JPS6032125B2 - Photoelectric encoder - Google Patents

Photoelectric encoder

Info

Publication number
JPS6032125B2
JPS6032125B2 JP56084083A JP8408381A JPS6032125B2 JP S6032125 B2 JPS6032125 B2 JP S6032125B2 JP 56084083 A JP56084083 A JP 56084083A JP 8408381 A JP8408381 A JP 8408381A JP S6032125 B2 JPS6032125 B2 JP S6032125B2
Authority
JP
Japan
Prior art keywords
light
scale
light receiving
section
reflecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56084083A
Other languages
Japanese (ja)
Other versions
JPS57198813A (en
Inventor
芳比古 蒲谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsutoyo Manufacturing Co Ltd
Original Assignee
Mitsutoyo Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsutoyo Manufacturing Co Ltd filed Critical Mitsutoyo Manufacturing Co Ltd
Priority to JP56084083A priority Critical patent/JPS6032125B2/en
Priority to GB8214930A priority patent/GB2099993B/en
Priority to US06/380,818 priority patent/US4499374A/en
Priority to DE19823220560 priority patent/DE3220560A1/en
Publication of JPS57198813A publication Critical patent/JPS57198813A/en
Publication of JPS6032125B2 publication Critical patent/JPS6032125B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/36Forming the light into pulses

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Light Receiving Elements (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)
  • Optical Transform (AREA)

Abstract

PURPOSE:To achieve further miaturization and reduction in the number of parts by alternately arranging a fine-strip-shaped light-reflecting section and non- reflecting section on a substrate in a first scale while a fine-strip-shaped light receiving sections are arranged at a fixed pitch in a second scale. CONSTITUTION:An optoelectric encoder relatively moves first and second scales having optical grids to detect physical quantity from the brightness of light. A non-reflecting section comprising a light transmitting section or a light absorbing section between reflecting sections 6 of a first scale M. In a second scale S, fine- strip-shaped light receiving sections 5 are arranged at a fixed pitch. An index scale and a light receiving element are integrated to discharge the function of an index sensor. The arrangement of this invention enables integration of the scale and the light receiving element making the encoder thinner and enabling, further miniaturization and reduction in the number of parts.

Description

【発明の詳細な説明】 この発明は、2つの光学格子を相対移動させて得た光の
明暗から物理量を検知するようにした光電型ェンコーダ
の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement of a photoelectric encoder that detects a physical quantity from the brightness of light obtained by relatively moving two optical gratings.

従来の光電型ェンコーダは、光源からしンズを通して一
方の光学格子に光線を照射し、この光学格子を通過した
光線が他方の光学格子を通過して反対側に配置されたレ
ンズを介して受光器に至るようにされている。
In a conventional photoelectric encoder, a light beam is emitted from a light source through a lens to one optical grating, and the light beam that has passed through this optical grating passes through the other optical grating and is sent to the receiver via a lens placed on the opposite side. It is designed to reach the following.

従って、光源からの光は、2つの光学格子を通過しなけ
机まならずまた途中において複雑な回折光が混じり、さ
らに格子の基村たるガラス表面での反射、屈折、さらに
はガラス内部での吸収により減衰し、その結果受光器に
よって得られる信号はノイズを含みかつ、微弱とならざ
るを得なかった。
Therefore, the light from the light source must pass through two optical gratings, and is mixed with complex diffracted light along the way, as well as reflection and refraction on the glass surface, which is the base of the grating, and furthermore, light inside the glass. Attenuation occurs due to absorption, and as a result, the signal obtained by the photoreceiver inevitably contains noise and is weak.

さらに光源、レンズ、受光器を配置するために、必然的
にェンコーダが大型とならざるを得なかつた。また2つ
の光学格子の間に斜めに光線を入射させるようにした反
射型ェンコーダがあるが、これも回折、散乱、反射等に
よる光の損失が大きいとともに、光源および受光器の取
付を斜めにしなければならないために構造が複雑であり
、また小型化が十分でなかった。
Furthermore, in order to arrange the light source, lens, and light receiver, the encoder inevitably had to be large. There is also a reflection type encoder that allows a beam of light to enter obliquely between two optical gratings, but this also has a large loss of light due to diffraction, scattering, reflection, etc., and requires that the light source and receiver be mounted at an angle. Therefore, the structure was complicated, and miniaturization was not sufficient.

