JPS60144962A - Monolithic integrated circuit - Google Patents

Monolithic integrated circuit

Info

Publication number
JPS60144962A
JPS60144962A JP59001611A JP161184A JPS60144962A JP S60144962 A JPS60144962 A JP S60144962A JP 59001611 A JP59001611 A JP 59001611A JP 161184 A JP161184 A JP 161184A JP S60144962 A JPS60144962 A JP S60144962A
Authority
JP
Japan
Prior art keywords
type
region
collector
transistor
npn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59001611A
Other languages
Japanese (ja)
Inventor
Hiroshi Nakashiba
中柴 洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP59001611A priority Critical patent/JPS60144962A/en
Publication of JPS60144962A publication Critical patent/JPS60144962A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/082Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including bipolar components only
    • H01L27/0823Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including bipolar components only including vertical bipolar transistors only
    • H01L27/0826Combination of vertical complementary transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Element Separation (AREA)
  • Bipolar Integrated Circuits (AREA)

Abstract

PURPOSE:To make both N-P-N and P-N-P transistors having high performance coexist by gradually increasing impurity concentration on the collector side in the vicinity of a collector-base junction in the N-P-N transistor toward the direction of a substrate surface. CONSTITUTION:An N-P-N transistor (TR) is constituted by an N type collector region 304 formed to a P type substrate 301, a P type base region 305 and an N type collector region 306. A high-concentration N type region 309 is shaped with the object of reducing resistance parasitized to a collector electrode and a high-concentration P type region 311 with the object of reducing resistance parasitized to a base electrode respectively. On the other hand, a P-N-P TR is constituted by a collector region formed to the substrate 301, an N type base region 307 and a P type emitter region. A high-concentration P type region 312 is shaped to a collector electrode section and a high-concenstration N type region 310 to a base electrode section respectively with the object of reducing parasitic resistance. Accordingly, performance is improved in each TR, and both N-P-N and P-N-P TRs having high performance can be formed on the same substrate.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明はPNP型とNPN型の2種類のバイポーラトラ
ンジスタが共存しているモノシリツク集積回路に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to a monolithic integrated circuit in which two types of bipolar transistors, PNP type and NPN type, coexist.

〔従来技術〕[Prior art]

NPN )ランジスタにおけるベース領域内の小数キャ
リアの電気移動度が、PNPトランジスタにおけるそれ
よpも大きい(10/cr/lの不純物義度において約
2.5倍)が故に、NPNトランジスタの高性能化は、
PNP)ランジスタよりも容易であるとされている。従
ってバイポーラ型のモノリシック集積回路(ICと記す
)のプロセス、構造の開発はNPN)ランジスタの高性
能化を主眼としてなされてきた。一方PNP )ランジ
スタは全く用いないか、または積極的に使用するにして
も、高性能NPNトランジスタの形成に伴って自然に作
シ込まれるものを使うことが多かった。
The electrical mobility of minority carriers in the base region of an NPN transistor is much higher than that of a PNP transistor (approximately 2.5 times at an impurity level of 10/cr/l), which makes it possible to improve the performance of an NPN transistor. teeth,
PNP) is said to be easier than a transistor. Therefore, the development of processes and structures for bipolar type monolithic integrated circuits (hereinafter referred to as IC) has focused on improving the performance of NPN (NPN) transistors. On the other hand, PNP transistors were not used at all, or even if they were actively used, they were often ones that were naturally produced along with the formation of high-performance NPN transistors.

