JPS60143666A - Matrix type semiconductor device - Google Patents

Matrix type semiconductor device

Info

Publication number
JPS60143666A
JPS60143666A JP24816283A JP24816283A JPS60143666A JP S60143666 A JPS60143666 A JP S60143666A JP 24816283 A JP24816283 A JP 24816283A JP 24816283 A JP24816283 A JP 24816283A JP S60143666 A JPS60143666 A JP S60143666A
Authority
JP
Japan
Prior art keywords
liquid crystal
matrix type
channel length
soi
grain boundary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24816283A
Other languages
Japanese (ja)
Inventor
Akio Mimura
三村 秋男
Masayuki Obayashi
正幸 大林
Michio Ogami
大上 三千男
Takaya Suzuki
誉也 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24816283A priority Critical patent/JPS60143666A/en
Publication of JPS60143666A publication Critical patent/JPS60143666A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1296Multistep manufacturing methods adapted to increase the uniformity of device parameters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • H01L27/1274Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor
    • H01L27/1285Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor using control of the annealing or irradiation parameters, e.g. using different scanning direction or intensity for different transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes

Abstract

PURPOSE:To obtain the titled device in which a shift register or the like comprises the sufficient high-speed performance by using an SOI substrate by making a channel direction of MOS type elements the direction of a grain boundary of a semiconductor layer substantially. CONSTITUTION:If a crystallization direction of laser is made parallel to a direction of channels in an SOI substrate, an abnormal diffusion layer 7 of impurity is formed along a grain boundary 6 when a source and drain junction 5 is formed. Accordingly, the source and drain junction 5 tends to be shorten and the possible minimum channel length is about 5mum. For MOSFET10 of a matrix type liquid crystal display device, the predetermind switching function for applying a voltage to a liquid crystal 11 and holding it is necessary. The characteristics of the MOSFET fabricated by SOI technique almost satisfy this function. The switching element used for a liquid crystal display element enables the channel length of 3-5mum or above. Namely, the practical and high-speed matrix type semiconductor device fabricated by SOI technique becomes possible by making a direction of the grain boundary parallel to a direction of the channels.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はマ) 11ツクス型半導体装置に係り、特に・
絶縁基板に形成したマ) +1ツクス型半導体装置に係
る。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a
This invention relates to a +1x type semiconductor device formed on an insulating substrate.

〔発明の背景〕[Background of the invention]

絶縁基板上に半導体素子を形成する技術は・S OS(
5ilicon on 5apphive )技術とし
て古くから研究されており、高速性、耐放射線性の優れ
た素子が製造されるに到っている。しかし基板となるサ
ファイアが高価であるため、その使用範囲75!限られ
ている。
The technology for forming semiconductor elements on an insulating substrate is SOS (
It has been studied for a long time as a 5ilicon on 5apphive) technology, and elements with excellent high speed and radiation resistance have been manufactured. However, because the sapphire substrate is expensive, its usage range is 75! limited.

最近SOSに代り得る技術としてS OI(Silic
onon :[n5ulator)技術が検討されてい
る。これはシリコンなどの半導体層を石英板、ガラス板
Recently, SOI (Silicon) is a technology that can replace SOS.
onon: [n5lator) technology is being considered. This is a semiconductor layer such as silicon on a quartz plate or a glass plate.

5i02膜等の絶縁基体の上に形成する技術である。例
えば・石英基板上に多結晶シリコン膜を形成した後に・
レーザー光、抵抗加熱による線状ヒーター・高周波加熱
による線状ヒーター等を走査あるいは移動させることに
より、多結晶シリコン膜を溶融し・再結晶化させる。再
結晶化させることによりシリコン層の粒子径は非常に犬
きくなり、半導体素子を形成した場合、多結晶シリコン
膜に形成した場合より・著しく特性の向上した素子が得
られるようになる。
This is a technique for forming on an insulating substrate such as a 5i02 film. For example, after forming a polycrystalline silicon film on a quartz substrate,
By scanning or moving a laser beam, a linear heater using resistance heating, a linear heater using high frequency heating, etc., the polycrystalline silicon film is melted and recrystallized. By recrystallizing, the grain size of the silicon layer becomes extremely large, and when a semiconductor element is formed, it becomes possible to obtain an element with significantly improved characteristics than when formed on a polycrystalline silicon film.