上記従釆の問題点を解消するために、本出願人によって
、一方の光学格子に、半導体基体にこれと相反する導電
型の紐帯状の半導体層を一定ピッチに配設し、これに他
方の光学格子を透過した光線を照射するようにし、前記
半導体基体と半導体層から出力を得るようにしたものが
提案されている。
In order to solve the above-mentioned problems, the present applicant has arranged one optical grating on a semiconductor substrate with string-like semiconductor layers of opposite conductivity type at a constant pitch, and then A device has been proposed in which a light beam transmitted through an optical grating is irradiated and output is obtained from the semiconductor substrate and the semiconductor layer.

この提案は、受光側のレンズを省略したこと、光源から
の光線が一方の光学格子のみを通過するようにされたこ
と、第2の光学格子と受光器の間隔が零になったことに
おいて、小型化および効率が向上されている。
This proposal omitted the lens on the light receiving side, the light rays from the light source passed through only one optical grating, and the distance between the second optical grating and the light receiver became zero. Miniaturization and efficiency have been improved.

また前記提案に対して、前記半導体基体および半導体層
からなるスリット状に受光素子による出力の高周波特性
の改善策として、スリットの抵抗を解消もしくは減少さ
せるために、受光素子の全面を透明導電体材料で覆って
出力をまとめるようにしたものが提案されている。
In addition, in response to the above proposal, as a measure to improve the high-frequency characteristics of the output from the slit-shaped light-receiving element made of the semiconductor substrate and semiconductor layer, the entire surface of the light-receiving element is made of a transparent conductive material in order to eliminate or reduce the resistance of the slit. It has been proposed to summarize the output by covering it with

また連続平面状の半導体層の上に、不透明膜スリットを
設け、これによって、高周波特性を改善するとともに製
造を容易にしたものも提案されている。
It has also been proposed that an opaque film slit be provided on a continuous planar semiconductor layer, thereby improving high frequency characteristics and facilitating manufacturing.

さらに、前記半導体基体および半導体層をMOS半導体
とし、前記不透明膜スリットをMOS半導体における金
属部により構成したものも提案されている。
Furthermore, it has been proposed that the semiconductor substrate and the semiconductor layer are made of a MOS semiconductor, and the opaque film slit is made of a metal part of the MOS semiconductor.

しかしながら、これらの光電型ヱンコーダのスケールは
小型化が十分でなく、また例えば、MOS半導体を利用
したスケールの場合、材料となるシリコン結晶体が高価
であるとともに長く製造できないため、経済的、技述的
に困難な問題を有している。
However, the scale of these photoelectric encoders cannot be sufficiently miniaturized, and for example, in the case of scales using MOS semiconductors, the silicon crystal material used is expensive and cannot be manufactured for a long time, so it is difficult to achieve economical and technical results. This poses a difficult problem.

これはメインスケールに適用する場合に困難を伴なう。
また、一般に反射型のェンコーダは透過型のェンコーダ
より小型であるが、反射型の場合、反射スケールに照射
するための光線は傾斜光として入射させなければならず
、このため回折、散乱、反射等による光の損失が大きく
、また発光部と受光部の取付が斜めになり、構造が複雑
となるという欠点がある。
This poses difficulties when applied to the main scale.
Additionally, reflective encoders are generally smaller than transmissive encoders, but in the case of reflective encoders, the light beam to irradiate the reflective scale must be incident as oblique light, which causes problems such as diffraction, scattering, and reflection. However, there are disadvantages in that the light loss caused by this is large, and the light emitting part and the light receiving part are mounted at an angle, making the structure complicated.

本発明は上記従来の問題点に鑑みてなされたものであっ
て、さらに小型化および部品点数を減少させるとともに
、光路を短か〈して光損失を減少させ、また反射型のも
のにおいても光源を傾斜して取り付ける必要のない光電
型ェソコーダを提供するを目的とする。
The present invention has been made in view of the above-mentioned conventional problems, and further reduces the size and number of parts, shortens the optical path to reduce optical loss, and also makes it possible to reduce light loss even in reflective type light sources. An object of the present invention is to provide a photoelectric type esocoder that does not require installation at an angle.

