JPS58187081A - Solid-state image pickup device and its drive method - Google Patents

Solid-state image pickup device and its drive method

Info

Publication number
JPS58187081A
JPS58187081A JP57070045A JP7004582A JPS58187081A JP S58187081 A JPS58187081 A JP S58187081A JP 57070045 A JP57070045 A JP 57070045A JP 7004582 A JP7004582 A JP 7004582A JP S58187081 A JPS58187081 A JP S58187081A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
charge
conversion elements
signal charges
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57070045A
Other languages
Japanese (ja)
Inventor
Toshiyuki Kozono
小薗 利幸
Sakaki Horii
堀居 賢樹
Takao Kuroda
黒田 隆男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57070045A priority Critical patent/JPS58187081A/en
Publication of JPS58187081A publication Critical patent/JPS58187081A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information

Abstract

PURPOSE:To eliminate the fixed pattern due to the difference between threshold values of transfer and discharge gates, by reading out signals at each field and passing the excluded signal charges through the same transfer gate both for the exclusion and transfer. CONSTITUTION:Before reading out the signal charges stored in odd number of photoelectric conversion elements 1, 3..., the signal charges stored in even number of photoelectric conversion elements 2, 4... are transferred to a charge transfer element train 6 through a transfer gate 5 and excluded to a charge absorbing region 7 through a gate 9. In forming the 2nd field by reading out the signal charge stored in the even number photoelectric conversion elements 2, 4,..., first the signal charges stored in the odd number photoelectric conversion elements 1, 3... are transferred to the charge transfer element train 6 through the transfer gate 5, and the signal charges of the odd number of the elements 1, 3... transferred to the train 6 are excluded to the charge absorbing region 7 through the gate 9.

Description

【発明の詳細な説明】 本発明は固体撮像装置およびその駆動方法に関する。[Detailed description of the invention] The present invention relates to a solid-state imaging device and a method for driving the same.

一般に固体撮像装置では、解像度を向上させるためにイ
ンターレース走査が行なわれているが1、本発明はイン
ターレース走査の問題点を改善することを目的とする。
Generally, in solid-state imaging devices, interlaced scanning is performed in order to improve resolution1, but the present invention aims to improve the problems of interlaced scanning.

以下インターライン転送方式CODを用いた従来の固体
撮像装置を例にとって従来の欠点を説明する。
The drawbacks of the conventional solid-state imaging device using the interline transfer method COD will be described below as an example.

第1図はインターライン転送方式CODを有する固体撮
像装置の要部を示す。この固体撮像装置の動作は、まず
奇数番目の光電変換素子1,3・・・に蓄積された信号
電荷を転送ゲート6を通して電荷転送素子列6へ転送し
1フイ一ルド分の信号を出力する。次に偶数番口の光電
変換素子2,4・・・に蓄積された信号電荷を電荷転送
素子列6へ転送して次の1フイ一ルド分の信号を出力す
る。
FIG. 1 shows the main parts of a solid-state imaging device having an interline transfer method COD. The operation of this solid-state imaging device is to first transfer the signal charges accumulated in the odd-numbered photoelectric conversion elements 1, 3, etc. to the charge transfer element array 6 through the transfer gate 6, and output a signal for one field. . Next, the signal charges accumulated in the even-numbered photoelectric conversion elements 2, 4, . . . are transferred to the charge transfer element array 6 to output signals for the next one field.