このように、絶縁基板上に形成したSOI型半導体装置
の応用目的としては、SO8と同じ高速性や耐放射線性
のほか、三次元素子、基板の透明性を利用した光学表示
素子の実現等が考えられている。
In this way, the application purposes of SOI type semiconductor devices formed on insulating substrates include the realization of optical display elements that utilize tertiary elements and the transparency of the substrate, in addition to the same high speed and radiation resistance as SO8. It is considered.

ところで、これらの応用に供するためには、SOIに形
成した素子の特性を十分に認識する必要がある。例えば
SOIで形成したMO8素子のスイッチング特性は・単
結晶シリコンに形成した素子とほぼ同等になってきてい
る。しかしながら・80Iで形成した半導体層の中には
・特有の粒界が存在しており・この粒界が・素子を形成
する場合の異常拡散や・伝導におけるキャリアの散乱を
引き起し、素子の特性を大きく左右する。したがって、
SOIで形成した場合は、このような粒界の性質を十分
解明し、有効に利用することが必要となる。
By the way, in order to use the device for these applications, it is necessary to fully understand the characteristics of the device formed on SOI. For example, the switching characteristics of an MO8 element formed of SOI are becoming almost equal to those of an element formed of single crystal silicon. However, there are unique grain boundaries in the semiconductor layer formed with 80I, and these grain boundaries cause abnormal diffusion when forming devices and scattering of carriers during conduction. It greatly influences the characteristics. therefore,
When forming SOI, it is necessary to fully elucidate the properties of such grain boundaries and use them effectively.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、SOIの特徴を生かした新規なマトリ
ックス型半導体装置を提供する点にある。
An object of the present invention is to provide a novel matrix type semiconductor device that takes advantage of the characteristics of SOI.

具体的には、アクティブマトリックスを構成する素子群
とシフトレジスタを構成するMO8型素子群とを同一基
板に一体化した新規なマトリックス型半導体装置を提供
する点にある。
Specifically, the present invention provides a novel matrix type semiconductor device in which a group of elements constituting an active matrix and a group of MO8 type elements constituting a shift register are integrated on the same substrate.

〔発明の概要〕[Summary of the invention]

本発明はマトリックス型半導体装置の特徴とするところ
は、SOI基板の半導体層の所定の領域にアクティブマ
トリックスを構成する素子群を形成し、他の領域にシフ
トレジスタを構成するMO8型素子群を形成し、かつM
O8型素子群はそのチャンネル方向が実質的に半導体層
の粒界の方向となっている点にある。
The feature of the matrix type semiconductor device of the present invention is that a group of elements constituting an active matrix is formed in a predetermined region of a semiconductor layer of an SOI substrate, and a group of MO8 type elements constituting a shift register is formed in another region. And M
The O8 type device group is characterized in that its channel direction is substantially in the direction of the grain boundaries of the semiconductor layer.

本発明は、発明者らの以下の検討に基づいてなされたも
のである。
The present invention was made based on the following studies by the inventors.

第1図はMOSFET のチャンネル長とリーク電流と
の関係を示したものである。Aは・結晶化の際のレーザ
ーのスキャン方向と平向な方向にキャリアが流れるよう
にチャネルを形成した場合で、Bは、レーザーのスキャ
ン方向と直角にチャンネルを形成した場合である。Bで
はチャンネル長が小さくなってもわずかにリーク雪1流
が増加する程度であるが・Aの場合、チャンネル長が5
μm以下とがると、リーク電流が急増する。
FIG. 1 shows the relationship between MOSFET channel length and leakage current. A is a case in which a channel is formed so that carriers flow in a direction parallel to the laser scanning direction during crystallization, and B is a case in which a channel is formed perpendicular to the laser scanning direction. In case B, even if the channel length becomes smaller, the amount of leaked snow increases slightly, but in case A, the channel length is 5.
When the peak is less than μm, the leakage current increases rapidly.