この発明は、光学格子を備えた第1および第2のスケー
ルを相対移動させて得た光の明暗から物理量を検知する
ようにした光電型ェンコーダにおいて、前記第1のスケ
ールは基材に細帯状の光反射部と非反射部が交互に整列
配置され、前記第2のスケールは、光透過性基材上に、
光遮断性かつ導電性材料からなる第1の信号導出材層と
、光を電気信号に変換するPN半導体層と、光透過性か
つ導電性材料からなる第2の信号導出材層と、をこの順
で積層形成した受光部を紬帯状に一定ピッチで配設して
なり、前記光透過性基材方向からの光に対して、前記受
光部を光遮断スリットとするとともに該受光部間を光透
過スリットとして形成され、かつ、前記第1および第2
のスケールは、前記光反射部と受光部が対面して配置さ
れるとともに、光源からの光線が前記第2のスケールの
光透過スリットを通して前記第1のスケールの反射部に
照射されるようにすることによって前記目的を達成する
ものである。
The present invention provides a photoelectric encoder that detects a physical quantity from the brightness and darkness of light obtained by relatively moving first and second scales each having an optical grating, in which the first scale is formed into a thin strip on a base material. light reflective parts and non-reflective parts are arranged alternately, and the second scale is arranged on a light transmitting base material,
This layer includes a first signal derivation material layer made of a light-blocking and conductive material, a PN semiconductor layer that converts light into an electrical signal, and a second signal derivation material layer made of a light-transmitting and conductive material. The light-receiving parts are laminated in order and are arranged at a constant pitch in a pongee strip shape, and the light-receiving parts are used as light-blocking slits for light coming from the direction of the light-transmitting base material, and the light-receiving parts are used as light-blocking slits. formed as a transmission slit, and said first and second
In the scale, the light reflecting section and the light receiving section are arranged facing each other, and the light beam from the light source is irradiated onto the reflecting section of the first scale through the light transmission slit of the second scale. This achieves the above objective.

以下本発明の実施例を図面を参照して説明する。Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明にかかる光電型ェンコーダの実施例を示
す平面図、第2図は第1図のローロ線に沿う拡大断面図
である。
FIG. 1 is a plan view showing an embodiment of a photoelectric encoder according to the present invention, and FIG. 2 is an enlarged sectional view taken along the Rolo line in FIG. 1.

この実施例は、例えばガラスよりなる光透過性基材1上
に、光遮断性かつ導電性材料、例えば金属膜からなる第
1の信号導出材層2と、光を電気信号に変更するPN半
導体3と、光透過性かつ導電性材料例えば1い03,S
n02,Siまたはこれらの混合物からなる透明膜の第
2の信号導出材層4と、をこの順で積層形成した受光部
5を紐帯状に一定ピッチで配設して第2のスケールSを
形成したものである。
In this embodiment, a first signal deriving material layer 2 made of a light-shielding and conductive material such as a metal film is provided on a light-transmitting base material 1 made of glass, for example, and a PN semiconductor that converts light into an electric signal. 3, and a light-transmissive and conductive material such as 1-03,S
A second scale S is formed by arranging light-receiving parts 5 in the form of a string at a constant pitch, and a second signal deriving material layer 4 made of a transparent film made of n02, Si, or a mixture thereof, laminated in this order. This is what I did.

前記スケールSは第3図に示されるように、第1のスケ
ールたる、反射型メインスケールMに対して、その反射
部6に受光部5が対面するように配置され、反射型メイ
ンスケールMに向かって、スケールSの背面からしンズ
7を介して光源8からの光線が入射するようされている
As shown in FIG. 3, the scale S is arranged such that the light receiving part 5 faces the reflective main scale M, which is the first scale, and the reflective main scale M is arranged so that the light receiving part 5 faces the reflective main scale M. A light beam from a light source 8 is made to enter from the back side of the scale S via a lens 7.

メインスケールMの各反射部6の間は、光透過部もしく
は光吸収部からなる非反射部とされている。即ち前記受
光部5の第2の信号導出材層4が光源8からの光線を遮
断する作用をなし、これによって受光部5は光遮断スリ
ットとなり、また各受光部5間は光透過スリットの作用
をなし、光源8からの光線が光透過性基材1を通して反
射型メインスケールMに照射され得るようになっている
A non-reflective portion consisting of a light transmitting portion or a light absorbing portion is provided between each reflective portion 6 of the main scale M. That is, the second signal deriving material layer 4 of the light receiving section 5 functions to block the light beam from the light source 8, thereby the light receiving section 5 acts as a light blocking slit, and the space between each light receiving section 5 acts as a light transmitting slit. The light beam from the light source 8 can be irradiated onto the reflective main scale M through the light-transmitting base material 1.