第1図に酸化物絶縁分離法を用いて作られた高性能NP
Nト9ンジスタと、その形成に伴って同時に作り込まれ
たPNPトランジスタを有する従来例のICの断面図を
示す。第1図においてNPNトランジスタはp型基板1
01上に形成された高濃度n型埋込み領域102と、周
弓をシリコン酸化層103によって囲まれたn型エピタ
キシャル領域104からなる。コレクタ領域、及びIC
表面から順次拡散法またはイオンインプランテーション
法によって形成されたp型ベース領域105とn型エミ
ッタ領域106によってその基本が構成されている。一
方PNP トランジスタはp型基板101eコレクタ、
n型エピタキンヤル領域107’t−ベース、NPNト
ランジスタのベース領域と同時に形成されたp型領域1
08をエミッタとして構成される。更に、電極に寄生す
る抵抗値を小さくする為にNPNトランジスタのコレク
タ及びPNP )ランジスタのベースの各電極の直下に
は高濃度n型領域109.110が、NPNトランジス
タのベース及びPNP )ランジスタのコレクタの各電
極の直下には高濃度p型領域111゜112が各々形成
されている。NPN)う/ジスタ、PNPトランジスタ
の各電極としては、IC表面に延在する絶縁膜113に
設けら訃た開口部を介し金属またはポリシリコン等の導
電体114が付着される。第1図に示した構造において
はn型エピタキシャルの濃度、p型領域105,108
の拡散プロファイル及びn型領域106の拡散プロファ
イル等は全てNPNトランジスタのhFE rfT+耐
圧等を最適化するように設定される。例えば高いftを
得る為にはベース長を短くシ、ベース領域の拡散フロフ
ァイルをコレクターベース接合(以下CB接合と記す)
からエミッターベース接合(以下EB接合と記す)に向
って不純物濃゛度が大きくなるように作り、且つエミッ
タの不純物濃度勾配もEB接合から表面に向って急峻に
大きくなるよう作られる。一方PNP )ランジスタに
関してはn型エピタキシャル領域107がベース領域と
なる。
Figure 1 shows high-performance NPs made using the oxide isolation method.
1 is a cross-sectional view of a conventional IC having an N transistor and a PNP transistor formed at the same time as the N transistor. In FIG. 1, the NPN transistor has a p-type substrate 1
01, and an n-type epitaxial region 104 whose periphery is surrounded by a silicon oxide layer 103. Collector area and IC
The basic configuration is a p-type base region 105 and an n-type emitter region 106, which are sequentially formed from the surface by a diffusion method or an ion implantation method. On the other hand, the PNP transistor has a p-type substrate 101e collector,
N-type epitaxial region 107't-base, p-type region 1 formed simultaneously with base region of NPN transistor
08 as an emitter. Furthermore, in order to reduce the resistance value parasitic to the electrodes, high concentration n-type regions 109 and 110 are provided directly under each electrode of the collector of the NPN transistor and the base of the PNP transistor. Highly doped p-type regions 111 and 112 are formed directly under each electrode. As each electrode of the NPN transistor and the PNP transistor, a conductor 114 such as metal or polysilicon is attached through an opening formed in an insulating film 113 extending over the IC surface. In the structure shown in FIG.
The diffusion profile of the n-type region 106, the diffusion profile of the n-type region 106, etc. are all set to optimize the hFE rfT+ breakdown voltage, etc. of the NPN transistor. For example, in order to obtain a high ft, the base length should be shortened, and the diffusion flow profile in the base region should be changed to collector base junction (hereinafter referred to as CB junction).
The impurity concentration is made to increase from the EB junction toward the emitter base junction (hereinafter referred to as EB junction), and the impurity concentration gradient of the emitter is also made to increase steeply from the EB junction toward the surface. On the other hand, for the PNP transistor, the n-type epitaxial region 107 becomes the base region.

従って、ベース長を安定して短くすることは困難である
し、ベース領域に濃度勾配を持たせることも出来ない為
に高い7Tを得ることは望めない。
Therefore, it is difficult to stably shorten the base length, and it is also impossible to create a concentration gradient in the base region, so it is not possible to obtain a high 7T.

