JPS60118288A - Water treating method - Google Patents

Water treating method

Info

Publication number
JPS60118288A
JPS60118288A JP22638483A JP22638483A JPS60118288A JP S60118288 A JPS60118288 A JP S60118288A JP 22638483 A JP22638483 A JP 22638483A JP 22638483 A JP22638483 A JP 22638483A JP S60118288 A JPS60118288 A JP S60118288A
Authority
JP
Japan
Prior art keywords
calcium
iron
water
compound
complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22638483A
Other languages
Japanese (ja)
Other versions
JPS634478B2 (en
Inventor
Isamu Kato
勇 加藤
Shigeru Ono
茂 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
NEC Corp
Original Assignee
Kurita Water Industries Ltd
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd, NEC Corp, Nippon Electric Co Ltd filed Critical Kurita Water Industries Ltd
Priority to JP22638483A priority Critical patent/JPS60118288A/en
Publication of JPS60118288A publication Critical patent/JPS60118288A/en
Publication of JPS634478B2 publication Critical patent/JPS634478B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)

Abstract

PURPOSE:To efficiently remove an iron or calcium complex and a noxious metal ion, by adjusting the pH of metal complex-containing water discharged from a chemical plating process to 8 or less and, thereafter, adding a calcium compound and an iron compound to perform flocculation treatment at pH of 10-12. CONSTITUTION:The pH of water containing metal complex of a noxious metal ion such as nickel, zinc or copper and a complexing agent such as ethylenediamine tetraacstic acid or trinitrilotriacetate is adjusted to 8 or less and, on the basis of the metal complex, 2mol or more of a calcium compound and 3mol or more of an iron compound are added to the pH controlled water. Subsequently, an alkali agent is added to said water under stirring to adjust the pH thereof to 9.0 or more, pref, 10-11.5 and flocculation treatment is performed to remove an iron or calcium complex and the noxious metal ion from water. The adding order of the aforementioned calcium compound and iron compound is not especially limited. Further, as the alkali agent, sodium hydroxide or potassium hydroxide is used.

Description

【発明の詳細な説明】 この発明は水の処理方法に関し、さらに詳しくは金属錯
体含有水の処理方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for treating water, and more particularly to a method for treating water containing metal complexes.

メッキ工場で採用されるメッキ工程では各種のキレート
剤が採用されている。とシわけ、表面特性が優れた無電
解メッキ(化学メッキ)が多用されつつあるが、無電解
メッキではエチレンジアミン四酢酸(以下「EDTAJ
と言う)などのアミツカhゼン酸や酒石酸、クエン酸、
グルコン酸、リンゴ酸などのオキシカルIン酸、マロン
酸、コハク酸、酢酸などのカルヂン酸などから成る錯化
剤が使用される。
Various chelating agents are used in the plating process employed at plating factories. In particular, electroless plating (chemical plating), which has excellent surface properties, is increasingly being used.
citric acid, tartaric acid, citric acid,
Complexing agents such as oxycarboxylic acids such as gluconic acid and malic acid, and cardinic acids such as malonic acid, succinic acid and acetic acid are used.

このうち、アミノカルぎン酸とオキシカルゼン酸は水中
の重金属イオンと安定した錯体を形成するため、通常の
廃水処理で採用される凝集沈殿では処理が困難であった
Among these, aminocarginic acid and oxycarzenic acid form stable complexes with heavy metal ions in water, so it has been difficult to treat them by coagulation and sedimentation, which is commonly used in wastewater treatment.

従来、有害な重金属錯体含有水に鉄塩又はカルシウム塩
を添加することによシ有害重金属釦体を鉄又はカルシウ
ムの錯体とし、遊離した有害重金属を水酸化物どして沈
殿させ処理する置換処理法;及び有害重金属錯体をその
まま活性炭に吸着させる方法等が提案されたが、その処
理効果は必ずしも満足のゆくものではなく、特に、KD
TA −Ni錯体等においてはほとんど処理効果が認め
られなかった。
Conventionally, substitution treatment involves adding iron salts or calcium salts to water containing harmful heavy metal complexes, converting the harmful heavy metals into iron or calcium complexes, and precipitating the released harmful heavy metals into hydroxides. method; and a method in which harmful heavy metal complexes are directly adsorbed onto activated carbon have been proposed, but their treatment effects are not always satisfactory, and in particular, KD
Almost no treatment effect was observed for TA-Ni complexes and the like.

