JPS60144971A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS60144971A
JPS60144971A JP59001581A JP158184A JPS60144971A JP S60144971 A JPS60144971 A JP S60144971A JP 59001581 A JP59001581 A JP 59001581A JP 158184 A JP158184 A JP 158184A JP S60144971 A JPS60144971 A JP S60144971A
Authority
JP
Japan
Prior art keywords
drain
register
transfer
gate
well
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59001581A
Other languages
Japanese (ja)
Inventor
Tadashi Aoki
正 青木
Hirokuni Nakatani
中谷 博邦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp, Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electronics Corp
Priority to JP59001581A priority Critical patent/JPS60144971A/en
Publication of JPS60144971A publication Critical patent/JPS60144971A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/762Charge transfer devices
    • H01L29/765Charge-coupled devices
    • H01L29/768Charge-coupled devices with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE:To share a power supply for CCD shift registers for transfer and a drain by mutually making concentration in the surface or in the vicinity of the surfaces of CCDs for transfer and the drain mutually adjoining through a gate differ to each other. CONSTITUTION:A substrate 10 takes a P type, and a CCD shift register 3 for transfer is constituted by a gate 11, a gate oxide film 16 and an N well 13. A CCD shift register 7 for a drain is constituted by a gate 12, the film 16 and an N well 14, and the concentration of the well 14 is made higher than that of the well 13. Consequently, a power supply 21 for drivers 17 and 18 for driving connected to each gate 11 and 12 in the register 3 and the register 7 can be shared. Driver 17 and 18 themselves can also be made common. Accordingly, the potential of the register 7 can be made deeper than that of the register 3 when the gates 11 and 12 are supplied with voltage at the same high level, and charges in the register 3 are transferred to the register 7 when a drain gate 6 is brought to a high level under the state.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は電荷の転送機能を有する半導体装置に関するも
のであネ。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a semiconductor device having a charge transfer function.

従来例の構成とその問題点 昨今電荷転送機能を有するC0D(電荷結合素子)の開
発が進み、その応用としてCODイメージセンサの開発
が活発に進められている。
2. Description of the Related Art Structures of Conventional Examples and Their Problems Recently, the development of COD (charge-coupled devices) having a charge transfer function has progressed, and as an application thereof, the development of COD image sensors is actively progressing.

第1図は従来の一次元COD固体撮像装置の概略図を示
したものである。入射した光は光電変換部1で光の強弱
に応じた電荷に変換され、ある一定の期間蓄積された後
、光電変換部1内の奇数番目の画素に蓄積された電荷は
、シフトゲ−)2aを通じて奇数側のCCDシフトレジ
スタ3aに転送され、偶数番目の画素に蓄積された電荷
は、シフトゲート2bを通じて偶数側のCCDシフトレ
ジスタ3bに転送され、偶奇各々のシフトレジスタ内の
電荷はCOD転送により、出力ゲート4を通じて出力部
5に転送される。
FIG. 1 shows a schematic diagram of a conventional one-dimensional COD solid-state imaging device. The incident light is converted into charges according to the strength of the light in the photoelectric conversion unit 1, and after being accumulated for a certain period of time, the charges accumulated in the odd-numbered pixels in the photoelectric conversion unit 1 are converted into charges according to the intensity of the light. The charge accumulated in the even numbered pixel is transferred to the even numbered CCD shift register 3b through the shift gate 2b, and the charge in each of the even and odd shift registers is transferred by COD transfer. , are transferred to the output section 5 through the output gate 4.

以上の様な従来の構造では、CCDシフトレジスタ内で
常に全画素の電荷を転送しなければならず、−ラインの
走査時間(蓄積時間)は一段当シの転送時間に画素数を
乗じたものとなり、上記の様なCCDシフトレジスタを
奇数と偶数に分けた構造のものでも上記走査時間の半分
にしかならない。
In the conventional structure described above, the charges of all pixels must be constantly transferred within the CCD shift register, and the scanning time (accumulation time) of a line is equal to the transfer time of one stage multiplied by the number of pixels. Therefore, even with a structure in which the CCD shift register is divided into odd and even numbers, the scanning time is only half of the above scanning time.

昨今情報の一部を高速に認識したいという要望が高まっ
てお9、上記従来構造の装置では上記要望を満たすこと
ができない、。そこで以上の問題点を解決すべく一つの
構造が提案されている。第2図は改善された従来構造で
あシ、第1図の構造の偶奇各々の転送用CCDシフトレ
ジスタ3a。
Recently, there has been a growing demand for high-speed recognition of a portion of information9, and the above-mentioned conventionally structured devices cannot meet the above-mentioned demands. Therefore, one structure has been proposed to solve the above problems. FIG. 2 shows an improved conventional structure, which is a CCD shift register 3a for even and odd transfers of the structure shown in FIG.