このような従来の固体撮像装置の駆動方法を用いた場合
は第1フイールドと第2フイールドを形成する信号電荷
は、それぞれ奇数番目の光電変換素子1: 3・・・、
偶数番目の光電変換素子2,4・・・に蓄えられていた
信号電荷であり、これらの電荷はたがいに隣接し、かつ
独立であるから解像度の良好な像が得られる。また1個
の光電変換素子に注目すると、2フィールド1度読み出
されるので、信号電荷を積分する時間が1フイールド毎
に読み出す場合の倍になる。すなわち標準テレビ方式(
N T S C方式)に従うならば、1フイールド毎に
読み出す場合は積分時間が16・7ミリ秒であるのに対
して、−に記インターレース走査では33ミリ秒となる
。この様な駆動方法はフレーム蓄積法と呼ばれる。
When such a conventional driving method of a solid-state imaging device is used, the signal charges forming the first field and the second field are the odd-numbered photoelectric conversion elements 1: 3, . . . , respectively.
These are signal charges stored in even-numbered photoelectric conversion elements 2, 4, . . . , and since these charges are adjacent to each other and independent, an image with good resolution can be obtained. Furthermore, when focusing on one photoelectric conversion element, two fields are read out once, so the time required to integrate the signal charges is twice as long as when reading out each field. In other words, the standard television system (
According to the NTS C method, the integration time is 16.7 milliseconds when reading out each field, whereas it is 33 milliseconds in the interlaced scanning described in -. Such a driving method is called a frame accumulation method.

しかし、この様な従来の固体撮像装置の駆動方法には次
の様な欠点がある。
However, such conventional driving methods for solid-state imaging devices have the following drawbacks.

すなわち、積分時間中は信号電荷を積分し続けるので、
被写体か静止体であれば、積分時間は長くてもかまわな
いが、被写体が動体の場合は動く被写体を遅いシャッタ
ースピードで写真撮影する場合に生じる被写体のブレと
同様の現象が生じる。
In other words, since the signal charge continues to be integrated during the integration time,
If the object is a stationary object, the integration time may be long, but if the object is a moving object, a phenomenon similar to the blurring of the object that occurs when photographing a moving object at a slow shutter speed will occur.

この現象は等価残像と呼ばれる。This phenomenon is called equivalent afterimage.

この等価残像を減少させる方法として、フ(−ルド蓄積
法と呼ばれる駆動方法がある。この方法を同じく第1図
を用いて説明すると、まず第1フイールドで光電変換素
子2と1、同じく4と3というように偶数番目の光′電
変換素子の信号電荷とその上の奇数番目の光電変換素子
に蓄積されたイ言号電荷とを混合して読み出し、第2フ
ィー/レドでは光電変換素子の2と3,4と5というよ
うにイt%数番目とその下の奇数番目の光電変換素子に
蓄積された信号電荷を混合して読み出す固体撮像装置の
駆動方法である。
As a method for reducing this equivalent afterimage, there is a driving method called field accumulation method.To explain this method using FIG. 1, first, photoelectric conversion elements 2 and 1 and 4 are 3, the signal charge of the even-numbered photoelectric conversion element and the signal charge accumulated in the odd-numbered photoelectric conversion element above it are mixed and read out, and in the second feed/read, the signal charge of the photoelectric conversion element is read out. This is a driving method of a solid-state imaging device in which signal charges accumulated in the photoelectric conversion elements of the number 2 and 3, 4 and 5, etc. and the odd numbered photoelectric conversion elements below are mixed and read out.

この駆動力法においては、各光電変換素子は1フイール
ドjσに読み出されるので積分時間はフレーム蓄積法の
十分の時間(16・7ミリ秒)になり等価残像は軽減さ
れる。しかし第1フイールドと第2フイールド′を構成
する信号電荷は、同じ光電変換素子に蓄えられた信号電
荷を用い、対として混合される信号電荷を変えるだけな
ので、フレーム蓄積法よりも解像度が劣化した画像しか
得られない問題かある。
In this driving force method, since each photoelectric conversion element is read out in one field jσ, the integration time is a sufficient time (16.7 milliseconds) as in the frame accumulation method, and the equivalent afterimage is reduced. However, the signal charges that make up the first field and the second field' use signal charges stored in the same photoelectric conversion element, and only change the signal charges that are mixed as a pair, so the resolution is worse than that of the frame accumulation method. There is a problem where you can only get images.

