JPS6014287B2 - Photoelectric encoder scale - Google Patents

Photoelectric encoder scale

Info

Publication number
JPS6014287B2
JPS6014287B2 JP56084082A JP8408281A JPS6014287B2 JP S6014287 B2 JPS6014287 B2 JP S6014287B2 JP 56084082 A JP56084082 A JP 56084082A JP 8408281 A JP8408281 A JP 8408281A JP S6014287 B2 JPS6014287 B2 JP S6014287B2
Authority
JP
Japan
Prior art keywords
light
scale
semiconductor layer
photoelectric encoder
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56084082A
Other languages
Japanese (ja)
Other versions
JPS57198812A (en
Inventor
芳比古 蒲谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsutoyo Manufacturing Co Ltd
Original Assignee
Mitsutoyo Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsutoyo Manufacturing Co Ltd filed Critical Mitsutoyo Manufacturing Co Ltd
Priority to JP56084082A priority Critical patent/JPS6014287B2/en
Priority to GB8214930A priority patent/GB2099993B/en
Priority to US06/380,818 priority patent/US4499374A/en
Priority to DE19823220560 priority patent/DE3220560A1/en
Publication of JPS57198812A publication Critical patent/JPS57198812A/en
Publication of JPS6014287B2 publication Critical patent/JPS6014287B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/347Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales
    • G01D5/34707Scales; Discs, e.g. fixation, fabrication, compensation
    • G01D5/34715Scale reading or illumination devices

Abstract

PURPOSE:To make an encoder thinner while reducing the number of parts by providing a light interrupting and conductive material and a pn semiconductor layer for converting light into an electrical signal and the like on a light transmitting substrate. CONSTITUTION:A first signal deriving material layer 2 made of a light interrupting and conductive material, for example, a metal film, a pn semiconductor layer 2 for converting light into a electrical signal and a signal deriving layer 4 of a transparent film made of a light transmitting and conductive material, for example, In2O3, SnO2 and Si or a mixture thereof are laminated sequentially on a light transmitting substrate 1 made of glass, for example, and light receiving sections 5 thus made are arranged in a fine strip at a fixed pitch to form a scale S. This enables the integration of the scale and a light receiving element thereby making an encoder thinner while reducing the number of parts.

Description

【発明の詳細な説明】 この発明は、2つの光学格子を相対移動させて得た光の
明暗から物理量を検知するようにした光電型ェソコーダ
のスケールの改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in the scale of a photoelectric esocoder that detects physical quantities from the brightness and darkness of light obtained by relatively moving two optical gratings.

従来の光電型ェンコーダは、光源からしンズを適して一
方の光学格子に光線を照射し、この光学格子を通過した
光線が他方の光学格子を通過して反対側に配置されたレ
ンズを介して受光器に至るようにされている。従って、
光源からの光は、2つの光学格子を通過しなければなら
ずまた途中において複雑な回折光が混じり、さらに格子
の基材たるガラス表面での反射、屈折、さらにはガラス
内部での吸収により減衰し、その結果受光器によって得
られる信号はノイズを含みかつ、微弱とならざるを得な
かった。
In a conventional photoelectric encoder, a light source emits a beam of light onto one optical grating, and the light beam that passes through this optical grating passes through the other optical grating and then passes through a lens placed on the opposite side. It is arranged to reach the light receiver. Therefore,
The light from the light source must pass through two optical gratings, and along the way it is mixed with complex diffracted light, and is further attenuated by reflection and refraction on the glass surface, which is the base material of the grating, and absorption inside the glass. However, as a result, the signal obtained by the photoreceiver inevitably contains noise and is weak.

さらに光源、レンズ、受光器を配置するために、必然的
にェンコーダが大型とならざるを得なかつた。また2つ
の光学格子の間に斜めに光線を入射させるようにした反
射型の光電型ェンコーダがあるが、これも回折、散乱、
反射等による光の損失が大きいとともに、光源および受
光器の取付を斜めにしなければならないために構造が複
雑であり、また小型化が十分でなかった。
Furthermore, in order to arrange the light source, lens, and light receiver, the encoder inevitably had to be large. There is also a reflective photoelectric encoder that allows a light beam to enter obliquely between two optical gratings, but this also causes diffraction, scattering, etc.
In addition to a large loss of light due to reflection and the like, the structure is complicated because the light source and receiver must be mounted at an angle, and miniaturization is not sufficient.