3bの横にドレインゲート6a及び6bを介してドレイ
ン用CCDシフトレジスタ7a及び7bを設け、転送用
CODシフトレジスタ3a及び3b内の不要となった信
号を、ドレイン用C’CDシフトレジスタ7a及び7b
に移し、末端に設けられたドレイン8a及び8bに電荷
を捨て去る構造となっている。従って第2図の構造では
、ドレインゲー)6a及び6bに加えるパルスのタイミ
ングを適当に選ぶことによシ、必要な画素数を選択する
ことが出来、それに従って一ラインの走査時間を任意に
選択することができる。
Drain CCD shift registers 7a and 7b are provided next to the transfer COD shift registers 3a and 3b via drain gates 6a and 6b, and unnecessary signals in the transfer COD shift registers 3a and 3b are transferred to the drain C'CD shift registers 7a and 7b.
The structure is such that the charges are transferred to drains 8a and 8b provided at the ends and discarded. Therefore, in the structure shown in Fig. 2, the required number of pixels can be selected by appropriately selecting the timing of the pulses applied to the drain gates 6a and 6b, and the scanning time for one line can be arbitrarily selected accordingly. can do.

しかし、第2図の従来構造では、転送用CODシフトレ
ジスタ3a及び3bとドレイン用CCDシフトレジスタ
7a及び7bとはポテンシャルに差をつけておかねばC
CD間の転送が完全にできない。
However, in the conventional structure shown in FIG. 2, the transfer COD shift registers 3a and 3b and the drain CCD shift registers 7a and 7b must have different potentials.
Transfer between CDs is completely impossible.

第3図aは第2図の従来構造のA−A’面の断面構造を
表しだものであり、基板10はP型で、転送用CODシ
フトレジスタ3bは、ゲート11、ゲート酸化膜16及
び埋込みチャンイ・ルのためのNウェル13で構成され
ている。ドレイン用CCDシフトレジスタ7bは、ゲー
ト12、ゲート酸化膜16及びNウェル14で構成され
ており、転送用及びドレイン用各CODシフトレジスタ
3b。
FIG. 3a shows the cross-sectional structure of the conventional structure in FIG. It consists of an N-well 13 for a buried channel. The drain CCD shift register 7b is composed of a gate 12, a gate oxide film 16, and an N well 14, and each of the transfer and drain COD shift registers 3b.

7bは、ドレインゲート6bを介して相隣9合っている
。17は転送用CODシフトレジスタ3bを駆動するド
ライバーであり、19はドライバーの電源である。一方
18はドレイン用CCDシフトレジスタ7bを1駆動す
るドライバーで、20はドライバーの電源である。この
第3図aの構造に於て、転送用CODシフトレジスタs
b内の電荷をドレイン用CCDシフトレジスタ7bへ転
送するには同図すの様に転送状態に於て、ドレインゲー
ト6をローのポテンシャルAからハイのポテンシャルB
へ移行した時、転送用CODシフトレジスタ3bのポテ
ンシャルCよシも、ドレイン用CCDシフトレジスタ7
bのポテンシャルDの方カ深くなければならない。しか
し第3図aの従来構造では転送用CODシフトレジスタ
3bのNウェル13とドレイン用CODのNウェル14
は同じ濃度であシ、各CCDゲート11及び12のロー
レベル状態でのポテンシャルは同図Cの様に全く同じで
ある。従って、ドレイン用CCDシフトレジスタ7bを
駆動するドライバー18の電源20は転送用CODシフ
トレジスタ3bを駆動するドライバー17の電源19よ
シも高い電圧が必要となる。従ってドライバー用の電源
を共用することが出来ず、回路がその分複雑となる。
7b are adjacent to each other with the drain gate 6b interposed therebetween. 17 is a driver that drives the transfer COD shift register 3b, and 19 is a power source for the driver. On the other hand, 18 is a driver that drives the drain CCD shift register 7b, and 20 is a power source for the driver. In the structure shown in FIG. 3a, the transfer COD shift register s
In order to transfer the charge in b to the drain CCD shift register 7b, in the transfer state as shown in the figure, the drain gate 6 is shifted from the low potential A to the high potential B.
, the potential C of the transfer COD shift register 3b also changes to the potential C of the drain CCD shift register 7.
The potential D of b must be deeper. However, in the conventional structure shown in FIG. 3a, the N well 13 of the transfer COD shift register 3b and the N well 14 of the drain COD
have the same concentration, and the potentials of each CCD gate 11 and 12 in the low level state are exactly the same as shown in FIG. Therefore, the power source 20 of the driver 18 that drives the drain CCD shift register 7b requires a higher voltage than the power source 19 of the driver 17 that drives the transfer COD shift register 3b. Therefore, the power source for the drivers cannot be shared, and the circuit becomes complicated accordingly.