例えばn型エピタキシャル層の厚さ1μm 、 NPN
トランジスタのCB接合の深さが0.2μm、PNPト
ランジスタのエミッタの深さが同じ<0.2μm程度の
第1図に示すIC構造において、NPNトランジスタの
fTとして数G Hzを得ることは可能であるが、PN
P)ランジスタのそれは大きくとも数十MH2Lか得ら
れない。
For example, the thickness of the n-type epitaxial layer is 1 μm, NPN
In the IC structure shown in Figure 1, where the depth of the CB junction of the transistor is 0.2 μm and the depth of the emitter of the PNP transistor is about <0.2 μm, it is possible to obtain an fT of several GHz for the NPN transistor. Yes, but PN
P) For transistors, at most several tens of MH2L can be obtained.

とζろで近年、デジタルIC,リニアICの何れにおい
ても、高性能NPN)tンジスタと高性能PNP)ラン
ジスタを一緒に作り込むことが、要求されつつある。第
2図に昭和56年特許願141901号に提示されてい
るデジタル回路を、高性能NPN )ランジスメと共に
高性能PNP トランジスタを組み込むことが有利な場
合の例としての回路図を示す。第2図においてコレクタ
負荷抵抗几1.几2及び信号(図中IN)入力NPN)
ランジスタQ1 、リファレンス(図中Vf’L)入力
トランジスタQ1と定電流源工1は電源Vl (!: 
V*の間に3〜5■を加えられCML型ゲートを構成す
る。トランジスタQ3及びダイオードDl、抵抗几s、
PNPトランジスタQ4は外部負荷Csを駆動する出力
バッファーである。通常第2図に示される回路を基本ゲ
ートとして作られた回路ブロック多数個互いに接続され
て大規模デジタルLSIが構成される。その際第2図に
示すCsは次段回路ブロックの入力容量とブロック間配
線の寄生容量の和である。大規模デジタルLSIにおい
てはトランジスタ、抵抗等の寄生容量に比較し容量Cs
が大きくなり、この容量Csの充放電のスピードがほぼ
回路のスピードを決定する。
In recent years, there has been a growing demand for both digital ICs and linear ICs to incorporate high-performance NPN) transistors and high-performance PNP) transistors together. FIG. 2 shows a circuit diagram as an example where it would be advantageous to incorporate a high performance PNP transistor with a high performance NPN transistor in the digital circuit presented in the 1980 Patent Application No. 141901. In Figure 2, the collector load resistance 1.几2 and signal (IN in the figure) input NPN)
The transistor Q1, the reference (Vf'L in the figure) input transistor Q1 and the constant current source 1 are the power supply Vl (!:
3 to 5 cm is added between V* to form a CML type gate. Transistor Q3, diode Dl, resistor s,
PNP transistor Q4 is an output buffer that drives external load Cs. Usually, a large-scale digital LSI is constructed by connecting together a large number of circuit blocks made using the circuit shown in FIG. 2 as a basic gate. At this time, Cs shown in FIG. 2 is the sum of the input capacitance of the next stage circuit block and the parasitic capacitance of the inter-block wiring. In large-scale digital LSIs, the capacitance Cs is smaller than the parasitic capacitance of transistors, resistors, etc.
becomes large, and the speed of charging and discharging this capacitance Cs almost determines the speed of the circuit.

該回路はPNP )ランジスタにNPN トランジスタ
に匹敵する性能を持たせた場合、通常のエミッタ7オロ
ワーに比較し、容量Osの放電時間を大幅に短縮するこ
とを可能にする特徴を有しているO 〔発明の目的〕 本発明の目的は同−IC上に高性能のPNP トランジ
スタと高性能NPN)ランジスタを共存させることを可
能にするモノリシック集積回路を芸供することにある。
The circuit has a characteristic that makes it possible to significantly shorten the discharge time of the capacitance Os when compared to a normal emitter 7 lowerer when a PNP transistor has a performance comparable to an NPN transistor. [Object of the Invention] An object of the present invention is to provide a monolithic integrated circuit that makes it possible to coexist high-performance PNP transistors and high-performance NPN transistors on the same IC.