上記従来の問題点を解消するために、本出願人によって
、一方の光学格子に、半導体基体にこれと相反する導電
型の細帯状の半導体層を一定ピッチに配設し、これに他
方の光学格子を透過した光線を照射するようにし、前記
半導体基体と半導体層から出力を得るようにしたものが
提案されている。
In order to solve the above-mentioned conventional problems, the present applicant has disposed strip-shaped semiconductor layers of opposite conductivity types on a semiconductor substrate at a constant pitch on one optical grating, and this is applied to the other optical grating. A device has been proposed in which a light beam transmitted through a grating is irradiated and output is obtained from the semiconductor substrate and the semiconductor layer.

この提案は、受光側のレンズを省略したこと、光源から
の光線が一方の光学格子のみを通過するようにされたこ
と、第2の光学格子と受光器の間隔が零になったことに
おいて、小型化および効率が向上されている。
This proposal omitted the lens on the light receiving side, the light rays from the light source passed through only one optical grating, and the distance between the second optical grating and the light receiver became zero. Miniaturization and efficiency have been improved.

また前記提案に対して、前記半導体基体および半導体層
からなるスリット状の受光素子による出力の高周波特性
の改善策として、スリットの抵抗を解消もしくは減少さ
せるために、受光素子の全面を透明導電体材料で覆って
出力をまとめるようにしたものが提案されている。
In addition, in response to the above proposal, as a measure to improve the high frequency characteristics of the output from the slit-shaped light receiving element made of the semiconductor substrate and semiconductor layer, the entire surface of the light receiving element is made of a transparent conductive material in order to eliminate or reduce the resistance of the slit. It has been proposed to summarize the output by covering it with

また連続平面状の半導体層の上に、不透明膿スリットを
設け、これによって、高周波特性を改善するとともに製
造を容易にしたものも提案されている。
It has also been proposed that an opaque slit be provided on a continuous planar semiconductor layer, thereby improving high frequency characteristics and facilitating manufacturing.

さらに、前記半導体層および半導体層をMOS半導体と
し、前記不透明膜スリットをMOS半導体における金属
部により構成したものも提案されている。
Furthermore, it has been proposed that the semiconductor layer and the semiconductor layer are made of MOS semiconductors, and the opaque film slit is made of a metal part of the MOS semiconductor.

しかしながら、これらの光電型ェンコーダのスケールは
小型化が十分でなく、また例えば、MOS半導体を利用
したスケールの場合、材料となるシリコン結晶体が高価
であるとともに長い製品を製造できないため、経済的、
技術的に困難な問題を有している。
However, the scale of these photoelectric encoders cannot be sufficiently miniaturized, and for example, in the case of scales using MOS semiconductors, the silicon crystal material used is expensive and long products cannot be manufactured, so it is not economical and
It has technically difficult problems.

これは、特にメインスケールに適用する場合に困難を伴
なう。また、一般に反射型のェンコーダは透過型のェン
コーダより小型であるが、反射型の場合、反射スケール
に照射するための光線は傾斜光として入射させなければ
ならず、このため回折、散乱、反射等による光の損失が
大きく、また発光部と受光部の取付が斜めになり、構造
が複雑となるという欠点がある。
This is particularly difficult when applied to the main scale. Additionally, reflective encoders are generally smaller than transmissive encoders, but in the case of reflective encoders, the light beam to irradiate the reflective scale must be incident as oblique light, which causes problems such as diffraction, scattering, and reflection. However, there are disadvantages in that the light loss caused by this is large, and the light emitting part and the light receiving part are mounted at an angle, making the structure complicated.

本発明は上記従来の問題点に鑑みてなされたものであっ
て、さらに小型化および部品点数を減少させるとともに
、反射型のものにおいても光源を傾斜して取り付ける必
要のない光電型ェンコーダのスケールを提供するを目的
とする。
The present invention has been made in view of the above-mentioned conventional problems, and further reduces the size and number of parts, and also improves the scale of photoelectric encoders that do not require the light source to be installed at an angle even in the case of reflective type encoders. The purpose is to provide.