本発明者らは、このような従来技術の有する欠点を解決
するため、鋭意研完を重ねた結果、効率よく金属を除去
し得る方法を見い出し、本発明を完成させたものである
In order to solve the drawbacks of the prior art, the present inventors have made extensive research and have discovered a method for efficiently removing metal, and have completed the present invention.

すなわち、この発明は金属錯体含有水にカルシウム化合
物と鉄化合物とを添加したあと、凝集処理することを特
徴とする水の処理方法である。
That is, the present invention is a water treatment method characterized by adding a calcium compound and an iron compound to metal complex-containing water and then performing a coagulation treatment.

この発明の対象となる金属錯体はニッケル、亜鉛、銅、
カドミウム、鉛、コバルト等の有害金属イオンと種々の
錯化剤との錯体であり、錯化剤としてはEDTA (エ
チレンジアミン四酢酸)やニトリ四三酢酸、イミノニ酢
酸などのアミノカルゼン酸やクエン酸、酒石酸などのオ
キシカルデン酸などが挙げられる。但し、錯体中の金属
の種類によってはEDTAの場合には添加量を著しく多
くしなければ所定の効果が得られない場合があシ、本発
明の対象錯体としては好ましくはカルゼキシル基の数が
3個以下のものである。
The metal complexes targeted by this invention include nickel, zinc, copper,
It is a complex of harmful metal ions such as cadmium, lead, and cobalt with various complexing agents, and the complexing agents include aminocarzenic acids such as EDTA (ethylenediaminetetraacetic acid), nitritetraacetic acid, and iminodiacetic acid, citric acid, and tartaric acid. Examples include oxycaldic acid such as. However, depending on the type of metal in the complex, in the case of EDTA, the desired effect may not be obtained unless the amount added is significantly increased, and the target complex of the present invention preferably has 3 carzexyl groups. less than or equal to 1.

このような金属錯体含有水にカルシウム化合物と鉄化合
物とを添加する。
A calcium compound and an iron compound are added to such metal complex-containing water.

用いるカルシウム化合物としては塩化カルシウム、酸化
カルシウム、水酸化カルシウムなど水中でカルシウムイ
オンを発生させるものなら特に限定されず、1種又は2
種以上を用いる。
The calcium compound to be used is not particularly limited as long as it generates calcium ions in water, such as calcium chloride, calcium oxide, calcium hydroxide, etc., and one or two types can be used.
Use more than one species.

一方、鉄化合物としては塩化第2鉄、硫酸第2鉄、塩化
第1鉄、硫酸第1鉄など水溶性鉄塩であればいずれでも
よいが、コストや効果上から第1鉄塩が好ましい。さら
に、鉄化合物として、場合によっては鉄イオンを豊富に
含む酸洗廃液寿どを用いることもできる。
On the other hand, the iron compound may be any water-soluble iron salt such as ferric chloride, ferric sulfate, ferrous chloride, or ferrous sulfate, but ferrous salts are preferred from the viewpoint of cost and effectiveness. Furthermore, as the iron compound, pickling waste liquid containing abundant iron ions can also be used depending on the case.

カルシウム化合物及び鉄化合物は系内に共存するように
添加すればよく、添加順序は限定されない。従って鉄化
合物を先に添加した後、カルシウム化合物を添加しても
よく、この逆でもよく、さらには同時に添加してもよい
。しかし、先ず鉄化合物を添加し、次いでカルシウム化
合物を添加する方が処理効果が良くなって好ましい。
The calcium compound and the iron compound may be added so that they coexist in the system, and the order of addition is not limited. Therefore, the iron compound may be added first and then the calcium compound may be added, or vice versa, or may be added at the same time. However, it is preferable to first add the iron compound and then add the calcium compound because the treatment effect becomes better.