〔発明の構成〕[Structure of the invention]

本発明のモノリシック集積回路は、同一半導体基板表面
に、縦型PNPトランジスタと縦型NPNトランジスタ
がそれぞれ複数個形成されたモノリシック集積回路にお
いて、前記PNP )ランジスタと前記NPN)ランジ
スタの少なくとも何れかのトランジスタのコレクターペ
ース接合近傍のコレクタ側不純物濃度が半導体基板表面
方向に次第に大きくなることにより構成される。
The monolithic integrated circuit of the present invention is a monolithic integrated circuit in which a plurality of vertical PNP transistors and a plurality of vertical NPN transistors are formed on the surface of the same semiconductor substrate, in which at least one of the PNP transistor and the NPN transistor is formed. The impurity concentration on the collector side near the collector paste junction gradually increases toward the surface of the semiconductor substrate.

〔実施例の説明〕[Explanation of Examples]

以下本発明の実施例について、図面を参照して説明する
Embodiments of the present invention will be described below with reference to the drawings.

第3図は本発明の一実施例の断面図である。第3図にお
いては、p型基板をPNPトランジスタのコレクタとし
て使用した場合について示す。
FIG. 3 is a sectional view of one embodiment of the present invention. FIG. 3 shows a case where a p-type substrate is used as a collector of a PNP transistor.

第3図に示すように、NPNトランジスタはp型基板3
01に順次拡散法又はイオンインプランテーション法に
よシ形成されたn型コレクタ領域3041p型づ−ス領
域305.n型エミッタ領域306によ多構成されてい
る。更に、コレクタ電極に寄生する抵抗を減らす目的で
高濃度n型領域309が、ペース電極に寄生する抵抗を
減らす目的で高濃度p型領域311が拡散法またはイオ
ンインプランテーション法によって形成されている。
As shown in FIG. 3, the NPN transistor has a p-type substrate 3
n-type collector region 3041 and p-type collector region 305.01 sequentially formed by diffusion method or ion implantation method. The n-type emitter region 306 has a multilayer structure. Furthermore, a highly doped n-type region 309 is formed for the purpose of reducing the parasitic resistance of the collector electrode, and a highly doped p-type region 311 is formed for the purpose of reducing the parasitic resistance of the pace electrode by a diffusion method or an ion implantation method.

一方PNP )ランジスタはp型基板をコレクタ領域、
拡散法またはイオンインプラチ−ジョン法によって順次
形成されたn型ペース領域307゜p型エミッタ領域3
08により構成される。更にコレクタ電極部には高濃度
ml領域312がペース電極部には高濃度n型領域31
0が各々寄生抵抗を小さくする目的で形成される。PN
P 、NPNトランジスタの絶縁分離はシリコン酸化層
30・3によって行なわれ°Cいること、各トランジス
タの電極としてはIC表面に延在する絶縁膜313に設
けられた開孔部を介して金属またはポリシリコン等の導
電体314が付着されていること等は第1図に示した従
来例と同様である。
On the other hand, a PNP transistor has a p-type substrate as a collector region,
N-type space region 307°p-type emitter region 3 sequentially formed by diffusion method or ion implantation method
08. Further, a high concentration ml region 312 is provided in the collector electrode portion, and a high concentration n-type region 31 is provided in the pace electrode portion.
0 is formed for the purpose of reducing parasitic resistance. P.N.
The insulation isolation of the P and NPN transistors is performed by the silicon oxide layer 30.3, and the electrodes of each transistor are made of metal or polyester through the openings provided in the insulating film 313 extending over the IC surface. The fact that a conductor 314 such as silicon is attached is the same as in the conventional example shown in FIG.