この目的は、2つの光学格子を相対移動させて得た光の
明暗から物理量を検知するようにした光電型ェンコーダ
のスケールにおいて、光透過性基材上に、光遮断性かつ
導電性材料からなる第1の信号導出材層と光を電気信号
に変換するPN半導体層と、光透過性かつ導電性材料か
らなる第2の信号導出材層と、とこの順で積層形成した
受光部を級帯状に一定ピッチで配設してなり、前記光透
過性基材方向からの光に対して、前記受光部を光遮断ス
リットとするとともに該受光部間を光透過スリットとし
て光学格子を形成することによって前記目的を達成する
ものである。
The purpose of this is to use a photoelectric encoder scale that detects physical quantities from the brightness and darkness of light obtained by moving two optical gratings relative to each other. A first signal deriving material layer, a PN semiconductor layer that converts light into an electrical signal, and a second signal deriving material layer made of a light-transmitting and conductive material are laminated in this order, and the light receiving portion is formed into a class band shape. The light-receiving parts are arranged at a constant pitch at a constant pitch, and the light-receiving parts are used as light-blocking slits, and the spaces between the light-receiving parts are used as light-transmitting slits to form an optical grating. This achieves the above objective.

以下本発明の実施例を図面を参照して説明する。Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明にかかる光電型ェンコーダのスケールの
実施例を示す平面図、第2図は第1図のロー0線に沿う
拡大断面図である。
FIG. 1 is a plan view showing an embodiment of a scale of a photoelectric encoder according to the present invention, and FIG. 2 is an enlarged sectional view taken along the row 0 line in FIG. 1.

この実施例は、例えばガラスよりなる光透過性基材1上
に、光遮断性かつ導電性材料、例えば金属膜からなる第
1の信号導出材層2と、光を電気信号に変換するPN半
導体層3と、光透過性かつ導電性材料例えばIQ03、
SN02、Siまたはこれらの混合物からなる透明膜の
第2の信号導出材層4と、をこの順で積層形成した受光
部5を細帯状に一定ピッチで配設してスケールSを形成
したものである。
In this embodiment, a first signal deriving material layer 2 made of a light-blocking and conductive material such as a metal film is formed on a light-transmitting base material 1 made of glass, for example, and a PN semiconductor that converts light into an electrical signal. layer 3 and an optically transparent and electrically conductive material such as IQ03;
A scale S is formed by disposing a light receiving part 5 in a thin strip shape at a constant pitch, and a second signal deriving material layer 4 made of a transparent film made of SN02, Si, or a mixture thereof. be.

前記スケールSは第3図に示されるように、反射型メイ
ンスケールMに対して、その反射部6光受光部5が対面
するように配置され、反射型メインスケールMに向かっ
て、スケールSの背面からしンズ7を介して光源8から
の光線が入射するようにされている。
As shown in FIG. 3, the scale S is arranged so that its reflection section 6 and light receiving section 5 face the reflection type main scale M, and the scale S faces toward the reflection type main scale M. A light beam from a light source 8 is made to enter from the back side through a lens 7.

メインスケールMの各反射部6の間は、光透過部もしく
は光吸収部からなる非反射部とされている。即ち、前記
受光部5の第1の信号導出材層2が光源8からの光線を
遮断する作用をなし、これによって受光部5は光遮断ス
リットとなり、また各受光部5間は光透過スリットの作
用をなし、光源8からの光線が光透過性基材1を通して
反射型メインスケールMに照射され得るようになってい
る。
A non-reflective portion consisting of a light transmitting portion or a light absorbing portion is provided between each reflective portion 6 of the main scale M. That is, the first signal deriving material layer 2 of the light receiving section 5 functions to block the light rays from the light source 8, so that the light receiving section 5 becomes a light blocking slit, and there is a light transmitting slit between each light receiving section 5. The light beam from the light source 8 can be irradiated onto the reflective main scale M through the light-transmitting base material 1.