発明の目的 本発明は上記従来の問題点を解消するもので、転送及び
ドレイン用CCDシフトレジスタの電源を共用すること
のできる半導体装置を提供するものである。
OBJECTS OF THE INVENTION The present invention solves the above-mentioned conventional problems and provides a semiconductor device that can share the power source of the transfer and drain CCD shift registers.

発明の構成 本発明はゲートを介してあい隣り合う転送及びドレイン
用CODの表面あるいは表面近傍の濃度がfii11互
いに異なる様に構成し、転送及びドレイン用CCDシフ
トレジスタの電源を共用せんとするものである。
Structure of the Invention The present invention is configured such that the concentrations at or near the surfaces of CODs for transfer and drain adjacent to each other via gates are different from each other, and the power supply for the CCD shift register for transfer and drain is shared. be.

実施例の説明 以下、本発明の一実施例について、図面を参照しながら
説明する。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

本実施例では第2図A−A’断面部分が第4図の様な構
成になっている。
In this embodiment, the cross section taken along the line AA' in FIG. 2 has a configuration as shown in FIG. 4.

第4図aは、本発明の一実施例に於ける要部の断面構造
を表わしたものであるが、基板10はP型で、転送用C
ODシフトレジスタ3bはゲート11、ゲート酸化膜1
6及び埋込みチャンネルのためのNウェル13で構成さ
れている。ドレイン用CCDシフトレジスタ7bは、ゲ
ート12、ゲート酸化膜16及びNウェル14で構成さ
れており、14のNウェルの濃度は転送用CODシフ小
レジスタ3bのNウェル13よりも高くなっている。従
って転送用CODシフトレジスタ3b及びドレイン用C
CDシフトレジスタ7bの各々のゲート11及び12傾
接続する駆動用ドライバー17及び18の電源21は共
通にすることが出来る。また、転送用及びドレイン用各
CODシフトレジスタのドライバー自身をも共通にする
ことが可能である。第4図すは断面図aの転送時のポテ
ンシャルを示したもので、転送及びドレイン用CCDシ
フトレジスタ3及び7の各ゲート11及び12に同じハ
イレベルの電圧を供給した時のポテンシャルを示したも
ので、同図すよシ、ドレイン用CCDシフトレジスタ7
bのポテンシャルDが転送用CODシフトレジスタ3b
のポテンシャルCよりも深いことを示しており、この状
態でドレインゲ−1−6ヲローレベルのポテンシャルA
からハイレベルのポテンシャルにした時に、転送用CO
Dシフトレジスタ3内の電荷が、ドレイン用CCDシフ
トレジスタ7bへ転送される。なお同図Cは転送及びド
レイン用CCDシフトレジスタ3b及び7bのローレベ
ルに於けるポテンシャルを示している。
FIG. 4a shows the cross-sectional structure of the main part in one embodiment of the present invention.
The OD shift register 3b has a gate 11 and a gate oxide film 1.
6 and an N-well 13 for a buried channel. The drain CCD shift register 7b is composed of a gate 12, a gate oxide film 16, and an N well 14, and the concentration of the N well 14 is higher than that of the N well 13 of the transfer COD shift small register 3b. Therefore, the transfer COD shift register 3b and the drain C
The power source 21 of the driving drivers 17 and 18 connected to the respective gates 11 and 12 of the CD shift register 7b can be shared. Furthermore, it is possible to use a common driver for each of the transfer and drain COD shift registers. Figure 4 shows the potential during transfer in cross-sectional view a, and shows the potential when the same high-level voltage is supplied to each gate 11 and 12 of CCD shift registers 3 and 7 for transfer and drain. As shown in the same figure, drain CCD shift register 7
The potential D of b is the transfer COD shift register 3b.
This shows that the potential A is deeper than the potential C of drain game 1-6.
When the potential is set to high level, the transfer CO
The charges in the D shift register 3 are transferred to the drain CCD shift register 7b. Note that C in the figure shows the potential of the transfer and drain CCD shift registers 3b and 7b at a low level.