金属錯体含有水にカルシウム化合物及び鉄化合物を添加
する際には、被処理水のpHを予め8以下、好ましくは
2〜6の範囲に調整する。
When adding a calcium compound and an iron compound to metal complex-containing water, the pH of the water to be treated is adjusted in advance to 8 or less, preferably in the range of 2 to 6.

後述のように、カルシウム化合物及び鉄化合物を金属錯
・鉢台有水に添加するととによシ、錯体中の金属イオン
と、カルシウム及び鉄イオンとの置換反応を起こさせる
ものであシ、この反応進行中はカルシウム化合物と鉄化
合物を水中でイオン状に保持する心機がある。
As described later, when calcium compounds and iron compounds are added to metal complexes and potted water, they cause a substitution reaction between the metal ions in the complex and calcium and iron ions. During the reaction, there is a core that keeps the calcium and iron compounds in ionic form in the water.

従って、被処理液のp)Iが8を越えると、添加したカ
ルシウム化合物や鉄化合物が水酸化物等を形成して不溶
化する傾向が強まり、遂には全く用をなさなくなってし
まう。
Therefore, when the p)I of the liquid to be treated exceeds 8, the added calcium compounds and iron compounds have a strong tendency to form hydroxides and become insolubilized, and eventually become completely useless.

一方、p)Iは低い方がよいが、2未満となるとpH調
整剤の添加量の割には効果の改善が顕著でなくなシ、不
紅済となる。
On the other hand, the lower the p)I, the better, but if it is less than 2, the improvement in the effect will not be significant considering the amount of the pH adjuster added, and the result will be poor.

pHを8以下に調整するために要するpI(調整剤は公
知の酸やアルカリ剤を用いることができる。
The pI required to adjust the pH to 8 or less (a known acid or alkaline agent can be used as the adjuster).

カルシウム化合物の添加量は被処理中の全錯化剤の含有
量によって異なるが、通常はその含有量の2モル以上と
する。
The amount of the calcium compound added varies depending on the content of all the complexing agents being treated, but is usually 2 moles or more of the content.

一方、鉄化合物についてもその添加量は3モル以上とす
る。
On the other hand, the amount of iron compounds added is 3 moles or more.

両化合物とも添加量は多いほど効果も改善されることが
確認されておシ、特に上限はない。
It has been confirmed that the effects of both compounds are improved as the amount added increases, and there is no particular upper limit.

但し、共に10モル倍を超えるとコストの割に改善の割
合が小さくなるので通常は上限を10モル倍とすればよ
い。
However, if both amounts exceed 10 times the amount by mole, the rate of improvement will be small relative to the cost, so normally the upper limit may be set to 10 times the amount by mole.

被処理水にカルシウム化合物及び鉄化合物を添加すると
きには攪拌を行なって充分反応が進むようにする。反応
時間は錯体含有量によシ左右されるが通常は1時間以内
で充分でるる。
When adding calcium compounds and iron compounds to the water to be treated, stirring is performed to ensure that the reaction proceeds sufficiently. The reaction time depends on the complex content, but usually one hour or less is sufficient.

以上の処理によシ、極めて処理しにくい有害金属錯体が
カルシウム化合物と鉄化合物との反応によって比較的処
理しゃすい鉄錯体やカルシウム錯体となる。
As a result of the above treatment, toxic metal complexes that are extremely difficult to treat become iron complexes and calcium complexes that are relatively easy to treat due to the reaction between calcium compounds and iron compounds.

カルシウム化合物又は鉄化合物単独を用いた場合には効
率良く処理できないのに対し、それらを併用するこの発
明の場合、良好に処理される理由は明らかではないが、
まずカルシウム又は鉄イオンが対象有害金属と置換反応
を起す。
Although it is not clear why the present invention, which uses a calcium compound or an iron compound alone, results in efficient treatment, whereas it cannot be treated efficiently when a calcium compound or iron compound is used alone.
First, calcium or iron ions undergo a substitution reaction with the target harmful metal.