また反射型メインスケールMの反射部6によって反射さ
れた光線は、受光部5の第2の信号導出材層4を通って
PN半導体層3に至り、ここで半導体の電気的出力に変
換される。
Furthermore, the light beam reflected by the reflection section 6 of the reflective main scale M passes through the second signal derivation material layer 4 of the light receiving section 5 and reaches the PN semiconductor layer 3, where it is converted into an electrical output of the semiconductor. .

PN半導体層3における電気出力は、出力端子9および
10から外部に取り出される。すなわち、前記スケール
Sはインデックススケールと、受光素子とが一体となっ
たィンデックセンサーの機能をなすようにされている。
Electrical output in the PN semiconductor layer 3 is taken out from output terminals 9 and 10. That is, the scale S functions as an index sensor in which an index scale and a light receiving element are integrated.

次に上記スケールSの製造方法を説明する。Next, a method for manufacturing the scale S will be explained.

まず光透過性基材1たるガラス基板を、真空蒸着装暦内
に装着し、5×10‐年orrの真空度の環境で、15
0〜20ぴ0に加熱し、タングステンボードからCrを
蒸発させ、ガラス基板上にCrを蒸着させて2000〜
3000Aの厚さの第1の信号導出材層2たるCr膜を
形成する。次に前記C頚莫を形成したガラス基板をプラ
ズマチャンバーに入れて300℃に加熱し、SiH41
0%を含むArガスを比ガスにより1ぴ鞠こ希釈したガ
スを前記プラズマチャンバーに導入し、0.1〜2br
rの圧力下で高周波グロー放電により、N型非品質シリ
コン(N−a一Si)膜11、およびP型非晶質シリコ
ン(P−a−Si)膜12を、前記第1の信号導出材層
2の上に糠層し、これによって約1ムの厚さのPN半導
体層を形成する。前記N型非晶質シリコン膜11は析出
初期に徴量のPH3を反応ガス中に混入することにより
、また、P型非晶質シリコン膜12は途中で前記PH3
をB2日6に切換えることによりそれぞれ析出させる。
ここで、PN半導体層3の形成は、熱分解法、スバッタ
蒸着法等の他の方法によってもよい。また半導体層形成
のときに、最初にPH3を入れてN型層を作り、次に不
純物を含まないi層(ィントリンシック層)を作り、さ
らにB2日6を入れてP層を作り、P−i−N構造を形
成してP−i間に出釆る接合により光電力を得るように
してもよい。この場合は感度が向上する。次に、PN半
導体層3を形成した基材1を真空蒸着槽内に入れ、15
0ooに加熱し、アルミナつばに入れたln203を電
子ビーム叢着法により約1000Aの厚さのln203
膜を蒸着させ、これによって前記PN半導体層3の上に
第2の信号導出材層4を形成する。
First, a glass substrate, which is a light-transmitting substrate 1, was mounted in a vacuum evaporation equipment, and was heated for 15 minutes in a vacuum environment of 5 × 10 years orr.
Cr is evaporated from the tungsten board by heating to 0 to 20 psi, and Cr is evaporated onto the glass substrate.
A Cr film serving as the first signal deriving material layer 2 is formed with a thickness of 3000 Å. Next, the glass substrate on which the C-shaped layer was formed was placed in a plasma chamber and heated to 300°C.
A gas obtained by diluting Ar gas containing 0.0% by 1 part with a specific gas is introduced into the plasma chamber, and 0.1 to 2br
The first signal deriving material A bran layer is applied on top of layer 2, thereby forming a PN semiconductor layer approximately 1 μm thick. The N-type amorphous silicon film 11 is formed by mixing a certain amount of PH3 into the reaction gas at the initial stage of precipitation, and the P-type amorphous silicon film 12 is formed by mixing the PH3 in the middle.
By switching to B2 day 6, each is precipitated.
Here, the PN semiconductor layer 3 may be formed by other methods such as a thermal decomposition method or a sputter deposition method. Also, when forming a semiconductor layer, first add PH3 to create an N-type layer, then create an i-layer (intrinsic layer) that does not contain impurities, and then add B2-6 to create a P-layer. -i-N structure may be formed and optical power may be obtained by a junction appearing between P-i. In this case, sensitivity improves. Next, the base material 1 on which the PN semiconductor layer 3 was formed was placed in a vacuum deposition tank, and
The ln203 heated to 0oo and placed in an alumina brim was made into ln203 with a thickness of about 1000A by the electron beam plexus method.
A film is deposited, thereby forming a second signal deriving material layer 4 on the PN semiconductor layer 3.

