JPH0223236B2 - - Google Patents

Info

Publication number
JPH0223236B2
JPH0223236B2 JP58060422A JP6042283A JPH0223236B2 JP H0223236 B2 JPH0223236 B2 JP H0223236B2 JP 58060422 A JP58060422 A JP 58060422A JP 6042283 A JP6042283 A JP 6042283A JP H0223236 B2 JPH0223236 B2 JP H0223236B2
Authority
JP
Japan
Prior art keywords
nickel
acid
oxalate
waste liquid
calcium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58060422A
Other languages
Japanese (ja)
Other versions
JPS59185770A (en
Inventor
Tsutomu Morikawa
Kyoshi Yamazaki
Haruichiro Eguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Prefecture
Original Assignee
Osaka Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Prefecture filed Critical Osaka Prefecture
Priority to JP58060422A priority Critical patent/JPS59185770A/en
Publication of JPS59185770A publication Critical patent/JPS59185770A/en
Publication of JPH0223236B2 publication Critical patent/JPH0223236B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/32Carboxylic acids
    • C22B3/322Oxalic acids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Chemically Coating (AREA)
  • Removal Of Specific Substances (AREA)

Description

【発明の詳細な説明】 本発明は化学ニツケルめつき浴の老化廃液から
ニツケルを回収する方法に関するものであり、還
元剤に次亜リン酸塩、錯化剤にクエン酸、リン
酸、コハク酸などの錯化作用の大なる有機酸を用
いる化学ニツケルめつき浴の老化廃液にシユウ酸
を添加し、該有機酸と錯体化したツケルイオンを
不溶性かつリン含有量の少ないシユウ酸ニツケル
として沈殿させ、ロ過回収することを特徴とする
ものである。従来、化学ニツケルめつきは、プラ
スチツク、セラミツク等の不導体にめつきでき、
しかも耐食性、耐摩耗性等の高付加価値を有する
均一なめつき層が得られること等で電子部品、精
密機器、その他で広く使用されている。その化学
ニツケルめつき浴はニツケルイオン、還元剤およ
び錯化剤等を含有し、特に還元剤はニツケルイオ
ンをニツケルに還元するために必須のものとされ
るが、ニツケルの析出に伴い酸化されその濃度は
減少する。還元剤が次亜リン酸塩の場合には亜リ
ン酸塩に酸化されるため、化学ニツケルめつき浴
の有効な保持には、次亜リン酸イオンおよびニツ
ケルイオンの濃度管理が不可欠となり、適時これ
らを補給してめつき液を再生している。しかし、
該補給にも限度があり、液中の亜リン酸イオンの
蓄積量が増加するにつれて、析出速度及び析出状
態が悪くなり、5〜6サイクルでめつき液が老化
し使用不能となり、老化廃液としてニツケル、リ
ンおよびCOD濃度等を排出基準内に低下させる
ため各種廃液処理を施して排出している。しかし
その化学ニツケルめつき浴の老化廃液の処理技術
には未だ有効なものがなく、またニツケルはレア
メタルでもあり、省資源上再生利用する必要があ
るが、老化廃液よりニツケルが回収できなかつた
り、回収したニツケル中のリン含有量が多く有効
に再生利用できにくい現状である。
[Detailed Description of the Invention] The present invention relates to a method for recovering nickel from aged waste liquid of a chemical nickel plating bath, in which hypophosphite is used as a reducing agent, and citric acid, phosphoric acid, or succinic acid is used as a complexing agent. Oxalic acid is added to the aged waste liquid of a chemical nickel plating bath using an organic acid with a large complexing effect such as, and the nickel ions complexed with the organic acid are precipitated as insoluble nickel oxalate with a low phosphorus content, It is characterized by filtration and recovery. Conventionally, chemical nickel plating can be applied to nonconducting materials such as plastics and ceramics.
Moreover, it is widely used in electronic parts, precision instruments, and others because it provides a uniform plating layer with high added values such as corrosion resistance and abrasion resistance. The chemical nickel plating bath contains nickel ions, a reducing agent, a complexing agent, etc. The reducing agent is said to be essential for reducing nickel ions to nickel, but it is oxidized as nickel is deposited. concentration decreases. If the reducing agent is hypophosphite, it will be oxidized to phosphite, so in order to effectively retain the chemical nickel plating bath, it is essential to control the concentration of hypophosphite ions and nickel ions, and These are replenished to regenerate the plating solution. but,
There is a limit to this replenishment, and as the amount of phosphite ions accumulated in the solution increases, the deposition rate and precipitation condition deteriorate, and the plating solution ages and becomes unusable after 5 to 6 cycles, and is disposed of as aged waste solution. In order to reduce the concentration of nickel, phosphorus, COD, etc. to within the emission standards, various waste liquid treatments are performed before discharge. However, there is still no effective treatment technology for the aged waste liquid of chemical nickel plating baths, and nickel is also a rare metal, so it is necessary to recycle it to save resources, but nickel cannot be recovered from aged waste liquid. The phosphorus content of recovered nickel is high, making it difficult to recycle it effectively.