以上の様なフィールド蓄積法及びフレーム蓄積法の欠点
を除去すi2iらに従来の固体撮像装置の駆動方法とし
て第1フイールドでは奇数番目の光電変換素子1,3・
・・に蓄積された信号電荷を転送ゲート6を通して電荷
転送部6へ転送した後、光″市変換素イに隣接した過剰
電荷排出ゲート8に電圧を印加することにより偶数番目
の光電変換素子2,4・・・に蓄積されている信号電荷
を過剰電荷υ1出ゲート8に隣接した電荷吸収領域7へ
排出して、次の第2フイールドでは、偶数番目の光電変
換素子2,4・・・の信号電荷を電荷転送部6へ転送し
た後、過剰電荷排出ゲート8に電圧を印加することによ
り、奇数番目の光″市変換素子1,3・・に蓄積されて
いる信号重荷を電荷吸収領域へ排出する駆動方法がある
In order to eliminate the drawbacks of the field accumulation method and the frame accumulation method as described above, i2i et al.
... is transferred to the charge transfer unit 6 through the transfer gate 6, and then a voltage is applied to the excess charge discharge gate 8 adjacent to the photoelectric conversion element 2, thereby converting the signal charge to the even-numbered photoelectric conversion element 2. , 4... are discharged to the charge absorption region 7 adjacent to the excess charge υ1 output gate 8, and in the next second field, the even-numbered photoelectric conversion elements 2, 4... After transferring the signal charge to the charge transfer unit 6, by applying a voltage to the excess charge discharge gate 8, the signal load accumulated in the odd-numbered optical conversion elements 1, 3, etc. is transferred to the charge absorption region. There is a drive method for discharging to.

しかし、この駆動方法では光電変換素子の71j:荷を
電荷吸収領域7へ排出する場合、光電変換素子に電荷が
残存するBBD転送となるため過剰″1L荷排出ゲート
8間の閾値のバラツキの影響がでる。
However, in this driving method, when the charge of the photoelectric conversion element 71j is discharged to the charge absorption region 7, BBD transfer is performed in which charge remains in the photoelectric conversion element. comes out.

このため画像上では閾値′IE圧のバラツキによる固定
パターンが現れ、実用化を図るうえで致命的な欠陥とな
っている。
For this reason, a fixed pattern appears on the image due to variations in the threshold value IE pressure, which is a fatal flaw for practical use.

本発明は、前記従来の欠点を除去するものでありフレー
ム蓄積法の高い解像度を維持するとともにフィールド蓄
積法の低い等価残像を実現し、しかもゲートの閾値の違
いによる固定パターンが生じない固体撮像装置およびそ
の駆動方法を提供するものである。
The present invention eliminates the above-mentioned drawbacks of the conventional solid-state imaging device, which maintains the high resolution of the frame accumulation method, achieves low equivalent afterimages of the field accumulation method, and does not produce fixed patterns due to differences in gate threshold values. The present invention also provides a method for driving the same.

以下本発明の実施例における固体撮像装置およびその駆
動方法を説明する。第2図は本発明の実施例における固
体撮像装置の要部を示す図である。
A solid-state imaging device and a driving method thereof according to an embodiment of the present invention will be described below. FIG. 2 is a diagram showing essential parts of a solid-state imaging device in an embodiment of the present invention.

同装置は、11列状に配列されだ光電変換素子1゜2、
 3. 4・・と、この光電変換素子に蓄積された信号
電荷を転送する電荷転送素子列6と、電荷吸収領域7と
を有し、前記電荷転送素子列6と前記電荷吸収領域7と
の間にゲート電極9を自するものである。なお、2図に
おいて、従来例を示す第1図と同一箇所には同一番号を
付している。同装置の特徴は電荷転送素子列6と電荷吸
収領域7との間にゲート電極9を有することである。
The device consists of 1°2 photoelectric conversion elements arranged in 11 rows.
3. 4..., a charge transfer element array 6 that transfers signal charges accumulated in the photoelectric conversion element, and a charge absorption region 7, and between the charge transfer element array 6 and the charge absorption region 7. This serves as the gate electrode 9. In addition, in FIG. 2, the same parts as in FIG. 1 showing the conventional example are given the same numbers. A feature of this device is that it has a gate electrode 9 between the charge transfer element array 6 and the charge absorption region 7.