次にスピン塗装法によりホトレジストを約2舷の厚さ‘
こ塗布し、乾燥させる。
Next, apply a layer of photoresist to a thickness of about two ship's sides using the spin coating method.
Apply this and let it dry.

さらにマスクにより出力端子部9を遮光した後、紫外線
で露光して現像し、出力端子部9のホトレジストを除去
する。次いで、ケミカルエッチングあるいはプラズマエ
ッチング等の方法により、出力端子9部分の第2の信号
導出材層4およびPN半導体層3を除去し、第1の信号
導出材層2を露出させる。
Furthermore, after shielding the output terminal portion 9 from light with a mask, the photoresist on the output terminal portion 9 is removed by exposure to ultraviolet rays and development. Next, the second signal deriving material layer 4 and the PN semiconductor layer 3 in the output terminal 9 portion are removed by a method such as chemical etching or plasma etching, and the first signal deriving material layer 2 is exposed.

同様にして、受光部5の間の光透過スリットI3部分以
外の部分をホトレジストで覆い、該光透過スリット13
に該当する第1、2の信号導出材層2,4およびPN半
導体層3をプラズマエッチング等により除去し、光透過
性基材1を琢出させる。
Similarly, parts other than the light transmitting slit I3 between the light receiving parts 5 are covered with photoresist, and the light transmitting slit 13
The first and second signal deriving material layers 2 and 4 and the PN semiconductor layer 3 corresponding to the above are removed by plasma etching or the like, and the light-transmitting base material 1 is polished out.

ここで光透過スリット13の幅は、受光部5の光透過性
基材1の表面からの高さの2倍以上とするのが明暗を検
知するのに都合がよい。
Here, it is convenient for the width of the light transmitting slit 13 to be at least twice the height of the light receiving section 5 from the surface of the light transmitting base material 1 in order to detect brightness and darkness.

次に第1の信号導出材層2および第2の信号導出材層4
から出力電流を取り出すための導線を前記出力端子9お
よび10に導電性接着材により取り付け、最後にPN半
導体層を保護するために全体に薄くシリコンワニスを塗
布乾燥して完成させる。
Next, the first signal deriving material layer 2 and the second signal deriving material layer 4
Conductive wires for extracting an output current from the PN semiconductor layer are attached to the output terminals 9 and 10 using a conductive adhesive, and finally, a thin layer of silicone varnish is applied to the entire surface to protect the PN semiconductor layer and is dried to complete the process.

次に本発明の他の実施例を第4図を参照して説明する。Next, another embodiment of the present invention will be described with reference to FIG.

ここで前記第1実施例と同一または同様の部分には同一
の符号を付することにより説明を省略する。この実施例
は、前記スケールSにおいて、前記光透過性基材1を介
して前記受光部5の反対側に光源14、およびこの光源
14からの光が前記光透過性基材1を通って反対側に照
射されるように反射する反射鏡15を設けたものである
Here, the same or similar parts as in the first embodiment are given the same reference numerals, and the explanation thereof will be omitted. In this embodiment, in the scale S, a light source 14 is provided on the opposite side of the light receiving section 5 through the light transmitting base material 1, and light from this light source 14 passes through the light transmitting base material 1 on the opposite side. A reflecting mirror 15 is provided to reflect the light to the side.

前記反射鏡15は、光透過性基材1の光源14側に一体
的に設けられた略半球状の透明樹脂16の外側に蒸着金
属膜等の光反射膜を設けることにより形成されたもので
ある。
The reflecting mirror 15 is formed by providing a light reflecting film such as a vapor-deposited metal film on the outside of a substantially hemispherical transparent resin 16 that is integrally provided on the light source 14 side of the light-transmitting substrate 1. be.