本実施例に於ては、NPN)ランジスタのコレクターペ
ース接合近傍のコレクタ側不純物濃度が半導体基板表面
方向に次第に大きくなるよう構成されているため、NP
Nトランジスタのn型コレクタ領域304+p型ペース
領域3051n型エミツタ領域306の形成及びi’N
P)ランジスタのn型ペース領域307+p型エミツタ
領域308は基板表面からの拡散により形成することが
でき各々のトランジスタにおいて高性能化が計れるよう
最適化が出来るようになる。例えばNPNトランジスタ
においてコレクタと基板の接合。
In this embodiment, since the impurity concentration on the collector side near the collector paste junction of the NPN transistor is configured to gradually increase toward the surface of the semiconductor substrate, the NPN transistor
Formation of n-type collector region 304+p-type space region 3051 and n-type emitter region 306 of N transistor and i'N
P) The n-type space region 307+p-type emitter region 308 of the transistor can be formed by diffusion from the substrate surface, making it possible to optimize each transistor to achieve high performance. For example, the junction between the collector and the substrate in an NPN transistor.

CB接合、EB接合を表面から各4μm、1μm。The CB junction and EB junction are 4 μm and 1 μm from the surface, respectively.

0.6μmとして1.5GHz程度のfTが可能な場合
に、PNP)ランジスタにおいてそのCB接合。
If fT of about 1.5 GHz is possible at 0.6 μm, the CB junction in a PNP transistor.

HB接合をNPNと同程度以下の深さに設定することに
より500MHz程度を得ることが出来る。
Approximately 500 MHz can be obtained by setting the HB junction to a depth equal to or less than that of the NPN.

第4図に本発明の第2の実施例としてp型基板上にni
lのエピタキシャル層を積み、高性能NPN及びPNP
トランジスタを作成した場合のICの断面図を示す。第
4図に示すように、NPNトランジスタはp型基板40
1上に形成された高濃度n型埋込み領域402とn型エ
ピタキシャル領域404からなるコレクタ領域、及びI
C表面から順次拡散法またはイオンインプランテーショ
ン法によって形成されたp型ベース領域405とn型エ
ミッタ領域406によって構成されている。
FIG. 4 shows a second embodiment of the present invention in which ni is deposited on a p-type substrate.
High performance NPN and PNP by stacking 1 epitaxial layer
A cross-sectional view of an IC when a transistor is created is shown. As shown in FIG. 4, the NPN transistor has a p-type substrate 40
a collector region consisting of a heavily doped n-type buried region 402 and an n-type epitaxial region 404 formed on I;
It is composed of a p-type base region 405 and an n-type emitter region 406, which are sequentially formed from the C surface by a diffusion method or an ion implantation method.

一方PNP)ランジスタはコレクターペース接合近傍の
コレクタ側不純物濃度を基板表面方向に次第に大きくす
る構造としたためIC表面から順次拡散法またはイオン
インプラチージョン法によって形成することができp型
コレクタ領域415゜n型ペース領域407 、p型エ
ミッタ領域408は高性能化のための最適化が可能にな
った。更に第3図に示した第1の実施例と同様にNPN
トランジスタのコレクタ電極及びPNPトランジスタの
ベース電極には高濃度n型領域409.410がst7
’cNPN)ランジスタのベース電極及びPNP)ラン
ジスタのコレクタ電極には高濃度拡散領域411.41
2が形成されている。PNP 。
On the other hand, the PNP) transistor has a structure in which the impurity concentration on the collector side near the collector paste junction gradually increases toward the substrate surface, so it can be formed sequentially from the IC surface by a diffusion method or an ion implantation method. The type pace region 407 and the p-type emitter region 408 can now be optimized for higher performance. Furthermore, as in the first embodiment shown in FIG.
The collector electrode of the transistor and the base electrode of the PNP transistor have high concentration n-type regions 409 and 410 st7.
'cNPN) The base electrode of the transistor and the collector electrode of the PNP) transistor have high concentration diffusion regions 411.41
2 is formed. PNP.