次いで置換された錯体に対し鉄又はカルシウムイオンが
不溶化反応を起こすため、カルシウムと鉄イオンが相乗
的に作用し、効率良く有害金属が除去されるものと推定
される。
Then, since iron or calcium ions cause an insolubilization reaction on the substituted complex, it is presumed that calcium and iron ions act synergistically to efficiently remove harmful metals.

続いてこの発明においては、凝集処理により、鉄又はカ
ルシウム錯体と有害重金属イオンとを水よシ除去する。
Next, in the present invention, iron or calcium complexes and harmful heavy metal ions are removed by water evaporation through aggregation treatment.

凝集処理は上記処理水に攪拌下アルカリ剤を添加してp
Hを9.0以上、好ましくはlO〜11.5に調整して
行なう。
Coagulation treatment is carried out by adding an alkaline agent to the above-mentioned treated water while stirring.
This is carried out by adjusting H to 9.0 or more, preferably 10 to 11.5.

アルカリ剤としては水酸化ナトリウムや水酸化カリウム
、水酸化カルシウム、酸化カルシウムなど公知のアルカ
リ剤が用いられる。
As the alkali agent, known alkali agents such as sodium hydroxide, potassium hydroxide, calcium hydroxide, and calcium oxide are used.

反応時間は数分〜30分程度とする。なお凝集処理の際
、ポリアクリルアミドの部分加水分解物などの公知の有
機高分子凝集剤を数my/を添加すると極めて効率的に
凝集沈殿処理することができる。
The reaction time is about several minutes to 30 minutes. Note that during the flocculation treatment, if several my/min of a known organic polymer flocculant such as a partially hydrolyzed polyacrylamide is added, the flocculation and precipitation treatment can be carried out extremely efficiently.

こうして生成した凝集物は次いで固液分離装置によυ固
液分離する。
The aggregate thus produced is then subjected to solid-liquid separation using a solid-liquid separator.

固液分離装置としては特に限定されず、公知の沈殿槽や
、凝集沈殿装置を用いることができる。
The solid-liquid separator is not particularly limited, and a known settling tank or coagulation-sedimentation device can be used.

このようにして分離された凝集物は別途処理する一方、
処理水は系外に放流する。
While the aggregates separated in this way are treated separately,
Treated water is discharged outside the system.

実施例1 第1表のようにCd 、 Nl 、 Cr 、 Zn 
、 Pb 、 Cuから選ばれた重金属イオンを各20
m9/を含むNTA 、 EDTA 、クエン酸、及び
酒石散会1,000η/Lの溶液について、この発明方
法を実施した。
Example 1 As shown in Table 1, Cd, Nl, Cr, Zn
20 each of heavy metal ions selected from , Pb, and Cu.
The method of the invention was carried out on a solution containing 1,000 η/L of NTA, EDTA, citric acid, and tartaric acid.

先ず、塩酸でpHを4に調整したのち、攪拌下に塩化カ
ルシウムを1,000η/ L (Caとして)を添加
し、次いで硫酸第1鉄を1,000mp/L添加したあ
と30分間反応させた。
First, the pH was adjusted to 4 with hydrochloric acid, then 1,000 η/L (as Ca) of calcium chloride was added under stirring, and then 1,000 mp/L of ferrous sulfate was added, followed by a reaction for 30 minutes. .

次いで水酸化す) IJウム溶液でpHを11.0に調
整し、生成した沈殿をF紙を用いて涙過し、分離した。
The pH was then adjusted to 11.0 with an IJ solution (hydroxide), and the resulting precipitate was filtered and separated using F paper.

処理水の水質分析結果を第1表に示す。The results of water quality analysis of the treated water are shown in Table 1.

なお、比較例としてa)各検水を直接水酸化ナトリウム
溶液でpH11に調整後固液分離b)pI(4で塩化カ
ルシウム2,000 Ing/ L (Caとして)を
添加し、30分間反応させたのち、水酸化ナトリウム溶
液でpHを11に調整後置液分* c)pH4で硫酸第
1鉄2.000 m9/ L (F eとして)を添加
し、30分間反応させたのち、水酸化ナトリウム溶液で
pHを11に調整後固液分離、という3法についても試
験した。
As a comparative example, a) Each test water was directly adjusted to pH 11 with sodium hydroxide solution, and then solid-liquid separation b) Calcium chloride (2,000 Ing/L (as Ca) was added at pI (4) and reacted for 30 minutes. After that, the pH was adjusted to 11 with sodium hydroxide solution.*c) At pH 4, 2.000 m9/L of ferrous sulfate (as Fe) was added, and after reacting for 30 minutes, hydroxide was added. Three methods were also tested: adjusting the pH to 11 with a sodium solution followed by solid-liquid separation.