例えば、建浴時に塩化ニツケル、次亜リン酸ナ
トリウム、錯化剤よりなる化学ニツケルめつき浴
の老化廃液からニツケルを回収する方法には、陰
極電解法あるいは水酸化ナトリウム、炭酸ナトリ
ウム等のアルカリ剤を添加して水酸化ニツケルと
して沈殿する方法があるが、前者の陰極電解法で
は電着物中にリンが5〜15%も含有されるため、
金属ニツケルとして有効に再利用できない欠点が
ある。後者の水酸化ニツケルとして沈殿する方法
では錯化剤を含有しない場合にはPH8〜9でニツ
ケルイオンが水酸化物として容易に沈殿するが、
錯化剤を含有する化学ニツケル廃液の場合にはPH
8〜9では殆ど水酸化物の生成はなく、高PH値の
PH10〜13でしか水酸化物の生成はなく、しかも該
水酸化物は細かいコロイド状であるため、ロ過が
困難であり容易にニツケルの回収ができない欠点
がある。そのために、リン含有量の少ないニツケ
ルを回収するためには老化廃液に塩化カルシウム
および水酸化カルシウムを添加し、PH9付近で不
溶性の亜リン酸カルシウムの沈殿物を生成し、そ
れをロ過したロ液をPH4付近に下げて、陰極電解
法で電着物として回収する方法も考えられるが、
該方法では多量の亜リン酸カルシウム沈殿物中に
ニツケルおよび錯化剤が含まれるため、廃棄する
亜リン酸カルシウム沈殿物とそれらとを分離する
ために水による洗浄ロ過が必要となる。陰極電解
法はニツケルイオン等を含む該ロ液を最初のロ液
に添加して行なうため、ニツケルイオン濃度が低
くなり、満足な電着物を得ることができない欠点
がある。また廃棄する多量の亜リン酸カルシウム
沈殿物を洗浄してロ過するため、時間がかゝる上
に経済的でないという大なる欠点をも有するもの
である。
For example, methods for recovering nickel from the aged waste liquid of a chemical nickel plating bath consisting of nickel chloride, sodium hypophosphite, and a complexing agent during bath preparation include cathodic electrolysis or alkaline agents such as sodium hydroxide and sodium carbonate. There is a method of adding nickel hydroxide to precipitate it as nickel hydroxide, but in the former cathodic electrolysis method, the electrodeposit contains 5 to 15% phosphorus.
It has the disadvantage that it cannot be effectively reused as nickel metal. In the latter method of precipitating as nickel hydroxide, nickel ions easily precipitate as hydroxide at pH 8 to 9 when no complexing agent is included.
PH in the case of chemical nickel waste containing complexing agents
At 8 to 9, there is almost no hydroxide formation, and the high pH value
Hydroxide is produced only at pH 10 to 13, and since the hydroxide is in the form of a fine colloid, it is difficult to filter and nickel cannot be easily recovered. Therefore, in order to recover nickel with a low phosphorus content, calcium chloride and calcium hydroxide are added to the aged wastewater to form an insoluble calcium phosphite precipitate around pH 9, and the filtrate is filtered. Another option is to lower the pH to around 4 and collect it as an electrodeposit using cathode electrolysis, but
In this method, a large amount of calcium phosphite precipitate contains nickel and a complexing agent, so washing and filtration with water is required to separate them from the calcium phosphite precipitate to be discarded. Since the cathodic electrolysis method is carried out by adding the filtrate containing nickel ions to the initial filtrate, the nickel ion concentration is low, making it impossible to obtain a satisfactory electrodeposit. Furthermore, since a large amount of calcium phosphite precipitate to be discarded is washed and filtered, it is time consuming and uneconomical.