第2図はチャンネル長と電界効果移動度との関係を示す
。A、Bの定義は第1図と同じであり、チャンネル長が
小さくなる程電界効果移動度は大きくなり、BよりAの
方か大きい点が特徴となっている。
FIG. 2 shows the relationship between channel length and field effect mobility. The definitions of A and B are the same as in FIG. 1, and the smaller the channel length, the greater the field effect mobility, and the characteristic is that A is larger than B.

以上の結果は次のように説明できる。ここでMO8FE
T’を例にとって説明する。第3図は、第1図のAに示
した、レーザーの結晶化方向とチャンネルの方向を平行
にした例である。石英板上に形成したシリコン層1を結
晶化させるため、図中の矢印方向にレーザー光をスキャ
ンする。この時1粒界はスキャン方向に平行に発生する
性質がある。こうして結晶化した後、セルフアライメン
ト法を使い、ソース2.ドレイン3.ゲー)4を形成す
る。nチャンネル型の場合にはリンをイオン注入または
熱拡散で拡散する。このとき、レーザー光のスキャニン
グ方向に走る粒界6に沿って、リンが異常拡散を起し正
常なソース・ドレイン接合5より中側に、異常拡散層7
が形成される。この異常拡散層7が大きい場合は・ソー
ス・ドレイン接合5が短絡しやすくなる。この限界は、
レーザー結晶化の側ではチャンネル長が約5μmであり
・これエリチャンネル長が小さくなると、第1図Aに示
すようにリーク電流が急増することになるO 第4図は、第1図Bに示した、レーザーの結晶化方向と
チャンネルの方向を直角にし食倒である0この場合、チ
ャンネルの方向と直角方向に粒界が走ることに々る。ソ
ース・ドレイン接合5が形成される時、やはり第3図と
同様に粒界6に沿って異常拡散層7が形成される。しか
しこの場合、異常拡散層はチャンネルと直角の方向に延
びるだけであり、実効的なチャンネル長が小さくなるこ
とはほとんどない。したがって、第1図Bに示すように
、チャンネル長が短かくなってもリーク電流が著しく増
すようなことはない。
The above results can be explained as follows. Here MO8FE
This will be explained using T' as an example. FIG. 3 is an example in which the crystallization direction of the laser and the direction of the channel are parallel to each other, as shown in A of FIG. In order to crystallize the silicon layer 1 formed on the quartz plate, a laser beam is scanned in the direction of the arrow in the figure. At this time, one grain boundary has the property of occurring parallel to the scanning direction. After crystallizing in this way, using the self-alignment method, source 2. Drain 3. Game) form 4. In the case of an n-channel type, phosphorus is diffused by ion implantation or thermal diffusion. At this time, phosphorus undergoes abnormal diffusion along the grain boundaries 6 running in the scanning direction of the laser beam, and an abnormal diffusion layer 7 is formed inside the normal source-drain junction 5.
is formed. If the abnormal diffusion layer 7 is large, the source/drain junction 5 is likely to be short-circuited. This limit is
On the laser crystallization side, the channel length is approximately 5 μm, and as the channel length becomes smaller, the leakage current increases rapidly as shown in Figure 1A. Figure 4 is as shown in Figure 1B. In addition, the crystallization direction of the laser and the direction of the channel are perpendicular to each other. In this case, grain boundaries often run in a direction perpendicular to the direction of the channel. When the source/drain junction 5 is formed, an anomalous diffusion layer 7 is also formed along the grain boundaries 6 similarly to FIG. However, in this case, the anomalous diffusion layer only extends in a direction perpendicular to the channel, and the effective channel length is hardly reduced. Therefore, as shown in FIG. 1B, even if the channel length is shortened, the leakage current does not increase significantly.

一方、第2図の結果は次のように説明できる。On the other hand, the results shown in FIG. 2 can be explained as follows.

粒界は結晶欠陥の集合体であり・キャリアの散乱原因と
なる。ところで、第1図A(第3図)のように粒界を位
置させると、ソースから出たキャリアは、粒界のない部
分を走ってドレインに到達することができる。したがっ
て、粒界により走行がさ1fcげられることはない。逆
に第1図B(第4図)のように粒界を形成した場合、キ
ャリアは必ず粒界を通らざるを得なくカリ・散乱されて
電界効果移動度がAより低下することになる。
Grain boundaries are aggregates of crystal defects and cause carrier scattering. By the way, if the grain boundaries are located as shown in FIG. 1A (FIG. 3), carriers emitted from the source can reach the drain by running along the part where there is no grain boundary. Therefore, the running speed is not reduced by 1 fc due to grain boundaries. Conversely, when grain boundaries are formed as shown in FIG. 1B (FIG. 4), carriers are forced to pass through the grain boundaries and are scattered by potash, resulting in a field effect mobility lower than that in A.