また反射型メインスケールMの反射部6によって反射さ
れた光線は、受光部5の第1の信号導出材層2を通って
PN半導体層3に至り、ここで半導体の電気的出力に変
換される。PN半導体層3における電気出力は、出力端
子9および10から外部に取り出される。すなわち前記
スケールSはインデックススケールと受光素子とが一体
となったインデックスセンサーの機能をなすようされて
いる。次に上記スケールSの製造方法を説明する。
In addition, the light beam reflected by the reflecting section 6 of the reflective main scale M passes through the first signal deriving material layer 2 of the light receiving section 5 and reaches the PN semiconductor layer 3, where it is converted into an electrical output of the semiconductor. . Electrical output in the PN semiconductor layer 3 is taken out from output terminals 9 and 10. That is, the scale S functions as an index sensor in which an index scale and a light receiving element are integrated. Next, a method for manufacturing the scale S will be explained.

まず光透過性基材1たるガラス基板を真空葵着装債内に
装着し、5×10‐6のrrの真空度の環境で、150
〜200ooに加熱し、タングステンボードからCrを
蒸着させ、ガラス基板上にCrを蒸着させて2000〜
3000Aの厚さの第1の信号導出材層2たるCr膜を
形成する。次に前記Cr膜を形成したガラス基板をプラ
ズマチヤンバ−に入れて30000に加熱し、SjH4
10%を含むArガスを日2ガスにより1針轡こ希釈し
たガスを前記プラズマチャンバ−に導入し、0.1〜2
幻rrの圧力下で高周波グロー放電により、N型非晶質
シリコン(N−a−Si)膜11、およびP型非晶質シ
リコン(P−a−Si)膜12を、前記第1の信号導出
材層2の上に積層し、これによって約1山の厚さのPN
半導体層3を形成する。前記N型非晶質シリコン膜11
は析出初期に徴量のPH3を反応ガス中に混入すること
により、また、P型非晶質シリコン膜12は途中で前訂
PH3をB2日6に切換えることによりそれぞれ析出さ
せる。ここで、PN半導体層3の形成は、熱分解法、ス
バツタ蒸着法等の他の方法によってもよい。次に、PN
半導体層3を形成した基材1を、真空蒸着槽内に入れ1
5000に加熱し、アルミナつばに入れたln203を
電子ビーム蒸着法により約1000Aの厚さのln20
3膜を蒸着させ、これによって前記PN半導体層3の上
に第2の信号導出材層4を形成する。
First, a glass substrate, which is a light-transmissive base material 1, was mounted in a vacuum Aoi mounting bond, and the glass substrate was heated to 150
Heating to ~200oo, evaporating Cr from the tungsten board, and depositing Cr on the glass substrate to 2000~
A Cr film serving as the first signal deriving material layer 2 is formed with a thickness of 3000 Å. Next, the glass substrate on which the Cr film was formed was placed in a plasma chamber and heated to 30,000 ℃.
A gas prepared by diluting Ar gas containing 10% twice a day with 1 needle of gas was introduced into the plasma chamber, and the dilution rate was 0.1~2
The first signal Laminated on the derived material layer 2, thereby forming a PN layer with a thickness of about one mountain.
A semiconductor layer 3 is formed. The N-type amorphous silicon film 11
The P-type amorphous silicon film 12 is deposited by mixing a certain amount of PH3 into the reaction gas at the initial stage of deposition, and by switching the predetermined PH3 to B2 day 6 midway through the deposition. Here, the PN semiconductor layer 3 may be formed by other methods such as a thermal decomposition method or a sputter deposition method. Next, P.N.
The base material 1 on which the semiconductor layer 3 has been formed is placed in a vacuum deposition tank.
5000A and placed in an alumina brim, LN203 with a thickness of about 1000A is made by electron beam evaporation.
3 films are deposited, thereby forming a second signal deriving material layer 4 on the PN semiconductor layer 3.

次にスピン塗装法によりホトレジストを約2山の厚さに
塗布し、乾燥させる。
Next, photoresist is applied to a thickness of about two peaks using a spin coating method and dried.