NPNトランジスタの絶縁分離がシリコン酸化層403
によって行なわれていること、各トランジスタの電極と
し°CはIC表面に延在する絶縁膜第3図で示した第1
の実施例と同様である。第4図に示す本実施例ではPN
Pト?ンジスタのp型コレクタ領域の直下にn型埋込み
領域416を置きコレクタ寄生抵抗を低くしている。あ
る程度コレクタ寄生抵抗が高くても良い場合にはこのp
型板と同じで良い場合であるが、異なる電位で動作させ
る場合にはn型埋込み領域416の下にn型埋込み領域
を包含する形でn型埋込み領域を置く構造をとることが
出来る。従って本実施例による構造をとることにより第
1の実施例と同様にNPN 、PNP両方のトランジス
タのベース領域の幅。
Insulation isolation of NPN transistor is silicon oxide layer 403
What is being done is that the electrodes of each transistor are the insulating film extending over the IC surface.
This is similar to the embodiment. In this embodiment shown in FIG.
P? An n-type buried region 416 is placed directly under the p-type collector region of the transistor to lower the collector parasitic resistance. If the collector parasitic resistance can be high to some extent, this p
In this case, the same as the template may be used, but in the case of operating at a different potential, a structure can be adopted in which an n-type buried region is placed below the n-type buried region 416 so as to include the n-type buried region. Therefore, by adopting the structure of this embodiment, the widths of the base regions of both NPN and PNP transistors can be reduced similarly to the first embodiment.

不純物濃度勾配等を適切に制御出来るとともに、コレク
タ寄生抵抗を低くする等の高性能化も可能となる。
It is possible to appropriately control the impurity concentration gradient, etc., and it is also possible to improve performance by lowering the collector parasitic resistance.

以上2つの実施例に示したように、本発明によるICは
同一半導体基板に縦型PNPトランジスタと縦型のNP
N トランジスタがそれぞれ複数個形成され、前記PN
Pトランジスタと前記NPNトランジスタの少なくとも
何れかのトランジスタのコレクターベース接合近傍のコ
レクタ側の不純物濃度が、半導体基板表面方向に次第に
大きくなっている構造を有するので、PNP又はNPN
トランジスタのコレクタ領域をIC表面から拡散又はイ
オンインプランテーションにより形成することが可能と
なる。従って均一な不純物濃度分布を有するp属領域の
一部をPNP トランジスタのコレクタとし、該p属領
域の一部に拡散又はイオンインプランテーションによっ
て作成されたn型領域をNPN トランジスタのコレク
タとすることができる。
As shown in the above two embodiments, the IC according to the present invention has a vertical PNP transistor and a vertical NP transistor on the same semiconductor substrate.
A plurality of N transistors are formed respectively, and the PN
At least one of the P transistor and the NPN transistor has a structure in which the impurity concentration on the collector side near the collector base junction gradually increases in the direction of the surface of the semiconductor substrate.
The collector region of the transistor can be formed from the IC surface by diffusion or ion implantation. Therefore, it is possible to use a part of the p-type region having a uniform impurity concentration distribution as the collector of the PNP transistor, and to use an n-type region created in the part of the p-type region by diffusion or ion implantation as the collector of the NPN transistor. can.

また逆に均一な不純1濃度を有するn型領域の一部をN
PNI−ランジスタのコレクタとし、該n型領域に形成
されたp属領域をPNP )ランジスタのコレクタとす
ることができる。その結果PNP及びNPN)ランジス
タの何れに於ても、ベース領域及びエミッタ領域をIC
表面からの拡散又はイオンインプランテーションにより
形成することが可能になり、高性能化を目的とし、ペー
ス長。
Conversely, a part of the n-type region with a uniform concentration of impurity 1 is
The p-type region formed in the n-type region can be used as the collector of a PNP transistor. As a result, in both PNP and NPN transistors, the base region and emitter region are
It can be formed by diffusion from the surface or ion implantation, and is designed to improve performance and increase pace length.

ベース領域不純物等をコントロールすることができる。Base region impurities etc. can be controlled.