以上の結果から、正常な特性は、粒界との関係で決定さ
れることになる。すなわち、レーザーアニールによる結
晶化法の場合では、Aの方法で得られる最小のチャンネ
ル長は約5μmとなる。したがってVLSI等には無理
があり、さらに微細化するにはBの方法を採用すること
が必要となる。
From the above results, normal properties are determined by the relationship with grain boundaries. That is, in the case of the crystallization method using laser annealing, the minimum channel length obtained by method A is about 5 μm. Therefore, it is unreasonable for VLSI etc., and it is necessary to adopt method B for further miniaturization.

しかしながらこの場合は電界効果移動度が小さくなるの
で、Aの場合より素子のスピードは低下することになる
However, in this case, the field effect mobility becomes smaller, so the speed of the element will be lower than in case A.

以上ではレーザー光による結晶化法と素子の特性との関
係を説明した。しかし結晶化法により、半導体層の結晶
性が種々に異なってくる。またソース・ドレインの形成
法など素子製作条件によって異常拡散の程度が異なる。
The relationship between the crystallization method using laser light and the characteristics of the device has been explained above. However, the crystallinity of the semiconductor layer varies depending on the crystallization method. Furthermore, the degree of abnormal diffusion differs depending on device manufacturing conditions such as the method of forming the source and drain.

したがって・特性が得られる限界の素子寸法も異なって
くる。異方る例として、線状のヒーターで結晶化させる
場合はレーザー光による結晶化より格段に大きなサイズ
の結晶粒の結晶層を得ることが可能で・粒界の数も少な
くなる。またソース・ドレインを形成する場合、イオン
注入法で形成し短時間に低温でアニールする方法によれ
ば、異常拡散をさらに小さくすることが可能であり・両
者の結晶化法と製作法を合せれば、Aの方法で可能な素
子のチャンネル長の限界は3〜5μmとなる。またAの
電界効果移動度はBの約2倍となる。
Therefore, the critical element dimensions at which the characteristics can be obtained also differ. As an anisotropic example, when crystallizing with a linear heater, it is possible to obtain a crystal layer with significantly larger crystal grains than with crystallization using laser light, and the number of grain boundaries is also reduced. In addition, when forming sources and drains, anomalous diffusion can be further reduced by forming them using ion implantation and annealing them at low temperatures in a short period of time. For example, the limit of the channel length of the device that can be achieved using method A is 3 to 5 μm. Further, the field effect mobility of A is approximately twice that of B.

以上述べた事実関係に基づきSOIでマトリックス型半
導体装置を形成する場合、上述したように、高速動作が
要求されるシフトレジスタの各MO8型素子をAタイプ
とすることにより、実用的なシフトレジスタを得ること
ができる。
When forming a matrix type semiconductor device using SOI based on the above-mentioned facts, as mentioned above, by making each MO8 type element of the shift register that requires high-speed operation to be A type, a practical shift register can be created. Obtainable.

〔発明の実施例〕[Embodiments of the invention]

平面表示素子として、液晶を使ったアクティブマトリッ
クス型半導体装置を実施例として述べる。
An active matrix type semiconductor device using liquid crystal as a flat display element will be described as an example.