要するに、ニツケルめつき老化廃液からニツケ
ルを回収する方法においては沈殿をロ過しやすく
すること、回収したニツケル中にりん成分の混入
を出来る限り少なくすることが問題点であり重要
事項である。
In short, in the method of recovering nickel from aging nickel plating waste liquid, it is important to make the precipitate easy to filter and to minimize the amount of phosphorus contained in the recovered nickel.

然るに本発明に於いては、還元剤に次亜リン酸
塩、また錯化剤にクエン酸、リンゴ酸、コハク酸
などの錯化作用の大なる有機酸を用いる化学ニツ
ケルめつき浴の老化廃液に於いては、該廃液にシ
ユウ酸を添加してPH1〜3の酸性にし、老化廃液
中で有機酸と錯体化したニツケルイオンを、不溶
性のシユウ酸ニツケルとして沈殿せしめると、シ
ユウ酸ニツケルは含水量が少なく沈降性も良く、
りん成分の混入が小であり、該廃液をロ過して容
易且つ迅速にニツケルイオンをシユウ酸ニツケル
として回収し得るものである。またシユウ酸ニツ
ケルは公知の如く都市ガス、メタンガス、窒素ガ
スおよび水素ガス等の雰囲気中あるいは真空中
(10-4torr以下)に於いて、約300〜400℃で1時
間以上加熱することにより容易に90%以上が金属
ニツケルとして還元される。そして該金属ニツケ
ル中のリン含有量は0.1%以下であり従来法に比
較して極めて少量であり、鋼材等に添加してその
品質を改善できる。また、シユウ酸ニツケルを大
気中で400℃以上に加熱することにより、リン含
有量が0.06%以下の酸化ニツケルにでき、セラミ
ツク材等に添加してその品質を改善するなど広く
利用もでき、レアメタルとしての有効利用を可能
にするものである。また化学ニツケルめつき浴の
老化廃液からニツケルをシユウ酸ニツケルとして
回収し、それを金属ニツケル及び酸化ニツケルと
して再利用出来ることは、当業界に非常に大なる
経済的効果を与えるものである。
However, in the present invention, the aged waste liquid of a chemical nickel plating bath using hypophosphite as a reducing agent and an organic acid with a large complexing effect such as citric acid, malic acid, or succinic acid as a complexing agent is used. In this case, oxalic acid is added to the waste liquid to make it acidic to a pH of 1 to 3, and the nickel ions complexed with organic acids in the aged waste liquid are precipitated as insoluble nickel oxalate. Low water volume and good settling properties,
Contamination with phosphorus components is small, and the waste liquid can be filtered to easily and quickly recover nickel ions as nickel oxalate. Also, as is well known, nickel oxalate can be easily produced by heating it at about 300 to 400°C for more than 1 hour in an atmosphere of city gas, methane gas, nitrogen gas, hydrogen gas, etc. or in a vacuum (10 -4 torr or less). More than 90% is reduced to nickel metal. The phosphorus content in the nickel metal is 0.1% or less, which is extremely small compared to conventional methods, and can be added to steel materials to improve their quality. In addition, by heating nickel oxalate to 400℃ or higher in the atmosphere, it can be made into nickel oxide with a phosphorus content of 0.06% or less, which can be widely used by adding it to ceramic materials to improve their quality, and as a rare metal. This enables effective use as a Furthermore, the ability to recover nickel as nickel oxalate from the aging waste liquid of chemical nickel plating baths and reuse it as nickel metal and nickel oxide has a very large economic effect on the industry.

以下に本発明の実施例について詳説する。 Examples of the present invention will be explained in detail below.

