieve and remove the hypophosphorous in the P solution. Sodium acid and sodium phosphite were prepared by the oxidation-reduction method, and calcium was prepared using El)
Each was quantified by the TA method.
(実施例2)
硫酸カルシウム・2水塩の添加量を0.96mol/l
(亜りん酸ソーダの1゜2倍当量)とした以外は実施
例1と同様の操作を行った。(Example 2) Addition amount of calcium sulfate dihydrate was 0.96 mol/l
The same operation as in Example 1 was carried out except that the amount was changed to 1.2 times the equivalent of sodium phosphite.
(実施例3)
硫酸カルシウム・2水塩の添加量を0.96mot/l
(亜リン酸ソーダの1.2倍当量)および液温を60
°Cとした以外は実施例1と同様の(9)
操作を行った。゛
(実施例4)
無電解ニッケルメッキ老化液の硫酸ソーダを0.7 O
rnol/lおよび硫酸カルシウム・2水塩の添加量を
O096mol/l (亜リン酸ソーダの1.2倍量)
とした以外は実施例1と同様の操作を行った。(Example 3) Addition amount of calcium sulfate dihydrate was 0.96 mot/l
(1.2 times equivalent of sodium phosphite) and the liquid temperature to 60
The same operation (9) as in Example 1 was performed except that the temperature was changed to °C. (Example 4) Add 0.7 O of sodium sulfate as an electroless nickel plating aging solution.
rnol/l and the amount of calcium sulfate dihydrate added to O096 mol/l (1.2 times the amount of sodium phosphite)
The same operation as in Example 1 was performed except for the following.
(実施例5)
硫酸カルシウム・2水塩の粉末の代わりに、0、96
mo l/l (亜リン酸ソーダの1.2倍当量)の硫
酸カルシウム・無水物のスラリー化物(スラリー濃度2
0係)とした以外は実施例1と同様の操作を行った。(Example 5) Instead of calcium sulfate dihydrate powder, 0.96
mol/l (1.2 times equivalent of sodium phosphite) calcium sulfate/anhydride slurry (slurry concentration 2
The same operation as in Example 1 was performed except that the setting was 0).
(実施例6)
反応時に、少量の亜リン酸カルシウム粉末0.5g/l
を液に添加し、反応時間を40分とした以外は実施例1
と同様の操作を行った。(Example 6) During the reaction, a small amount of calcium phosphite powder 0.5 g/l
Example 1 except that was added to the solution and the reaction time was 40 minutes.
The same operation was performed.
(10)
(比較例1)
エチレンジアミンの代りにクエン酸ソーダを0.15
mot/を添加した以外は全て実施例(1)と同様の操
作を行った。(10) (Comparative Example 1) 0.15% sodium citrate instead of ethylenediamine
The same operations as in Example (1) were performed except that mot/ was added.
(比較例2)
エチレンジアミンの代りにリンゴ酸ソーダを0、20
’rno t/l添加した以外は全て実施例(1)と同
様の操作を行った。(Comparative Example 2) Sodium malate was used instead of ethylenediamine at 0, 20
All operations were performed in the same manner as in Example (1) except that t/l was added.
(比較例3)
エチレンジアミンの代りに酒石酸ソーダを0、25 m
o l/l添加した以外は全て実施例(1)と同様の
操作を行った0
(比較例4)
エチレンジアミンの代りに乳酸ソーダを0.60mot
/l 添加した以外は全て実施例(1)と同様の操作を
行った。(Comparative Example 3) Sodium tartrate was used instead of ethylenediamine at 0.25 m
All operations were performed in the same manner as in Example (1) except that 0 l/l was added. (Comparative Example 4) 0.60 mot of sodium lactate was added in place of ethylenediamine.
The same operations as in Example (1) were performed except that 1/l was added.
(比較例5)
エチレンジアミンの代りに乳酸ソーダを0.6mat/
l 添加し、液のPHを9.0とした以外は全て実施例
(1)と同様の操作を行った。(Comparative Example 5) 0.6mat/lactic acid soda was used instead of ethylenediamine.
The same operations as in Example (1) were carried out except that the pH of the liquid was adjusted to 9.0.
(11,)
(比較例6)
硫酸ソーダをOmo、!/2とした以外は全て比較例(
1)と同様の操作を行なった。(11,) (Comparative Example 6) Omo the sodium sulfate! All comparative examples except for /2 (
The same operation as in 1) was performed.
実施例1〜6および比較例1〜@の分析結果を表1に示
す。The analysis results of Examples 1 to 6 and Comparative Examples 1 to 1 are shown in Table 1.
表 1
(]2)
第1表の結果が示す通り、各実施例においては、亜リン
酸ソーダの除去率はいずれも88%以上と実質的に亜リ
ン酸イオンが除去されてメッキ液の再生が行われたがエ
チレンジアミンの存在下で行われなかった各比較例につ
いては、殆んど再生不能であり、明らかな相違が認めら
れた。Table 1 (]2) As shown in the results in Table 1, in each example, the removal rate of sodium phosphite was 88% or more, meaning that phosphite ions were substantially removed and the plating solution was regenerated. For each comparative example in which the reaction was carried out but not in the presence of ethylenediamine, it was almost impossible to reproduce, and a clear difference was observed.