アクティブマトリックス型液晶表示装置は第5図に示し
た部分図のように・各画素に設けられたMO8FETI
Oと、そのソース側に接続される液晶セル11から成り
・ドレイン12・ゲート13は共通と力って結線されて
いる。ドレイン12に、駆動低圧を印加し、ゲート13
の信号でMO8FET10’iオンさせると液晶セル1
1が駆動されて、情報が表示される。高精細の表示とす
るには、数千の画素をマトリックス状に配置することに
力る。このような表示装置は裏面から光を透過させて液
晶により表示させるため、透明基板を使っており、MO
S FET10を形成するにはSOI技術が使われる。
As shown in the partial diagram in Figure 5, an active matrix type liquid crystal display device has MO8FETI provided in each pixel.
The liquid crystal cell 11 is connected to the source side of the liquid crystal cell 11, and the drain 12 and gate 13 are commonly connected. A driving low voltage is applied to the drain 12, and the gate 13
When MO8FET10'i is turned on with the signal, liquid crystal cell 1
1 is activated to display information. High-definition display requires arranging thousands of pixels in a matrix. Such display devices use transparent substrates to transmit light from the back side and display on liquid crystals, and MO
SOI technology is used to form S FET 10.

このMO8FETIOは液晶に電圧を印加し、その電圧
を保持するためにスイッチ機能が必要であり、オン抵抗
が小さく。
This MO8FETIO applies a voltage to the liquid crystal and requires a switch function to maintain that voltage, and has a small on-resistance.

オフ抵抗の大きいことが要求される。ところでSOI技
術で形成されるMOSFETの特性は、はぼこの条件を
満すことができる。
A large off-resistance is required. By the way, the characteristics of a MOSFET formed using SOI technology can satisfy the conditions of lava.

ところでこのMOSFETのマトリックスを駆動するに
は、ドレインの信号と、ゲートの信号を順次走査するた
めのシフトレジスター(駆動回路)が必要である。第6
図は、シフトレジスターを設けたマトリックス型半導体
装置を示す。マトリックス20からドレイン21、ゲー
ト22は、X方向シフトレジスタ23.Y方向シフトレ
ジスタ24、さらに信号発生器25.26に接続されて
いる。ところでシフトレジスタは信号をマトリックス2
0の画素に伝え々がら走査する機能を有するものである
。Y方向に走査しなからX方向に走査する場合、X方向
に走査する周波数は、X方向の画素数倍だけY方向の周
波数より大きいことが必要となる。し本がって、このよ
うなシフトレジスタを構成するMOSFETには高速性
が要求される。画素数が犬きく々るほど高速性が重要と
なる。例えば画素数が200X200の場合、少なくと
も約IMHz以上で動作するシフトレジスターが必要で
あり・シフトレジスターを構成するMO8’FETにも
この速度が必要となる。このような高速性を実現するに
は・できるだけ電界効果移動度の大きいMO8FET素
子を使用することが不可欠である。80I技術でMO8
FET=を形成する場合、前述したように粒界が存在す
ることから、その方向性で特性が異なるが、高速性の観
点からは、粒界の方向と平行にチャンネルを形成した構
造が有利となる。ところがこの場合、異常拡散による実
効チャンネル長の減少の観点から、素子のチャンネル長
に制限がある。すなわち前述したように、チャンネル長
を3〜5μm以上にしなければならない。ところが、液
晶表示素子に使うシフトレジスタやスイッチング素子は
比較的大きいため、チャンネル長を3〜5μm以上にす
ることが可能である。すなわち、粒界の方向とチャンネ
ルの方向を平行とすることにより、実用的なマ) +)
ックス型半導体装置が可能とがる。
By the way, in order to drive this matrix of MOSFETs, a shift register (drive circuit) is required to sequentially scan the drain signal and the gate signal. 6th
The figure shows a matrix type semiconductor device provided with a shift register. The drain 21 and gate 22 from the matrix 20 are connected to an X direction shift register 23 . It is connected to the Y-direction shift register 24 and further to signal generators 25 and 26. By the way, the shift register transfers the signal to matrix 2.
It has a function of scanning while transmitting information to the 0 pixel. When scanning in the X direction without scanning in the Y direction, the frequency for scanning in the X direction needs to be higher than the frequency in the Y direction by the number of pixels in the X direction. Therefore, the MOSFETs forming such a shift register are required to have high speed. The higher the number of pixels, the more important high speed becomes. For example, when the number of pixels is 200x200, a shift register that operates at least at approximately IMHz or higher is required, and the MO8'FET that constitutes the shift register also requires this speed. In order to achieve such high speed, it is essential to use a MO8FET element with as high field effect mobility as possible. MO8 with 80I technology
When forming a FET=, since there are grain boundaries as mentioned above, the characteristics differ depending on the direction of the grain boundaries, but from the viewpoint of high speed, a structure in which channels are formed parallel to the direction of the grain boundaries is advantageous. Become. However, in this case, there is a limit to the channel length of the device from the viewpoint of a reduction in the effective channel length due to anomalous diffusion. That is, as mentioned above, the channel length must be 3 to 5 μm or more. However, since shift registers and switching elements used in liquid crystal display elements are relatively large, it is possible to increase the channel length to 3 to 5 μm or more. In other words, by making the grain boundary direction parallel to the channel direction, practical ma) +)
A box-type semiconductor device becomes possible.