同装置の駆動方法を説明すると、まず、奇数番目の光電
変換素子1,3・・・に蓄積された信号電荷を読み°出
して第1フイールドを構成する際、前記奇数番目の光電
変換素子1,3・・・に蓄積された信号電荷を読み吊す
前に、まず偶数番目の光電変換素子2,4・・・に蓄積
された信号電荷を転送ゲート6を通して電荷転送素子列
6へ転送し、電荷転送素子列6へ転送された偶数番目の
光電変換素子2゜4・・・の信号電荷をゲート電極9を
通して電荷吸収−領域7へ排出する。偶数番目の光電変
換素子2゜4・・・に蓄積された信号電荷を読み出して
第2フイールドを構成する際には、偶数番口の光′電変
換素子2,4・・・に蓄積された信号電荷を読み出す前
にまず奇数番目の光電変換素子1,3・・・に蓄積され
た信号電荷を転送ゲート6を通して電荷転送素子列6へ
転送し、電荷転送素子列6へ転送された奇数番目の光電
変換素子1,3・・・の信号電荷をデー1−電極9を通
して電荷吸収領域7へ排出する。
To explain the driving method of the device, first, when reading signal charges accumulated in odd-numbered photoelectric conversion elements 1, 3, . . . to form a first field, the odd-numbered photoelectric conversion elements 1 , 3..., before reading and hanging the signal charges accumulated in the even-numbered photoelectric conversion elements 2, 4..., first transfer the signal charges accumulated in the even-numbered photoelectric conversion elements 2, 4... to the charge transfer element array 6 through the transfer gate 6, The signal charges of the even-numbered photoelectric conversion elements 2 4 . . . transferred to the charge transfer element array 6 are discharged to the charge absorption region 7 through the gate electrode 9 . When reading out the signal charges accumulated in the even-numbered photoelectric conversion elements 2, 4... to form the second field, the signal charges accumulated in the even-numbered photoelectric conversion elements 2, 4... Before reading out signal charges, the signal charges accumulated in the odd-numbered photoelectric conversion elements 1, 3, etc. are first transferred to the charge transfer element array 6 through the transfer gate 6, and the odd-numbered photoelectric conversion elements transferred to the charge transfer element array 6 are The signal charges of the photoelectric conversion elements 1, 3, . . . are discharged to the charge absorption region 7 through the data 1 electrode 9.

この固体撮像装置の駆動方法によると、各光″1F変換
素子1 +  2+  3+  4・・・に蓄積された
信シ3′市荷は1フイールド毎に読み出し、或いは排出
されるので、積分時間は16・7ミリ秒となり、等価残
像はフィールド蓄積法と等しくなる。まだ第1フイール
ドと第2フイールドの構成に用いられる信号電荷は、フ
レーム蓄積法と同じく独立の光電変換素子1. 2. 
3+  4・・・に蓄積された信号電荷を用いるので、
フレーム蓄積法と同じ解像度が得られる。さらに信号電
荷を排出する場合も転送の場合と同じ転送ゲート6を使
うので、転送、排出ゲートの閾値の違いによる固定パタ
ーンは解消される。
According to this driving method of the solid-state imaging device, the signals 3' accumulated in each light 1F conversion element 1 + 2 + 3 + 4... are read out or discharged for each field, so the integration time is The time is 16.7 milliseconds, and the equivalent afterimage is the same as that of the field accumulation method.The signal charges used to configure the first and second fields are still generated by independent photoelectric conversion elements 1. 2. as in the frame accumulation method.
Since the signal charge accumulated in 3+4... is used,
The same resolution as the frame accumulation method can be obtained. Furthermore, since the same transfer gate 6 as in the case of transfer is used when discharging signal charges, the fixed pattern caused by the difference in threshold values of the transfer and discharge gates is eliminated.

寸だ電荷転送素子列6からゲート電極9を通って電荷吸
収領域7への排出は完全転送となるため、BBD転送の
ような閾値の影響はうけない。このだめ閾値のバラツギ
による固定パターンも発生しない。
Since the discharge from the charge transfer element array 6 to the charge absorption region 7 through the gate electrode 9 is a complete transfer, it is not affected by the threshold value as in BBD transfer. A fixed pattern due to variations in the threshold value does not occur.