さらにマスクにより出力端子部9を遮光した後、紫外線
で露光して現像し、出力端子部9のホトレジストを除去
する。次いで、ケミカルエッチングあるいはプラズマエ
ッチング等の方法により、出力端子9部分の第2の信号
導出材層4およびPN半導体層3を除去し、第1の信号
導出材層2を露出させる。
Furthermore, after shielding the output terminal portion 9 from light with a mask, the photoresist on the output terminal portion 9 is removed by exposure to ultraviolet rays and development. Next, the second signal deriving material layer 4 and the PN semiconductor layer 3 in the output terminal 9 portion are removed by a method such as chemical etching or plasma etching, and the first signal deriving material layer 2 is exposed.

同様にして、受光部5の間の光透過スリット13部分以
外の部分をホトレジストで覆い、該光透過スリット13
に該当する第1,2の信号導出材層2,4およびPN半
導体層3をプラズマエッチング等により除去し、光透過
性基材1を露出させる。
Similarly, parts other than the light transmitting slit 13 between the light receiving parts 5 are covered with photoresist, and the light transmitting slit 13 is covered with photoresist.
The first and second signal deriving material layers 2 and 4 and the PN semiconductor layer 3 corresponding to the above are removed by plasma etching or the like, and the light-transmitting base material 1 is exposed.

ここで光透過スリット13の幅は、受光部5の光透過性
基材1の表面からの高さ2倍以上とするのが明暗を検知
するのに都合がよい。
Here, it is convenient for the width of the light transmitting slit 13 to be at least twice the height of the light receiving section 5 from the surface of the light transmitting base material 1 in order to detect brightness and darkness.

次に第1の信号導出材層2および第2の信号導出材層4
から出力電流を取り出すための導線を前記出力端子9お
よび101こ導電性接着材により取り付け、最後にPN
半導体層を保護するために全体に導くシリコンワニスを
塗布乾燥して完成させる。
Next, the first signal deriving material layer 2 and the second signal deriving material layer 4
A conductive wire for taking out the output current from the output terminals 9 and 101 is attached with a conductive adhesive, and finally the PN
To protect the semiconductor layer, a silicone varnish is applied to the entire surface and dried to complete the process.

なお、前記実施例において、光源8からの光線はしンズ
9を介してスケールSに垂直に入射するようにされてい
るが、これは、スケールSを通してメインスケールMに
光線が照射されるものであれば、光源は懐斜して設けて
もよい。
In the above embodiment, the light ray from the light source 8 is made to enter the scale S perpendicularly through the lens 9, but this does not mean that the light ray is irradiated onto the main scale M through the scale S. If so, the light source may be provided obliquely.

この場合は、スケールの厚さ方向のサイズを小さくでき
るという利点がある。
In this case, there is an advantage that the size of the scale in the thickness direction can be reduced.

次に本発明の他の実施例を第4図を参照して説明する。Next, another embodiment of the present invention will be described with reference to FIG.

ここで前記第1実施例と同一または同様の部分には同一
の符号を付することにより説明を省略する。この実施例
は、前記スケールSにおいて、前記光透過性基材1を介
しそ前記受光部5の反対側に光源14、およびこの光源
14からの光が前記光透過性基材1を通って反対側に照
射されるように反射鏡15を設けたものである。
Here, the same or similar parts as in the first embodiment are given the same reference numerals, and the explanation thereof will be omitted. In this embodiment, in the scale S, a light source 14 is provided on the opposite side of the light receiving section 5 through the light transmitting base material 1, and light from this light source 14 passes through the light transmitting base material 1 and is opposite to the light receiving section 5. A reflecting mirror 15 is provided so as to illuminate the side.

前記反射鏡15は、光透過性基材1の光源14側に一体
的に設けられた略半球状の透明樹脂16の外側に光反射
膜を設けることにより形成されたものである。
The reflecting mirror 15 is formed by providing a light reflecting film on the outside of a substantially hemispherical transparent resin 16 that is integrally provided on the light source 14 side of the light-transmitting substrate 1.

前記透明樹脂16は前記光透過性基材1と同一の屈折率
の透光性材料よりなり光源14の周囲に充填され、これ
により光源14からの光が光透過性基材1に達する間の
光路における屈折率が改善されるようになっている。
The transparent resin 16 is made of a light-transmitting material having the same refractive index as the light-transmitting base material 1 and is filled around the light source 14, so that while the light from the light source 14 reaches the light-transmitting base material 1, The refractive index in the optical path is improved.