各比較例の結果についても第1表に併せて示す。The results of each comparative example are also shown in Table 1.

(以下余白) なお、本発明方法の場合、処理水中のFe濃度は0.1
5m9/Lであったのに対し、比較例CではFe濃度は
155 m9/lであった。これから本発明方法では残
留Fe濃度も極めて低減されることがわかる。
(Left below) In the case of the method of the present invention, the Fe concentration in the treated water is 0.1
5 m9/L, whereas in Comparative Example C, the Fe concentration was 155 m9/L. It can be seen from this that the residual Fe concentration is also extremely reduced in the method of the present invention.

実施例2 実際のメッキ工場廃水を用いて処理した。原水水質は次
の通シ。
Example 2 Actual plating factory wastewater was used for treatment. Raw water quality is as follows.

pH12、CODMn220m9/l、EDTA52.
8m9/l。
pH12, CODMn220m9/l, EDTA52.
8m9/l.

酒石e5omy/l*グA コ−k 酸25 Ni/ 
l 。
Tartarite e5omy/l*gA K-k acid 25 Ni/
l.

Nl 10.8m9/L 、 Cu 6.8m9/L 
、 Znl 4. ’Imp/L添加し、30分間攪拌
しながら反応させた。
Nl 10.8m9/L, Cu 6.8m9/L
, Znl 4. 'Imp/L was added and reacted for 30 minutes with stirring.

次いで水酸化ナトリウムでpH′ft11とし、生成し
た沈殿を沈殿槽で分離した。上澄水の水質分析結果を第
2表に示す。
Next, the pH was adjusted to 11 with sodium hydroxide, and the resulting precipitate was separated in a precipitation tank. The results of water quality analysis of the supernatant water are shown in Table 2.

なお、併せて硫酸で直接PHを11にした場合の結果に
ついても示す。
Additionally, the results obtained when the pH was directly adjusted to 11 with sulfuric acid are also shown.

第2表 実施例1.2から明らかな通り、従来法では処理するこ
との困難であった有害金属錯体、特にニッケル錯体につ
いても極めて良好に処理される。
As is clear from Example 1.2 in Table 2, harmful metal complexes, especially nickel complexes, which were difficult to treat by conventional methods, can be treated extremely well.

特許出願人 日本電気株式会社Patent applicant: NEC Corporation

Claims (1)

【特許請求の範囲】 1、金属錯体含有水にカルシウム化合物と鉄化合物とを
添加したあと凝集処理することを特徴とする水の処理方
法 2、 カルシウム化合物は錯体に対し、3モル以上、カ
ルシウム化合物は錯体に対し2モル以上添加するもので
ある特許請求の範囲第1項記載の処理方法 3、金属錯体含有水はあらかじめpH8以下に調整され
たものである特許請求の範囲第1項又は第2項に記載の
処理方法 4、凝集処理はpH10〜12で行なわれるものである
特許請求の範囲第1項ないし第3項のいずれかに記載の
処理方法
[Claims] 1. A water treatment method characterized by adding a calcium compound and an iron compound to metal complex-containing water and then performing a flocculation treatment. 2. The calcium compound is 3 mol or more based on the complex; Treatment method 3 according to claim 1, in which 2 moles or more of metal complex is added to the complex, and claim 1 or 2, in which the metal complex-containing water is adjusted to pH 8 or less in advance. Treatment method 4 according to claim 1, wherein the aggregation treatment is carried out at a pH of 10 to 12.
JP22638483A 1983-11-30 1983-11-30 Water treating method Granted JPS60118288A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22638483A JPS60118288A (en) 1983-11-30 1983-11-30 Water treating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22638483A JPS60118288A (en) 1983-11-30 1983-11-30 Water treating method