実施例 1 老化液の組成 塩化ニツケル 10g/(Ni2+2400mg/) クエン酸ナトリウム
20g/(COD値として10000ppm) 亜リン酸ナトリウム
40g/(Pとして5700ppm) a ニツケル回収のための処理条件 シユウ酸の添加量 6.7g/(Ni2+の1.3倍
モル) 添加した後のPH値 PH2.0 処理温度 50℃、処理時間 24時間 b ロ過した溶液中におけるニツケルイオン濃度
およびロ過物(シユウ酸ニツケル)中に含有す
るリン濃度 ロ液中におけるニツケルイオン濃度43mg/
シユウ酸ニツケル中のリン濃度(P/Niの
パーセント)はロ過のままの状態で0.8%、
シユウ酸ニツケル1g当り100mlの水で洗浄
したものは約0.1%、200mlでは約0.05% c リンおよびCOD値の処理条件 上記ロ液に塩化カルシウム2水和物を添加
(添加量はCa/亜リン酸(モル比)1.2倍モ
ル、Ca/クエン酸(モル比)1.8倍モルの合
計で51g/)し、PHを8に調整し、亜リン
酸カルシウムおよびクエン酸カルシウム、シ
ユウ酸カルシウム(シユウ酸余剰分)として
沈殿物として沈化させる。
Example 1 Composition of aging liquid Nickel chloride 10g/(Ni 2+ 2400mg/) Sodium citrate
20g/(10000ppm as COD value) Sodium phosphite
40g/(5700ppm as P) a Processing conditions for nickel recovery Amount of oxalic acid added 6.7g/(1.3 times mole of Ni 2+ ) PH value after addition PH2.0 Processing temperature 50℃, processing time 24 hours b Nickel ion concentration in the filtered solution and phosphorus concentration contained in the filtered material (nickel oxalate) Nickel ion concentration in the filtered solution 43 mg/
The phosphorus concentration (P/Ni percentage) in nickel oxalate is 0.8% in the filtered state;
Approximately 0.1% per 1g of nickel oxalate washed with 100ml of water, approximately 0.05% for 200ml c Treatment conditions for phosphorus and COD values Calcium chloride dihydrate is added to the above filtrate (the amount added is Ca/phosphorus). acid (mole ratio) 1.2 times mole, Ca/citric acid (mole ratio) 1.8 times mole (total of 51 g/), adjust the pH to 8, and add calcium phosphite, calcium citrate, and calcium oxalate (excess oxalic acid). ) as a precipitate.

処理温度50℃、処理時間 24時間 d 上澄液中のリン、COD値 リン 300ppm、COD値 700ppm 排水基準はCOD値100ppmであるために、排
水は約7〜10倍の水で希釈、酸化剤を添加し
て有機物を酸化、あるいは陽極酸化電解法で
有機物を酸化する等の処理方法をとる必要が
ある。
Treatment temperature: 50℃, treatment time: 24 hours Phosphorus in supernatant liquid, COD value Phosphorus: 300ppm, COD value: 700ppm Since the wastewater standard is COD value of 100ppm, the wastewater is diluted with approximately 7 to 10 times as much water and treated with an oxidizing agent. It is necessary to take a treatment method such as adding a substance to oxidize the organic substance, or oxidizing the organic substance by an anodic oxidation electrolytic method.

しかし、これらの処理をほどこすにして
も、錯化剤にクエン酸を使用した浴について
は、シユウ酸を用いたことでニツケルイオン
のほとんどがシユウ酸ニツケルとして除去さ
れている。このため、クエン酸のほとんど
が、ニツケルイオンと錯体化して存在してい
ないので容易にCa2+イオンと反応して不溶
性のクエン酸カルシウムとして除去できる。
この結果クエン酸の濃度が非常に低下し、上
記の排水処理を容易に経済的に行なうことが
できる特徴がある。
However, even if these treatments are applied, most of the nickel ions are removed as nickel oxalate in baths using citric acid as a complexing agent due to the use of oxalic acid. Therefore, most of the citric acid does not exist as a complex with nickel ions, so it can easily react with Ca 2+ ions and be removed as insoluble calcium citrate.
As a result, the concentration of citric acid is greatly reduced, and the above-mentioned wastewater treatment can be carried out easily and economically.