この実施例は、光源14をインデックススケ−ルS自体
に取り付け、かつ透明樹脂16によって一体的にモール
ドされているので、単に2つのスケールを配設するのみ
でヱンコーダを構成できるという効果がある。
In this embodiment, the light source 14 is attached to the index scale S itself and is integrally molded with transparent resin 16, so that an encoder can be constructed by simply arranging two scales.

また光源とインデックススケールSが一体的であるので
振動による故障あるいは誤差も解消されるという効果を
有する。本発明は上記のように構成したので、スケール
と受光素子を一体にでき、従ってェンコーダを薄型にす
ることができるとともに部品点数を減少できるという効
果を有する。また受光素子の背面から投光できるので、
反射型スケールにおいて、インデックススケールとメイ
ンスケールを平行かつ接近でき、従って光の回折、散乱
等による光の損失を4・さくできるという効果を有する
。さらにインデックススケールと受光素子を一体にした
ので、受光素子を小さくでき、従って製造が容易である
という効果を有する。
Furthermore, since the light source and the index scale S are integrated, it has the effect of eliminating failures or errors caused by vibration. Since the present invention is configured as described above, it is possible to integrate the scale and the light receiving element, and therefore it has the advantage that the encoder can be made thinner and the number of parts can be reduced. Also, since light can be emitted from the back of the light receiving element,
In the reflective scale, the index scale and the main scale can be placed parallel and close to each other, which has the effect of reducing light loss due to light diffraction, scattering, etc. by 4. Furthermore, since the index scale and the light-receiving element are integrated, the light-receiving element can be made smaller and therefore easier to manufacture.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にかかる光電型ェンコーダのスケールを
示す平面図、第2図は第1図のロー0線にそう拡大断面
図、第3図は同実施例にかかる光電型ェンコーダの要部
を示す略示側面図、第4図は同本発明の第2実施例を示
す略示側面図である。 S・・・スケール、M・・・メインスケール、1・・・
光透過性基材、2・・・第1の信号導出材、3・・・P
N半導体層、4・・・第2の信号導出材層、5…受光部
、6…反射部、8・・・光源、11・・・N型非晶質シ
リコン膜、12・・・P型非晶質シリコン膜、113…
光透過スリット部。 弟′図 弟2図 朱3函 あ4図
FIG. 1 is a plan view showing the scale of a photoelectric encoder according to the present invention, FIG. 2 is an enlarged sectional view taken along the low-0 line in FIG. 1, and FIG. 3 is a main part of a photoelectric encoder according to the same embodiment. FIG. 4 is a schematic side view showing a second embodiment of the present invention. S...Scale, M...Main scale, 1...
Light-transmitting base material, 2...first signal deriving material, 3...P
N semiconductor layer, 4... Second signal deriving material layer, 5... Light receiving section, 6... Reflecting section, 8... Light source, 11... N type amorphous silicon film, 12... P type Amorphous silicon film, 113...
Light transmission slit section. Younger brother' figure Younger brother 2 figure Red 3 box A4 figure

Claims (1)