次に第3図の固体撮像装置および第4図のクロックパル
スのし1を用いて本発明の固体撮像装置およびその駆動
方法をさらに詳細に説明する。第3図は転送素子列を4
相で構成した場合の本発明の実施例における固体撮像装
置の要部を示す、1図図でφ1.φ2.φ3.φ4は電
荷転送素子へ印加するクロックパルス、へ、は光電変換
素子の電荷を電荷転送素子列6へ移すだめ転送ゲート5
に印加されるクロックパルス、φ8は電荷転送素子から
電荷吸収ドレイン7へ電荷を排出するためゲート電極9
に加えられるクロックパルスである。
Next, the solid-state imaging device of the present invention and its driving method will be explained in more detail using the solid-state imaging device of FIG. 3 and the clock pulse chart 1 of FIG. 4. Figure 3 shows four transfer element rows.
1 is a diagram showing the main parts of a solid-state imaging device according to an embodiment of the present invention when configured with phases φ1. φ2. φ3. φ4 is a clock pulse applied to the charge transfer element;
The clock pulse φ8 applied to the gate electrode 9 is used to discharge charges from the charge transfer element to the charge absorption drain 7.
is the clock pulse applied to

同装置の駆動方法を説明すると、捷ず第4図B期間にお
いてφ3とφPTに同時に高い電圧を加えることによっ
て光電変換部2,4・・・に蓄積された信号電荷を電荷
転送素子列6へ転送する。次にへに正電圧を加え、電荷
転送素子の’rtf圧を低くすることによって’+L荷
転送素イ列6の信号′電荷を′llLll載荷域7へ排
出する。その後φ1とφ、Tに高い重圧を加えることに
よって光′電変換素子1,3・・に蓄積された信号″電
荷を電荷転送素子列6へ転送する。第4図のB期間の動
作か終了した後、第4し[C期間のパルスを加えること
により、1(1(+:■転送転送子−1列6内荷を信号
出力として取り出すため電荷転送素子列6内を転送して
いく。
To explain the driving method of this device, a high voltage is simultaneously applied to φ3 and φPT during the period B in FIG. Forward. Next, by applying a positive voltage to the charge transfer element and lowering the rtf pressure of the charge transfer element, the signal charge of the `+L charge transfer element array 6 is discharged to the `llLll loading region 7. Thereafter, by applying a high pressure to φ1, φ, and T, the signal charges accumulated in the photoelectric conversion elements 1, 3, and so on are transferred to the charge transfer element array 6.The operation of period B in FIG. 4 ends. After that, by applying a pulse of the fourth period [C, 1 (1 (+: ■ transfer transfer element - 1 column 6 internal charge) is transferred in the charge transfer element column 6 in order to extract it as a signal output.

第4図のC期間ではまずφ1とφ、Tに同時に高い電圧
を加えることによって光電変換素子1,3・・に蓄積さ
れた信号電荷を電荷転送素子列6へ転送する。次にφ8
に高い電圧を加えることによって電荷転送素子列6の信
号電荷を電荷吸収領域7へ排出する。その後φ1とφ、
Tに高い電圧を加えることによって光電変換素子2,4
・・・に蓄積された信号電荷を電荷転送素子列6へ転送
する。第4図のC期間の動作が1終した後、第4図のE
期間及び第4図のA期間を加えることによって、電荷は
電荷転送素子列6内を転送されて、読み出される。
In period C in FIG. 4, signal charges accumulated in the photoelectric conversion elements 1, 3, . . . are transferred to the charge transfer element array 6 by simultaneously applying a high voltage to φ1, φ, and T. Next φ8
By applying a high voltage to the charge transfer element array 6, the signal charges in the charge transfer element array 6 are discharged to the charge absorption region 7. After that, φ1 and φ,
By applying a high voltage to T, the photoelectric conversion elements 2 and 4
... is transferred to the charge transfer element array 6. After the operation of period C in FIG. 4 is completed, E in FIG.
By adding the period and period A in FIG. 4, charges are transferred within the charge transfer element array 6 and read out.

本実施例においては、飽和信号に対する固定パクーン比
は60 dB以」二で極めて優れた一比が実現できた。
In this example, the fixed Pakuun ratio for the saturated signal was 60 dB or more, and an extremely excellent ratio could be achieved.