Publications (2)

Publication Number Publication Date
JPS60118288A true JPS60118288A (en) 1985-06-25
JPS634478B2 JPS634478B2 (en) 1988-01-29

Family

ID=16844272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22638483A Granted JPS60118288A (en) 1983-11-30 1983-11-30 Water treating method

Country Status (1)

Country Link
JP (1) JPS60118288A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4741831A (en) * 1986-12-04 1988-05-03 The Dow Chemical Company Process and composition for removal of metal ions from aqueous solutions
JP2004290967A (en) * 2003-03-11 2004-10-21 Tokuyama Corp Method for treating waste water
JP2004337651A (en) * 2003-05-13 2004-12-02 Dowa Mining Co Ltd Method for storing or transporting wastewater containing hydrogen peroxide and method for treating the wastewater
CN101746908A (en) * 2009-12-21 2010-06-23 南昌航空大学 Method for processing chemical nickle-plating wastewater by breaking complexing twice
CN103011530A (en) * 2012-12-07 2013-04-03 常州大学 Method for removing lead in sewage
JP2014036941A (en) * 2012-08-20 2014-02-27 Swing Corp Processing method and apparatus of a waste liquid including heavy metals

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4741831A (en) * 1986-12-04 1988-05-03 The Dow Chemical Company Process and composition for removal of metal ions from aqueous solutions
JP2004290967A (en) * 2003-03-11 2004-10-21 Tokuyama Corp Method for treating waste water
JP4559755B2 (en) * 2003-03-11 2010-10-13 株式会社トクヤマ Wastewater treatment method
JP2004337651A (en) * 2003-05-13 2004-12-02 Dowa Mining Co Ltd Method for storing or transporting wastewater containing hydrogen peroxide and method for treating the wastewater
CN101746908A (en) * 2009-12-21 2010-06-23 南昌航空大学 Method for processing chemical nickle-plating wastewater by breaking complexing twice
JP2014036941A (en) * 2012-08-20 2014-02-27 Swing Corp Processing method and apparatus of a waste liquid including heavy metals
CN103011530A (en) * 2012-12-07 2013-04-03 常州大学 Method for removing lead in sewage
CN103011530B (en) * 2012-12-07 2014-05-07 常州大学 Method for removing lead in sewage

Also Published As

Publication number Publication date
JPS634478B2 (en) 1988-01-29

Similar Documents

Publication Publication Date Title
CS245861B1 (en) Method of heavy metals separation from aminocarboxyl complexing substances
JP5985959B2 (en) Method and apparatus for treating waste liquid containing heavy metal
JPS60118288A (en) Water treating method
CN111039441A (en) Method for treating chemical plating wastewater by generating colloid
EP1022349B1 (en) Method for removing metals from a citric acid cleaning solution
JPS61192386A (en) Treatment of waste water containing heavy metal complex
JP4039820B2 (en) Wastewater treatment method
JP3180977B2 (en) Treatment method for electroless plating aging solution
JP2580610B2 (en) Treatment method for water containing iron cyanide complex
JP5985925B2 (en) Method and apparatus for treating waste liquid containing heavy metal
JPS622879B2 (en)
JP3939887B2 (en) Regeneration method of electroless nickel plating solution
JPS6259998B2 (en)
US5462671A (en) Method of removing heavy metals from solutions of amino-carboxylic acids for disposal purposes
JPS61120688A (en) Treatment of high concentrated waste solution
JP6901807B1 (en) Treatment method of water containing selenate ion
JPS59190333A (en) Treatment of solution containing metallic ion
JPH0460717B2 (en)
JPS5834194B2 (en) Suiginion no Jiyokiyohouhou
JPS637894A (en) Treatment of waste liquid
JP3282452B2 (en) How to remove selenium from wastewater
JPH0221995A (en) Treatment of waste solution
JP3398692B2 (en) Treatment method for wastewater containing heavy metals
JPH08132066A (en) Treatment of metal-containing waste water
RU2061802C1 (en) Method for regeneration of used chromium electrolytes