還元剤に次亜リン酸塩、また錯化剤にクエン酸
を用いる化学ニツケルめつき浴の老化廃液に於い
ては、ニツケルの回収を前記の方法で行ない、シ
ユウ酸ニツケルをロ過したロ液に更に消石灰およ
び塩化カルシウム等のカルシウム塩を添加し、PH
7〜10のアルカリ性とし、カルシウムイオンと亜
リン酸、クエン酸および余剰分のシユウ酸とを不
溶性の亜リン酸カルシウム、クエン酸カルシウム
およびシユウ酸カルシウムとして沈殿せしめ、こ
れらをロ過する。このロ液はクエン酸の濃度が大
幅に低下するから、酸化剤あるいは陽極酸化電解
法により有機酸を酸化してCOD値の低減化処理
をより容易に且つ経済的に行ない得るものであ
る。
In the aged waste liquid of a chemical nickel plating bath that uses hypophosphite as a reducing agent and citric acid as a complexing agent, nickel is recovered by the method described above, and the filtrate is obtained by filtering nickel oxalate. Furthermore, calcium salts such as slaked lime and calcium chloride are added to the PH
The mixture is made alkaline to a pH of 7 to 10 to precipitate calcium ions, phosphorous acid, citric acid, and excess oxalic acid as insoluble calcium phosphite, calcium citrate, and calcium oxalate, and these are filtered. Since the concentration of citric acid in this filtrate is greatly reduced, the COD value can be reduced more easily and economically by oxidizing the organic acid using an oxidizing agent or an anodic oxidation electrolytic method.

実施例 2 老化液の組成 塩化ニツケル 10g/(Ni2+2400mg/) 亜リン酸ナトリウム 40g/ リンゴ酸 18g/ コハク酸 16g/ a ニツケルの回収条件 シユウ酸の添加量 6.7g/(Ni2+の1.3倍
モル) 添加後のPH値 PH2.0 処理温度 50℃、処理時間 24時間 b ロ液中におけるニツケルイオン濃度 59mg/
シユウ酸ニツケル1g当り100mlの水で洗浄
したものP/Ni値0.1%
Example 2 Composition of aging liquid Nickel chloride 10g/(Ni 2+ 2400mg/) Sodium phosphite 40g/ Malic acid 18g/ Succinic acid 16g/a Nickel recovery conditions Amount of oxalic acid added 6.7g/(Ni 2+ 1.3 times mole) PH value after addition PH2.0 Treatment temperature 50℃, treatment time 24 hours b Nickel ion concentration in liquid 59mg/
Washed with 100ml of water per 1g of nickel oxalate P/Ni value 0.1%

Claims (1)

【特許請求の範囲】[Claims] 1 還元剤に次亜リン酸塩、錯化剤にクエン酸、
リンゴ酸、コハク酸などの錯化作用の大なる有機
酸を使用した化学ニツケルめつき老化廃液からニ
ツケルを回収するにあたり、該廃液にシユウ酸を
加えてPH1〜3の酸性とし、老化廃液中の該有機
酸と錯体化したニツケルイオンを不溶性かつリン
含有量の少ないシユウ酸ニツケルとして沈澱さ
せ、ロ過回収することを特徴とする化学ニツケル
めつき浴の廃液からニツケルを回収する方法。
1 Hypophosphite as a reducing agent, citric acid as a complexing agent,
Chemical nickel plating using organic acids with a large complexing effect such as malic acid and succinic acid.When recovering nickel from aging wastewater, oxalic acid is added to the wastewater to make it acidic with a pH of 1 to 3. A method for recovering nickel from the waste liquid of a chemical nickel plating bath, characterized in that nickel ions complexed with the organic acid are precipitated as insoluble nickel oxalate with a low phosphorus content and recovered by filtration.
JP58060422A 1983-04-05 1983-04-05 Method for recovering nickel from waste chemical nickel plating bath Granted JPS59185770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58060422A JPS59185770A (en) 1983-04-05 1983-04-05 Method for recovering nickel from waste chemical nickel plating bath