以上説明した本発明の固体撮像装置およびその駆動方法
によればフレーム蓄積法の高い解像度を維持するととも
に、フィールド蓄積法の低い等価残像を実現し、しかも
ゲート?(¥棒のf41値のバラツキによる影響が現れ
ないため従来のような固定パターンを解消するもので、
工業上の利用価(tnが大きい。
According to the solid-state imaging device and its driving method of the present invention described above, it is possible to maintain the high resolution of the frame accumulation method and achieve low equivalent afterimages of the field accumulation method. (This eliminates the conventional fixed pattern as there is no effect of fluctuations in the f41 value of the ¥ bar.
Industrial utility value (tn is large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の固体撮像装置の要部拡大図、第2図は本
発明の実施例における固体撮像装置の留部拡大図、第3
図は本発明の実施例における固体撮像装置をさらに具体
的に説明するだめの4相電荷転送素イ列を用いた固体撮
像装置の要部拡大図、第4図は第3図の固体撮像装置を
駆動するためのクロックパルヌを示す図である。 1.3・・・・・奇数番目の光電変換素子、2,4・・
・・・偶数番口の光電変換素子、6・・・・・転送ゲー
ト、6・・・・・・転送素子列、7・・・・・・電荷級
数領域、8・・・・・・電荷排出ゲート、9・・・・・
ゲート電極、1o・・・・・・チャンネルストッパー。 代理人の氏名 −11f理土 中 尾 敏 男 ほか1
名第1図 第2図 第3図 第4図
FIG. 1 is an enlarged view of main parts of a conventional solid-state imaging device, FIG. 2 is an enlarged view of a retaining part of a solid-state imaging device according to an embodiment of the present invention, and FIG.
The figure is an enlarged view of the main parts of a solid-state image sensor using an array of four-phase charge transfer elements to further specifically explain the solid-state image sensor according to the embodiment of the present invention, and FIG. 4 is an enlarged view of the solid-state image sensor shown in FIG. 3. FIG. 1.3...Odd numbered photoelectric conversion element, 2,4...
... Even numbered photoelectric conversion elements, 6 ... Transfer gate, 6 ... Transfer element row, 7 ... Charge series region, 8 ... Charge Discharge gate, 9...
Gate electrode, 1o...Channel stopper. Name of agent: -11F Rido Toshio Nakao and 1 other person
Figure 1 Figure 2 Figure 3 Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)行列状に配列された光電変換素子と、前記光電変
換素子に蓄積された信号電荷を転送する電荷転送素子列
と、電荷吸収領域とを有し、前記電荷転送素子列と前記
電荷吸収領域との間にゲート電極が設けられたことを特
徴とする固体撮像装置。
(1) comprising photoelectric conversion elements arranged in a matrix, a charge transfer element row that transfers signal charges accumulated in the photoelectric conversion elements, and a charge absorption region, the charge transfer element row and the charge absorption region; A solid-state imaging device characterized in that a gate electrode is provided between the regions.
(2)行列状に配列された光電変換素子と、前記光電変
換素子に蓄積された信号電荷を転送する電荷転送11列
と、電荷吸収領域とを有し、前記電荷転送素子列と前記
電荷吸収領域との間にゲート電極が設けられた固体撮像
装置の駆動方法において、前記光電変換素子のうち1行
とびの行の光電変換素子からなる第1の光電変換素子群
に蓄積された信号電荷を、前記電荷転送素子に移し、さ
らに前記ゲート電極を開いて前記電荷吸収領域へ排出し
た後、前記第1の光電変換素子群とは異なる行の光電変
換素子からなる第2の光電変換素子群に蓄積された信号
電荷を読み出し、その後、前記第2の光電変換素子群に
蓄積された信号電荷を、前記電荷転送素子列に移し、引
き続いて前記ゲート電極を開いてnIJ記電荷吸収領域
へ排出した後、前記第1の光電変換素子群に蓄積された
信号電荷の読み出しをおこなうことを特徴とする固体撮
像装置の駆動方法。
(2) comprising photoelectric conversion elements arranged in a matrix, 11 charge transfer columns for transferring signal charges accumulated in the photoelectric conversion elements, and a charge absorption region, the charge transfer element columns and the charge absorption region; In a method for driving a solid-state imaging device in which a gate electrode is provided between a region and a region, a signal charge accumulated in a first photoelectric conversion element group consisting of photoelectric conversion elements in every row of the photoelectric conversion elements is , transferred to the charge transfer element, further opened the gate electrode to discharge the charge to the charge absorption region, and then transferred to a second photoelectric conversion element group consisting of photoelectric conversion elements in a different row from the first photoelectric conversion element group. The accumulated signal charge was read out, and then the signal charge accumulated in the second photoelectric conversion element group was transferred to the charge transfer element array, and subsequently the gate electrode was opened and discharged to the nIJ charge absorption region. A method for driving a solid-state imaging device, comprising: thereafter reading signal charges accumulated in the first photoelectric conversion element group.
JP57070045A 1982-04-26 1982-04-26 Solid-state image pickup device and its drive method Pending JPS58187081A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57070045A JPS58187081A (en) 1982-04-26 1982-04-26 Solid-state image pickup device and its drive method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57070045A JPS58187081A (en) 1982-04-26 1982-04-26 Solid-state image pickup device and its drive method