なお、以上の実施例はバイポーラ型ICに本発明を適用
した場合について述べたが、バイポーラトランジスタと
MOS)ランジスタが混在しているIC等にも充分応用
出来ることは明らかである。
Although the above embodiments have been described with reference to the case where the present invention is applied to a bipolar type IC, it is clear that the present invention can also be sufficiently applied to an IC in which bipolar transistors and MOS transistors are mixed.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、同一の半導体基
板に高性能のPNP )ジンジスタと高性能のNPN 
)ランジスタを共存させることができ、最近要望されて
いる高性能の大規模デジタルL8工等の形成に効果を発
揮することができる。
As explained above, according to the present invention, a high-performance PNP) gingister and a high-performance NPN can be formed on the same semiconductor substrate.
) It is possible to coexist with transistors, and it can be effective in forming high-performance, large-scale digital L8 construction, etc., which are currently in demand.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はNPN )ランジスタとPNP l−ランジス
タを共存させた従来のICの断面図、第2図は高性能N
PNトランジスタと高性能PNP)ランジスタの両方を
用い効果を発揮する回路例の回路図、第3図、第4図は
本発明の実施例の断面図である。 101.301.401・・・・・・p型基板、102
゜402・・・・・・高濃度埋込み領域、103,30
3゜403・・・・・・シリコン酸化層、104,40
4・・・・・・n型エピタキシャル領域、304°°°
−n Filコレクタ領域、105.305.405・
・・・・・p型ベース領域、106,306,406・
””’n型エミッタ領域、107.407=°=・・n
型エピタキ/ヤル領域、307・・・・・・n型ベース
領域、108,308゜408・・・・・・p型エミッ
タ領域、109,110゜309.310.409.4
10・−・−・・高濃度n型領域、1111112,3
11.411.412・・・・“高濃度p属領域、11
3,313,413°゛。 °°°絶縁膜、1141314,4i4・・・・・・導
電体、415・・・・”p型コレクタ領域、416・・
・・・・p型埋込み領域s ”1 + Vll・・・・
・・電源、IN・・・・・・入力電圧、■几・・・・・
・リファレンス電圧、R,、几3.几、・・・・・・抵
抗、QI、C2,C3・・・・・・NPN)ランジスタ
、Q、・・・・・・PNP )ランジスタ%D1・・・
・・・ダイオード、C5・・・・・・負荷容量。 粥f図 詰2図 第4図
Figure 1 is a cross-sectional view of a conventional IC in which NPN) transistors and PNP l-
FIGS. 3 and 4 are cross-sectional views of embodiments of the present invention. 101.301.401...P-type substrate, 102
゜402...High concentration buried region, 103,30
3゜403...Silicon oxide layer, 104,40
4...N-type epitaxial region, 304°°°
-n Fil collector area, 105.305.405.
...p-type base region, 106,306,406.
""'n-type emitter region, 107.407=°=...n
Type epitaxial/diameter region, 307...N-type base region, 108,308 degrees 408...P-type emitter region, 109,110 degrees 309.310.409.4
10.--High concentration n-type region, 1111112,3
11.411.412...“high concentration p-genus region, 11
3,313,413°゛. °°°Insulating film, 1141314, 4i4...Conductor, 415..."p-type collector region, 416...
...P-type buried region s"1 + Vll...
・・Power supply, IN・・・・Input voltage, ■几・・・・
・Reference voltage, R, 3.几、・・・Resistance、QI、C2、C3・・・NPN) Transistor、Q、・・・PNP)Transistor %D1...
...Diode, C5...Load capacity. Congee f diagram 2 diagram 4

Claims (3)