〔発明の効果〕〔Effect of the invention〕

本発明により、80I基板を用いてシフトレジスタ等が
十分な高速性を有するマトリックス型半導体装置が実現
できる。
According to the present invention, it is possible to realize a matrix type semiconductor device in which a shift register and the like have sufficient high speed performance using an 80I substrate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の詳細な説明するためのチャンネル長と
リーク電流との相関図、第2図は同じく本発明の詳細な
説明するためのチャンネル長と電界効果移動度との相関
図、第3図及び第4図は本発明の詳細な説明するための
MO8FET部分平面図、第5図は本発明の詳細な説明
するためのアクティブマトリックス部分図、第6図は本
発明の詳細な説明するためのマトリックス型半導体装置
のブロック図である。 1・・・シリコン層、2・・・ソース%3・・・ドレイ
ン、4・・・ゲー)、5・・・ソース・ドレイン接合、
6・・・粒界。 7・・・異常拡散層、20・・・マトリックス、23・
・・X方向シフトレジスタ、24・・・Y方向シフトレ
ジス11図 ÷ヤ>ネIL、長 らμm−ン 茅2図 1 5 10 20 ÷ヤ〉ネ1し長 (矛t−yn) ¥3因 Vtu ′″I!J5図 IO10 Y6図 3 22 20
FIG. 1 is a correlation diagram between channel length and leakage current for explaining the present invention in detail, FIG. 2 is a correlation diagram between channel length and field effect mobility for explaining the present invention in detail, and FIG. 3 and 4 are partial plan views of MO8FET for detailed explanation of the present invention, FIG. 5 is a partial plan view of an active matrix for detailed explanation of the present invention, and FIG. 6 is a detailed explanation of the present invention. FIG. 2 is a block diagram of a matrix type semiconductor device for use in the present invention. DESCRIPTION OF SYMBOLS 1...Silicon layer, 2...Source%3...Drain, 4...Ga), 5...Source-drain junction,
6...Grain boundary. 7... Abnormal diffusion layer, 20... Matrix, 23.
... Vtu '''I! J5 Figure IO10 Y6 Figure 3 22 20

Claims (1)

【特許請求の範囲】[Claims] 1、 絶縁性板上に設けられエネルギーを加えて結晶化
した半導体薄層ヲ有する半導体基板の半導体薄層の所定
の領域にマ) +1ツクス状に配置した第1の素子群と
・この第1の素子群を制御するために半導体薄層の他の
領域に配列されたMO8型素子からなる第1の素子群と
を有し、半導体薄層の他の領域の粒界の方向とキャリア
の移動方向が実質的に同一となる方向に形成したことを
特徴とするマトリックス型半導体装置。
1. A first element group arranged in a +1x shape in a predetermined region of a semiconductor thin layer of a semiconductor substrate having a semiconductor thin layer provided on an insulating plate and crystallized by applying energy; a first element group consisting of MO8 type elements arranged in another region of the semiconductor thin layer in order to control the element group of A matrix type semiconductor device characterized in that the semiconductor devices are formed in substantially the same direction.
JP24816283A 1983-12-29 1983-12-29 Matrix type semiconductor device Pending JPS60143666A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24816283A JPS60143666A (en) 1983-12-29 1983-12-29 Matrix type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24816283A JPS60143666A (en) 1983-12-29 1983-12-29 Matrix type semiconductor device

Publications (1)

Publication Number Publication Date
JPS60143666A true JPS60143666A (en) 1985-07-29