前記透明樹脂16は前記光透過性基材1と同一の屈折率
の透光性材料よりなり、光源14の周囲に充填され、こ
れにより光源14からの光が光透過性基材1に達する間
の光路における屈折率が改善されるようになっている。
The transparent resin 16 is made of a light-transmitting material having the same refractive index as the light-transmitting base material 1, and is filled around the light source 14, so that the light from the light source 14 is not affected while it reaches the light-transmitting base material 1. The refractive index in the optical path is improved.

この実施例は、光源14をインデックススケールS自体
に取り付け、かつ透明樹脂16によって一体的にモール
ドされているので、単に2つのスケールを配設するのみ
でェンコーダを構成できるという効果がある。また光源
とインデックススケールSが一体的であるので振動によ
る故障あるいは謀畠葦が解消されるという利点を有する
。本発明は上記のように構成したので、スケールと受光
素子を一体とすることができ、従ってェンコーダを薄型
にできるとともに部品点数を減少できるという効果を有
する。また受光素子の背面から投光できるので、反射型
スケールにおいて、インデックススケールとメインスケ
ールを平行かつ接近でき、従って光の回折、散乱等によ
る光の損失を小さくできるという効果を有する。さらに
インデックススケールと受光素子を一体にすることによ
り、受光素子をメインスケールに設けた場合に比較して
小さくでき、製造が容易、かつ低コストとなる効果を有
する。
In this embodiment, the light source 14 is attached to the index scale S itself and is integrally molded with the transparent resin 16, so that an encoder can be constructed by simply arranging two scales. Furthermore, since the light source and the index scale S are integrated, there is an advantage in that failures due to vibrations or problems caused by vibrations are eliminated. Since the present invention is configured as described above, it is possible to integrate the scale and the light receiving element, and therefore the encoder can be made thinner and the number of parts can be reduced. Furthermore, since light can be projected from the back of the light receiving element, the index scale and the main scale can be parallel and close to each other in a reflective scale, which has the effect of reducing light loss due to light diffraction, scattering, etc. Furthermore, by integrating the index scale and the light-receiving element, the scale can be made smaller than when the light-receiving element is provided on the main scale, making manufacturing easier and lower cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明にかかる光電型ェンコーダのスケールを
示す平面図、第2図は第1図のローロ線に沿う拡大断面
図、第3図は同実施例にかかる光電型ェンコーダの菱部
を示す略示側面図、第4図は同本発明の第2実施例を示
す略示側面図である。 S……スケール、M……メインスケール、1…・・・光
透過性基材、2…・・・第1の信号導出材層、3・・・
・・・PN半導体層、4…・・・第2の信号導出材層、
5・・・・・・受光部、11・・・・・・N型非晶質シ
リコン膜、12・・・・・・P型非晶質シリコン膜、1
3・・・・・・光透過スリット部。 兼′函 舟2図 多3図 第4図
FIG. 1 is a plan view showing the scale of a photoelectric encoder according to the present invention, FIG. 2 is an enlarged sectional view taken along the Rolo line in FIG. 1, and FIG. FIG. 4 is a schematic side view showing a second embodiment of the present invention. S... Scale, M... Main scale, 1... Light transmitting base material, 2... First signal deriving material layer, 3...
...PN semiconductor layer, 4...second signal deriving material layer,
5... Light receiving part, 11... N-type amorphous silicon film, 12... P-type amorphous silicon film, 1
3...Light transmission slit section. Kane'boxune 2 figures, 3 figures, 4 figures

Claims (1)