特許出願人 日本化学工業株式会社 (13)Patent applicant Nihon Kagaku Kogyo Co., Ltd. (13)
Claims (2)
ッキ老化液を再生するに当りエチレンアミン系化合物の
存在下において硫酸カルシウムを添加して、該老化液中
に存在する亜リン酸イオンを亜すン酸カルシウムとして
沈澱せしめ、これを分離除去することを特徴とする無電
解メッキ老化液の再生方法。(1) When regenerating an electroless plating aging solution using sodium hypophosphite as a reducing agent, calcium sulfate is added in the presence of an ethyleneamine compound to form phosphite ions present in the aging solution. A method for regenerating an aged electroless plating solution, which comprises precipitating calcium arsenite as calcium arsenite and separating and removing this.
あることを特徴とする特許請求の範囲第1項記載の無電
解メッキ老化液の再生方法0(2) Method 0 for regenerating an aged electroless plating solution according to claim 1, wherein the ethyleneamine compound is ethylenediamine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29984A JPS60145378A (en) | 1984-01-06 | 1984-01-06 | Method for regenerating exhausted electroless plating solution |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29984A JPS60145378A (en) | 1984-01-06 | 1984-01-06 | Method for regenerating exhausted electroless plating solution |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60145378A true JPS60145378A (en) | 1985-07-31 |
Family
ID=11470019
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29984A Pending JPS60145378A (en) | 1984-01-06 | 1984-01-06 | Method for regenerating exhausted electroless plating solution |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60145378A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0452282A (en) * | 1990-06-20 | 1992-02-20 | Agency Of Ind Science & Technol | Preparation of chemical plating liquid |
JPH08295584A (en) * | 1995-04-27 | 1996-11-12 | Nippon Chem Ind Co Ltd | Production of fused phosphate fertilizer |
US6452539B2 (en) | 1999-12-06 | 2002-09-17 | Nec Toshiba Space Systems, Ltd. | Apparatus and method for controlling radiation of electric waves |
JP2007254805A (en) * | 2006-03-22 | 2007-10-04 | National Institute Of Advanced Industrial & Technology | Electroless nickel-plating method |
-
1984
- 1984-01-06 JP JP29984A patent/JPS60145378A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0452282A (en) * | 1990-06-20 | 1992-02-20 | Agency Of Ind Science & Technol | Preparation of chemical plating liquid |
JPH08295584A (en) * | 1995-04-27 | 1996-11-12 | Nippon Chem Ind Co Ltd | Production of fused phosphate fertilizer |
US6452539B2 (en) | 1999-12-06 | 2002-09-17 | Nec Toshiba Space Systems, Ltd. | Apparatus and method for controlling radiation of electric waves |
JP2007254805A (en) * | 2006-03-22 | 2007-10-04 | National Institute Of Advanced Industrial & Technology | Electroless nickel-plating method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20120024637A (en) | Process for the recovery of phosphate values from a waste solution | |
US4789484A (en) | Treatment of electroless nickel plating baths | |
JPS60145378A (en) | Method for regenerating exhausted electroless plating solution | |
JP4566463B2 (en) | Treatment method of electroless nickel plating aging solution | |
JP3417728B2 (en) | Electroless nickel plating method | |
US3839534A (en) | Process for the treatment of consumed etching solution | |
JPH0223236B2 (en) | ||
JPH10195670A (en) | System for circulating electroless nickel plating solution | |
US5858073A (en) | Method of treating electroless plating bath | |
JP2580610B2 (en) | Treatment method for water containing iron cyanide complex | |
JP3939887B2 (en) | Regeneration method of electroless nickel plating solution | |
JP3468650B2 (en) | Electroless nickel plating method | |
JPH0362651B2 (en) | ||
JP3180977B2 (en) | Treatment method for electroless plating aging solution | |
JP3842063B2 (en) | Recycling method of gold plating solution | |
JP4554193B2 (en) | Method for producing and purifying hydroxylamine stabilizer | |
JP4815082B2 (en) | Treatment method of iron-containing sulfuric acid solution | |
JPS62260708A (en) | Production of high purity hydroxyapatite | |
JPS60118288A (en) | Water treating method | |
JP4225523B2 (en) | Zinc nitrite aqueous solution and method for producing the same | |
JPH07267616A (en) | Method for treating aged electroless nickel plating liquid | |
JPS623764B2 (en) | ||
JP3111614B2 (en) | Regeneration method of electroless nickel plating bath | |
JPH10195669A (en) | System for circulating electroless nickel plating solution | |
JP4505951B2 (en) | Method for producing high purity ferric chloride aqueous solution |