Family

ID=17174136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24816283A Pending JPS60143666A (en) 1983-12-29 1983-12-29 Matrix type semiconductor device

Country Status (1)

Country Link
JP (1) JPS60143666A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991017471A1 (en) * 1990-04-27 1991-11-14 Japan As Represented By Director General Of Agency Of Industrial Science And Technology Optical valve device
US5233211A (en) * 1990-10-16 1993-08-03 Agency Of Industrial Science And Technology Semiconductor device for driving a light valve
US5347154A (en) * 1990-11-15 1994-09-13 Seiko Instruments Inc. Light valve device using semiconductive composite substrate
US5434433A (en) * 1992-08-19 1995-07-18 Seiko Instruments Inc. Semiconductor device for a light wave
US5574292A (en) * 1992-05-13 1996-11-12 Seiko Instruments Inc. Semiconductor device with monosilicon layer
US5578865A (en) * 1992-01-22 1996-11-26 Kopin Corporation Reduction of parasitic effects in floating body mosfets
US5633176A (en) * 1992-08-19 1997-05-27 Seiko Instruments Inc. Method of producing a semiconductor device for a light valve
US5637187A (en) * 1990-09-05 1997-06-10 Seiko Instruments Inc. Light valve device making
JPH11121753A (en) * 1997-10-14 1999-04-30 Hitachi Ltd Semiconductor device and manufacture thereof
US6191476B1 (en) 1992-10-21 2001-02-20 Seiko Instruments Inc. Semiconductor device
JP2003059831A (en) * 2001-08-17 2003-02-28 Semiconductor Energy Lab Co Ltd Method for manufacturing semiconductor device
JP2003086507A (en) * 2001-09-10 2003-03-20 Semiconductor Energy Lab Co Ltd Method of manufacturing semiconductor device
US6608325B1 (en) 1993-05-26 2003-08-19 Semiconductor Energy Laboratory Co., Ltd. Transistor and semiconductor device having columnar crystals
JP2004006644A (en) * 2002-01-28 2004-01-08 Semiconductor Energy Lab Co Ltd Semiconductor device and its fabricating method
US7422987B2 (en) 2001-08-30 2008-09-09 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
JP2014239246A (en) * 2002-01-28 2014-12-18 株式会社半導体エネルギー研究所 Semiconductor device
JP2021101464A (en) * 2002-01-28 2021-07-08 株式会社半導体エネルギー研究所 Semiconductor device

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5982461A (en) * 1990-04-27 1999-11-09 Hayashi; Yutaka Light valve device
WO1991017471A1 (en) * 1990-04-27 1991-11-14 Japan As Represented By Director General Of Agency Of Industrial Science And Technology Optical valve device
US5637187A (en) * 1990-09-05 1997-06-10 Seiko Instruments Inc. Light valve device making
US6067062A (en) * 1990-09-05 2000-05-23 Seiko Instruments Inc. Light valve device
US5233211A (en) * 1990-10-16 1993-08-03 Agency Of Industrial Science And Technology Semiconductor device for driving a light valve
USRE36836E (en) * 1990-10-16 2000-08-29 Agency Of Industrial Science And Technology Semiconductor device for driving a light valve
US5926699A (en) * 1990-10-16 1999-07-20 Agency Of Industrial Science And Technology Method of fabricating semiconductor device having stacked layer substrate
US5759878A (en) * 1990-10-16 1998-06-02 Agency Of Industrial Science And Technology Method of fabricating semiconductor device having epitaxially grown semiconductor single crystal film
US5486708A (en) * 1990-11-15 1996-01-23 Seiko Instruments Inc. Light valve device using semiconductive composite substrate
US5728591A (en) * 1990-11-15 1998-03-17 Seiko Instruments Inc. Process for manufacturing light valve device using semiconductive composite substrate
US5572045A (en) * 1990-11-15 1996-11-05 Seiko Instruments Inc. Light valve device using semiconductive composite substrate
US5347154A (en) * 1990-11-15 1994-09-13 Seiko Instruments Inc. Light valve device using semiconductive composite substrate
US5578865A (en) * 1992-01-22 1996-11-26 Kopin Corporation Reduction of parasitic effects in floating body mosfets
US5574292A (en) * 1992-05-13 1996-11-12 Seiko Instruments Inc. Semiconductor device with monosilicon layer
US5633176A (en) * 1992-08-19 1997-05-27 Seiko Instruments Inc. Method of producing a semiconductor device for a light valve
US6187605B1 (en) 1992-08-19 2001-02-13 Seiko Instruments Inc. Method of forming a semiconductor device for a light valve
US5434433A (en) * 1992-08-19 1995-07-18 Seiko Instruments Inc. Semiconductor device for a light wave
US6191476B1 (en) 1992-10-21 2001-02-20 Seiko Instruments Inc. Semiconductor device
US6608325B1 (en) 1993-05-26 2003-08-19 Semiconductor Energy Laboratory Co., Ltd. Transistor and semiconductor device having columnar crystals
JPH11121753A (en) * 1997-10-14 1999-04-30 Hitachi Ltd Semiconductor device and manufacture thereof
JP2003059831A (en) * 2001-08-17 2003-02-28 Semiconductor Energy Lab Co Ltd Method for manufacturing semiconductor device
US7393729B2 (en) 2001-08-17 2008-07-01 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating semiconductor device
US7422987B2 (en) 2001-08-30 2008-09-09 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
JP2003086507A (en) * 2001-09-10 2003-03-20 Semiconductor Energy Lab Co Ltd Method of manufacturing semiconductor device
JP2004006644A (en) * 2002-01-28 2004-01-08 Semiconductor Energy Lab Co Ltd Semiconductor device and its fabricating method
JP2014239246A (en) * 2002-01-28 2014-12-18 株式会社半導体エネルギー研究所 Semiconductor device
JP2021101464A (en) * 2002-01-28 2021-07-08 株式会社半導体エネルギー研究所 Semiconductor device