Publications (1)

Publication Number Publication Date
JPS58187081A true JPS58187081A (en) 1983-11-01

Family

ID=13420205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57070045A Pending JPS58187081A (en) 1982-04-26 1982-04-26 Solid-state image pickup device and its drive method

Country Status (1)

Country Link
JP (1) JPS58187081A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58212167A (en) * 1982-06-03 1983-12-09 Nippon Kogaku Kk <Nikon> Interline transfer charge coupled element
JPS59154881A (en) * 1983-02-23 1984-09-03 Matsushita Electronics Corp Driving method of solid-state image pickup device
JPS6234471A (en) * 1985-08-06 1987-02-14 Nec Corp Driving method for solid-state image pickup device
JPS6294084A (en) * 1985-10-18 1987-04-30 Nec Corp Driving method for solid-state image pickup device
JPS63109673A (en) * 1986-10-27 1988-05-14 Nec Corp Charge coupled image pickup device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58212167A (en) * 1982-06-03 1983-12-09 Nippon Kogaku Kk <Nikon> Interline transfer charge coupled element
JPS59154881A (en) * 1983-02-23 1984-09-03 Matsushita Electronics Corp Driving method of solid-state image pickup device
JPS6234471A (en) * 1985-08-06 1987-02-14 Nec Corp Driving method for solid-state image pickup device
JPS6294084A (en) * 1985-10-18 1987-04-30 Nec Corp Driving method for solid-state image pickup device
JPS63109673A (en) * 1986-10-27 1988-05-14 Nec Corp Charge coupled image pickup device

Similar Documents

Publication Publication Date Title
US5539536A (en) Linear imaging sensor having improved charged transfer circuitry
JPH0118629B2 (en)
JPH0416949B2 (en)
JPH035673B2 (en)
JPS58187081A (en) Solid-state image pickup device and its drive method
EP0896468A2 (en) Solid state imaging device and method for driving the same
JPH0377715B2 (en)
JPS6258593B2 (en)
JPS6240910B2 (en)
JPS59154882A (en) Solid-state image pickup device
JP2634804B2 (en) Signal reading method for solid-state imaging device
JPH01303975A (en) Solid-state image pickup device
JPH06197282A (en) Solid-state image pickup device
JPS6046594B2 (en) How to drive a charge transfer image sensor
JPS63105578A (en) Solid-state image pickup element and its driving method
JPS61198981A (en) Image pickup device
JP2004200310A (en) Method of driving charge transfer element and solid state imaging device
JPH03171771A (en) Solid state image sensing device and its driving
JPH01125073A (en) Solid-state image pickup device
JPS59181780A (en) Solid-state image pickup device
JPS59212077A (en) Driving method of solid-state image pickup device
JPS63316576A (en) Solid-state image pickup element and its driving system
JPS6159037B2 (en)
JPH02306784A (en) Solid-state image pickup device
JPH04123583A (en) Drive method for solid-state image pickup device