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58060422A JPS59185770A (en) 1983-04-05 1983-04-05 Method for recovering nickel from waste chemical nickel plating bath

Publications (2)

Publication Number Publication Date
JPS59185770A JPS59185770A (en) 1984-10-22
JPH0223236B2 true JPH0223236B2 (en) 1990-05-23

Family

ID=13141754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58060422A Granted JPS59185770A (en) 1983-04-05 1983-04-05 Method for recovering nickel from waste chemical nickel plating bath

Country Status (1)

Country Link
JP (1) JPS59185770A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4954265A (en) * 1989-02-01 1990-09-04 Environmental Recovery Systems, Inc. Method of processing spent electroless bath and bath for use therein
JP3479814B2 (en) * 1994-07-27 2003-12-15 太平化学産業株式会社 How to collect valuables
US6659171B2 (en) * 2001-03-27 2003-12-09 Nippon Paint Co., Ltd. Hydrophilic modification method and heat exchanger treated thereby
CN102409178A (en) * 2011-11-28 2012-04-11 镇江中孚复合材料有限公司 Method for recovering iron, cobalt and nickel metal products from high-temperature alloy waste material
JP2016005825A (en) * 2014-06-20 2016-01-14 住友金属鉱山株式会社 Method of treating organic acid-containing waste liquid
JP6800413B2 (en) * 2015-12-28 2020-12-16 国立大学法人山形大学 Oxalate degradation methods and complex compounds for oxalate degradation
RU2644471C2 (en) * 2016-06-28 2018-02-12 Акционерное общество "Калужский научно-исследовательский институт телемеханических устройств" Method of utilization of a processed solution of anodic oxidation of aluminum and its alloys
CN106148709B (en) * 2016-08-12 2018-01-05 星特殊化学品(新加坡)有限公司 Nickel recovery and treatment method in chemical nickel plating waste solution
JP7090877B2 (en) * 2018-02-07 2022-06-27 上田石灰製造株式会社 How to recover valuable metals

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51125606A (en) * 1975-02-25 1976-11-02 Toray Ind Inc A method of fractional recovery of heavy metals

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51125606A (en) * 1975-02-25 1976-11-02 Toray Ind Inc A method of fractional recovery of heavy metals

Also Published As

Publication number Publication date
JPS59185770A (en) 1984-10-22

Similar Documents

Publication Publication Date Title
US4944851A (en) Electrolytic method for regenerating tin or tin-lead alloy stripping compositions
JPH0223236B2 (en)
CN111039441B (en) Method for treating chemical plating wastewater by generating colloid
US2845330A (en) Method of recovering cyanides from waste aqueous solutions containing metal cyanides
Gylienė et al. The use of organic acids as precipitants for metal recovery from galvanic solutions
JP3417728B2 (en) Electroless nickel plating method
JPH0236677B2 (en)
JPS6150154B2 (en)
JP3468650B2 (en) Electroless nickel plating method
RU2823406C1 (en) Reagent-electrolysis method of regenerating nitrate-ammonium solution for removing cadmium coatings
JP3111614B2 (en) Regeneration method of electroless nickel plating bath
JP3842063B2 (en) Recycling method of gold plating solution
JPS6141774A (en) Modified aqueous bath for nickel plating and method
JPS5854629B2 (en) Method for treating waste liquid containing heavy metal complex salts
JP2001192849A (en) Method for regenerating electroless nickel plating solution
US2861927A (en) Process for adjusting the components in aqueous alkali cyanide electrolytes
JPS58128187A (en) Treatment of waste liquid containing hypophosphorous acid ion
JPS60145378A (en) Method for regenerating exhausted electroless plating solution
JPH06264252A (en) Electroless nickel plating solution and electroless nickel plating method
KR870000344B1 (en) Making process of activation liquid for non-electroytic nickel plating
US3634215A (en) Process for the electrolytic production of manganese dioxide
JPS622879B2 (en)
JP2004359986A (en) Electroless plating
CN117460867A (en) Method for removing ferric ions in sulfuric acid-based iron electroplating solution
JP2902335B2 (en) Method of regenerating electroless nickel plating bath or electroless nickel alloy plating bath