発明の効果 本発明の半導体装置は共通のドライ、6−電源もしくは
共通のドライバーにより、一つの電荷転送装置の電荷を
他の電荷転送装置へと転送することができ、その実用的
効果は大きい。
Effects of the Invention The semiconductor device of the present invention can transfer the charge of one charge transfer device to another charge transfer device using a common dryer, 6-power supply or a common driver, and its practical effects are great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の一次元COD固体撮像装置の概略図、第
2図は改良された一次元COD固体撮像装置の平面図、
第3図C5第4図aはそれぞれ従来5本発明における第
2図のA−A′断面図で、第3図す、第4図すはそれぞ
れの動作時に於けるポテンシャル図、第3図C5第4図
Cはそれぞれ゛の不純物濃度分布図である。 1o・・・・・・基板、11.12・・・・・・ゲート
1,13゜14・川・Nウェル、15・・・・・・チャ
ンネルストッパ、16・・・・・・ゲート酸化膜、17
.18・川・ドライバー、21・・・・・・ドライバー
用電源。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 8工 第3図 ・”10 第4図
FIG. 1 is a schematic diagram of a conventional one-dimensional COD solid-state imaging device, and FIG. 2 is a plan view of an improved one-dimensional COD solid-state imaging device.
Fig. 3 C5 Fig. 4 a is a sectional view taken along the line A-A' in Fig. 2 in the conventional 5 invention, Fig. 3 and Fig. 4 are potential diagrams during each operation, and Fig. 3 C5 FIG. 4C is an impurity concentration distribution map of ゛, respectively. 1o...Substrate, 11.12...Gate 1, 13゜14 River/N well, 15...Channel stopper, 16...Gate oxide film , 17
.. 18・Kawa・Driver, 21... Power supply for the driver. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 8 Construction Figure 3/''10 Figure 4

Claims (1)

【特許請求の範囲】[Claims] ゲートを介してあい隣り合う転送及びドレイン用COD
の表面あるいは表面近傍の濃度が、互いに異なることを
特徴とする半導体装置。
Adjacent transfer and drain CODs across gates
A semiconductor device characterized in that the concentrations at or near the surface of the semiconductor devices are different from each other.
JP59001581A 1984-01-09 1984-01-09 Semiconductor device Pending JPS60144971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59001581A JPS60144971A (en) 1984-01-09 1984-01-09 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59001581A JPS60144971A (en) 1984-01-09 1984-01-09 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS60144971A true JPS60144971A (en) 1985-07-31

Family

ID=11505478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59001581A Pending JPS60144971A (en) 1984-01-09 1984-01-09 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS60144971A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020155973A (en) * 2019-03-20 2020-09-24 株式会社東芝 Solid-state imaging device and method of controlling the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60120555A (en) * 1983-12-02 1985-06-28 Hitachi Ltd Solid state image pick-up device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60120555A (en) * 1983-12-02 1985-06-28 Hitachi Ltd Solid state image pick-up device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020155973A (en) * 2019-03-20 2020-09-24 株式会社東芝 Solid-state imaging device and method of controlling the same

Similar Documents

Publication Publication Date Title
JPS60157800A (en) Electric charge connector
JPS5875382A (en) Solid-state image pickup device
JPH05283670A (en) Solid state image pickup and reading method for charge of the same pickup
US5365093A (en) Solid-state imaging device with tapered channel regions
JPH022793A (en) Two-dimensional ccd image pickup element driving method
JPH02309877A (en) Solid-state image pickup device
JPS60144971A (en) Semiconductor device
EP0705029B1 (en) Solid state imaging device
JP3185230B2 (en) Solid-state imaging device
JPS58187081A (en) Solid-state image pickup device and its drive method
JPH0767153B2 (en) Driving method for solid-state imaging device
JPS61194870A (en) Solid-state image pick-up device
JP2907841B2 (en) Line sensor
JP2000196964A (en) Solid-state image pickup element and driving method therefor
JP3277385B2 (en) Solid-state imaging device
JPS59154882A (en) Solid-state image pickup device
JPH03171771A (en) Solid state image sensing device and its driving
JPH04373274A (en) Ccd solid-state image pickup element
JPH0212967A (en) Solid state image sensor
JPS60257565A (en) Charge transfer device
JPH0358580A (en) Driving method for solid-state image pickup device
JPS59221177A (en) Charge transfer device
JPS6210974A (en) Method for driving solid-state image pickup device
JPS6088459A (en) Semiconductor device
JPH04123583A (en) Drive method for solid-state image pickup device