Similar Documents

Publication Publication Date Title
JPS60143666A (en) Matrix type semiconductor device
JP3402400B2 (en) Manufacturing method of semiconductor integrated circuit
KR100374737B1 (en) METHOD FOR FORMING TRANSISTOR, CIRCUIT CONTAINING THE TRANSISTOR, METHOD FOR PRODUCING ACTIVE MATRIX SUBSTRATE, METHOD FOR MANUFACTURING DISPLAY DEVICE,
JP2999271B2 (en) Display device
KR100408324B1 (en) Ultra-high resolution liquid crystal display on silicon-on-sapphire
KR100546905B1 (en) LlQUID DISPLAY APPARATUS
JP3109968B2 (en) Method for manufacturing active matrix circuit board and method for manufacturing liquid crystal display device using the circuit board
JP4366732B2 (en) Method for manufacturing electro-optical device and method for manufacturing drive substrate for electro-optical device
KR20010071526A (en) Thin film transistor and liquid crystal display
JP2000243970A (en) Thin film transistor, manufacture thereof, liquid crystal display device using the same and manufacture thereof
JP2001127302A (en) Semiconductor thin-film substrate, semiconductor device as well as manufacturing method therefor, and electronic device
JPH01194351A (en) Thin film semiconductor device
KR100527576B1 (en) N-channel insulated gate thin-film transister and liquid crystal display apparatus using the same
JP3386682B2 (en) Thin film transistor, logic gate device, and thin film transistor array
US6940483B2 (en) Method for driving display device having digital memory for each pixel
JP2000243968A (en) Thin film transistor, manufacture thereof, liquid crystal display device using the same and manufacture thereof
JPH0142146B2 (en)
JP2635542B2 (en) Thin film transistor
JP2000243969A (en) Thin film transistor, manufacture thereof, liquid crystal display device using the same and manufacture thereof
JP4257482B2 (en) THIN FILM TRANSISTOR, ITS MANUFACTURING METHOD, CIRCUIT USING THE SAME, AND LIQUID CRYSTAL DISPLAY DEVICE
JP3276900B2 (en) Semiconductor device and display device
KR950009797B1 (en) Fid poly silicon tft with bottom gate
JP4366731B2 (en) Method for manufacturing electro-optical device and method for manufacturing drive substrate for electro-optical device
JP2000231122A (en) Electrooptical device, driving board for electrooptical device, and their production
KR100194676B1 (en) Transfer gate device