【特許請求の範囲】 1 2つの光学格子を相対移動させて得た光の明暗から
物理量を検知するようにした光電型エンコーダのスケー
ルにおいて、光透過性基材上に、光遮断性かつ導電性材
料からなる第1の信号導出材層と、光を電気信号に変換
するPN半導体層と、光透過性かつ導電性材料からなる
第2の信号導出材層と、をこの順で積層形成した受光部
を細帯状に一定ピツチで配設してなり、前記光透過性基
材方向からの光に対して、前記受光部を光遮断スリツト
とするとともに該受光部間を光透過スリツトとして光学
格子を形成したことを特徴とする光電型エンコーダのス
ケール。 2 前記受光部の光透過性基材表面からの高さを前記光
透過スリツトの幅の2分の1以下としたことを特徴とす
る特許請求の範囲第1項記載の光電型エンコーダのスケ
ール。 3 前記PN半導体層は非晶質半導体からなることを特
徴とする特許請求の範囲第1項または第2項記載の光電
型エンコーダのスケール。 4 前記半導体層がP−i−N構造からなることを特徴
とする特許請求の範囲第1項記載の光電型エンコーダの
スケール。
[Scope of Claims] 1. In the scale of a photoelectric encoder that detects a physical quantity from the brightness and darkness of light obtained by relatively moving two optical gratings, a light-blocking and conductive material is provided on a light-transmitting base material. A light-receiving device in which a first signal-deriving material layer made of a material, a PN semiconductor layer that converts light into an electrical signal, and a second signal-deriving material layer made of a light-transmitting and conductive material are laminated in this order. The light-receiving portions are arranged as thin strips at a constant pitch, and the light-receiving portions are light-blocking slits, and the light-receiving portions are light-transmitting slits, and an optical grating is formed. A photoelectric encoder scale characterized by the following: 2. The scale for a photoelectric encoder according to claim 1, wherein the height of the light-receiving portion from the surface of the light-transmitting base material is set to one-half or less of the width of the light-transmitting slit. 3. The scale for a photoelectric encoder according to claim 1 or 2, wherein the PN semiconductor layer is made of an amorphous semiconductor. 4. The scale for a photoelectric encoder according to claim 1, wherein the semiconductor layer has a P-i-N structure.
JP56084082A 1981-06-01 1981-06-01 Photoelectric encoder scale Expired JPS6014287B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP56084082A JPS6014287B2 (en) 1981-06-01 1981-06-01 Photoelectric encoder scale
GB8214930A GB2099993B (en) 1981-06-01 1982-05-21 Photoelectric displacement encoder
US06/380,818 US4499374A (en) 1981-06-01 1982-05-21 Photoelectrical encoder employing an optical grating
DE19823220560 DE3220560A1 (en) 1981-06-01 1982-06-01 PHOTOELECTRIC ENCODER

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56084082A JPS6014287B2 (en) 1981-06-01 1981-06-01 Photoelectric encoder scale

Publications (2)

Publication Number Publication Date
JPS57198812A JPS57198812A (en) 1982-12-06
JPS6014287B2 true JPS6014287B2 (en) 1985-04-12

Family

ID=13820561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56084082A Expired JPS6014287B2 (en) 1981-06-01 1981-06-01 Photoelectric encoder scale

Country Status (1)

Country Link
JP (1) JPS6014287B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62150118A (en) * 1985-12-25 1987-07-04 Mitsutoyo Mfg Corp Optical displacement detector
JP2007076027A (en) * 2005-09-12 2007-03-29 Seiko Epson Corp Position detector and liquid ejection apparatus equipped with it

Also Published As

Publication number Publication date
JPS57198812A (en) 1982-12-06

Similar Documents

Publication Publication Date Title
GB2099993A (en) Photoelectric displacement encoder
KR920010921B1 (en) Image sensor
US20080202209A1 (en) Sensor
JPS61182533A (en) Matrix device for detecting beam with independent cold screen unified in substrate and manufacture thereof
US4650984A (en) Photosensor array for treating image information
GB2094974A (en) Photoelectric encoder device
JPS6032126B2 (en) Photoelectric encoder
JPS6014287B2 (en) Photoelectric encoder scale
JPS6032125B2 (en) Photoelectric encoder
JPH0656304B2 (en) Photoelectric encoder
JPH0534463A (en) X-ray image sensor
JPS61188964A (en) Contact type image sensor
KR101882141B1 (en) Spectromtric sensor and method for manufacturing the same and spectromtric device
JPH09297039A (en) Photoelectric type encoder
JP2519030B2 (en) Photoelectric conversion device
JPS5984476A (en) Substrate for optical appliance and manufacture thereof
JPS62130560A (en) Structure of contact type image sensor
CN114383722A (en) Optical detection device
JPH10221120A (en) Optical encoder apparatus
JPH06236980A (en) Photosensor
JPH04352471A (en) Infrared rays detector
JPH021990A (en) Image reading device
JPH01108766A (en) Contact type image sensor
JPH0685225A (en) Image sensor
JPS58114684A (en) Solid-state image pickup element