【特許請求の範囲】 1 光学格子を備えた第1および第2のスケールを相対
移動させて得た光の明暗から物理量を検知するようにし
た光電型エンコーダにおいて、前記第1のスケールは基
材に細帯状の光反射部と非反射部が交互に整列配置され
、前記第2のスケールは、光透過性基材上に、光遮断性
かつ導電性材料からなる第1の信号導出材層と、光を電
気信号に変換するPN半導体層と、光透過性かつ導電性
材料からなる第2の信号導出材層と、をこの順で積層形
成した受光部を細帯状に一定ピツチで配設してなり、前
記光透過性基材を通過してくる光に対して、前記受光部
を光遮断スリツトとするともに該受光部間を光透過スリ
ツトとして形成され、かつ、前記第1および第2のスケ
ールは、前記光反射部と受光部が対面して配置されると
ともに、光源からの光線が前記第2のスケールの光透過
スリツトを通して前記第1のスケールの反射部に照射さ
れることを特徴とする光電型エンコーダ。 2 前記第2のスケールが第1のスケールに対して移動
されることを特徴とする特許請求の範囲第1項記載の光
電型エンコーダ。
[Claims] 1. In a photoelectric encoder that detects a physical quantity from the brightness of light obtained by relatively moving first and second scales each having an optical grating, the first scale is attached to a base material. thin strip-shaped light reflecting parts and non-reflecting parts are arranged alternately, and the second scale has a first signal deriving material layer made of a light-blocking and conductive material on a light-transmitting base material. , a light-receiving section in which a PN semiconductor layer that converts light into an electrical signal and a second signal deriving material layer made of a light-transmitting and conductive material are laminated in this order is arranged in a strip shape at a constant pitch. The light receiving portion is formed as a light blocking slit and a light transmitting slit is formed between the light receiving portions for light passing through the light transmitting base material, and the first and second The scale is characterized in that the light reflecting section and the light receiving section are arranged facing each other, and the light beam from the light source is irradiated onto the reflecting section of the first scale through the light transmitting slit of the second scale. photoelectric encoder. 2. The photoelectric encoder according to claim 1, wherein the second scale is moved relative to the first scale.
JP56084083A 1981-06-01 1981-06-01 Photoelectric encoder Expired JPS6032125B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP56084083A JPS6032125B2 (en) 1981-06-01 1981-06-01 Photoelectric encoder
GB8214930A GB2099993B (en) 1981-06-01 1982-05-21 Photoelectric displacement encoder
US06/380,818 US4499374A (en) 1981-06-01 1982-05-21 Photoelectrical encoder employing an optical grating
DE19823220560 DE3220560A1 (en) 1981-06-01 1982-06-01 PHOTOELECTRIC ENCODER

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56084083A JPS6032125B2 (en) 1981-06-01 1981-06-01 Photoelectric encoder

Publications (2)

Publication Number Publication Date
JPS57198813A JPS57198813A (en) 1982-12-06
JPS6032125B2 true JPS6032125B2 (en) 1985-07-26

Family

ID=13820589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56084083A Expired JPS6032125B2 (en) 1981-06-01 1981-06-01 Photoelectric encoder

Country Status (1)

Country Link
JP (1) JPS6032125B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987005693A1 (en) * 1986-03-14 1987-09-24 Mitutoyo Mfg. Co., Ltd. Photoelectric displacement detector

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06196726A (en) * 1992-12-24 1994-07-15 Canon Inc Light receiving element, and displacement detector equipped with this light receiving device
JP2783242B2 (en) * 1996-02-29 1998-08-06 日本電気株式会社 Rotation detection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987005693A1 (en) * 1986-03-14 1987-09-24 Mitutoyo Mfg. Co., Ltd. Photoelectric displacement detector

Also Published As

Publication number Publication date
JPS57198813A (en) 1982-12-06

Similar Documents

Publication Publication Date Title
US5155355A (en) Photoelectric encoder having a grating substrate with integral light emitting elements
GB2099993A (en) Photoelectric displacement encoder
EP0154962B1 (en) Image sensor
US3969751A (en) Light shield for a semiconductor device comprising blackened photoresist
WO2005050141A1 (en) Optical encoder
US4650984A (en) Photosensor array for treating image information
CN111006699B (en) Optical encoder with partially shielded photodiode
JPS6032126B2 (en) Photoelectric encoder
JPS6032125B2 (en) Photoelectric encoder
GB2094974A (en) Photoelectric encoder device
JPH102761A (en) Photoelectric encoder
JPH0415630B2 (en)
JPS6014287B2 (en) Photoelectric encoder scale
JPH0656304B2 (en) Photoelectric encoder
KR101882141B1 (en) Spectromtric sensor and method for manufacturing the same and spectromtric device
CN211605165U (en) Position sensitive detector and mask alignment system
JP2002162730A (en) Reticle, exposing method using the reticle, and semiconductor apparatus produced by using the exposing method
JPH0484713A (en) Graduation disk of optical encoder
JPS63217222A (en) Photoelectric displacement detecting device
JP2519030B2 (en) Photoelectric conversion device
JPH05312643A (en) Quantity of light meter
JPH10221120A (en) Optical encoder apparatus
JP2000307131A (en) Light transmissive semiconductor device
JPS63217223A (en) Photoelectric displacement detecting device
JPH09297039A (en) Photoelectric type encoder