【特許請求の範囲】[Claims] (1) 同一半導体基板表面に、縦型PNP l−ラン
ジスタと縦型NPN)ランジスタがそれぞれ複数個形成
されたモノリシック集積回路において、前記PNP ト
ランジスタと前記NPNトランジスタの少なくとも何れ
かのトランジスタのコレクターベース接合近傍のコレク
タ側不純物濃度が、半導体基板表面方向に次第に大きく
なっていることを特徴とするモノリシック集積回路。
(1) In a monolithic integrated circuit in which a plurality of vertical PNP transistors and a plurality of vertical NPN transistors are formed on the same semiconductor substrate surface, a collector base junction of at least one of the PNP transistor and the NPN transistor A monolithic integrated circuit characterized in that the impurity concentration on the collector side in the vicinity gradually increases toward the surface of the semiconductor substrate.
(2)コレクターベース接合近傍のコレクタ側不純物濃
度が半導体基板表面方向に次第に大きくなっているトラ
ンジスタがNPN型トランジスタである特許請求の範囲
第(1)項記載のモノリシック集積回路。
(2) The monolithic integrated circuit according to claim (1), wherein the transistor in which the impurity concentration on the collector side near the collector-base junction gradually increases toward the surface of the semiconductor substrate is an NPN transistor.
(3) コレクターベース接合近傍のコレクタ側不純物
濃度が半導体基板表面方向に次第に大きくなっているト
ランジスタがPNP型トランジスタである特許請求の範
囲第(1)項記載のモノリシック集積回路。
(3) The monolithic integrated circuit according to claim (1), wherein the transistor in which the impurity concentration on the collector side near the collector-base junction gradually increases toward the surface of the semiconductor substrate is a PNP transistor.
JP59001611A 1984-01-09 1984-01-09 Monolithic integrated circuit Pending JPS60144962A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59001611A JPS60144962A (en) 1984-01-09 1984-01-09 Monolithic integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59001611A JPS60144962A (en) 1984-01-09 1984-01-09 Monolithic integrated circuit

Publications (1)

Publication Number Publication Date
JPS60144962A true JPS60144962A (en) 1985-07-31

Family

ID=11506299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59001611A Pending JPS60144962A (en) 1984-01-09 1984-01-09 Monolithic integrated circuit

Country Status (1)

Country Link
JP (1) JPS60144962A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6803634B2 (en) 2001-11-07 2004-10-12 Denso Corporation Stabilization in device characteristics of a bipolar transistor that is included in a semiconductor device with a CMOSFET

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6803634B2 (en) 2001-11-07 2004-10-12 Denso Corporation Stabilization in device characteristics of a bipolar transistor that is included in a semiconductor device with a CMOSFET

Similar Documents

Publication Publication Date Title
JPH06151859A (en) Semiconductor device
JPS60144962A (en) Monolithic integrated circuit
JPH0653510A (en) Terminal part of power stage of monolithic semiconductor device and related manufacturing process
US4197147A (en) Method of manufacturing an integrated circuit including an analog circuit and an I2 L circuit utilizing staged diffusion techniques
US4144106A (en) Manufacture of an I2 device utilizing staged selective diffusion thru a polycrystalline mask
JPS6133261B2 (en)
JPS6081864A (en) Lateral type transistor
JPH04226061A (en) Process for formation of bipolar transistor and jfet transistor
US5258644A (en) Semiconductor device and method of manufacture thereof
EP0347550A2 (en) Process for fabricating isolated vertical and super beta bipolar transistors
JPH02143454A (en) Semiconductor device
JPH05121746A (en) Insulated-gate type field effect transistor
KR970009032B1 (en) Power semiconductor and its manufacturing method
JP2752655B2 (en) Bipolar integrated circuit device
JPS6140140B2 (en)
JP2932076B2 (en) Method for manufacturing semiconductor device
JPH08172100A (en) Semiconductor device
JPH02283070A (en) Semiconductor integrated circuit device using input protecting circuit
JPS5885558A (en) Semi-custom semiconductor device
JPH02189927A (en) Semiconductor device
JPS59130458A (en) Semiconductor integrated circuit
JPS6362376A (en) Bipolar integrated circuit device
JPH02276271A (en) Bipolar cmos semiconductor device and manufacture thereof
JPS58169956A (en) Semiconductor integrated circuit device and manufacture thereof
JPH0222857A (en) Manufacture of semiconductor device