JPH06196726A - Light receiving element, and displacement detector equipped with this light receiving device - Google Patents

Light receiving element, and displacement detector equipped with this light receiving device

Info

Publication number
JPH06196726A
JPH06196726A JP4344573A JP34457392A JPH06196726A JP H06196726 A JPH06196726 A JP H06196726A JP 4344573 A JP4344573 A JP 4344573A JP 34457392 A JP34457392 A JP 34457392A JP H06196726 A JPH06196726 A JP H06196726A
Authority
JP
Japan
Prior art keywords
light receiving
light
receiving element
lattice pattern
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4344573A
Other languages
Japanese (ja)
Inventor
Satoru Ishii
哲 石井
Yasushi Kaneda
泰 金田
Akira Ishizuka
公 石塚
Hiroshi Kondo
浩史 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP4344573A priority Critical patent/JPH06196726A/en
Priority to EP93110388A priority patent/EP0577088B2/en
Priority to DE69320716T priority patent/DE69320716T3/en
Publication of JPH06196726A publication Critical patent/JPH06196726A/en
Priority to US08/454,501 priority patent/US5657125A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Optical Transform (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To obtain a small light receiving element having a simple structure by forming a light receiving section on a lattice pattern using a lithography technique so as to integrate the light receiving element and the lattice pattern into a single body. CONSTITUTION:A section 50 has the same constitution as a conventional silicon photo-diode, and a p-n junction is made by laminating an n-type layer 52 and a p-type layer 53, in this order, on a cathode electrode 51 of the section 50. An SiO2 film 54 for protecting purpose is formed on the p-type layer 53. A film 55 made of a transparent material, such as SiO2 or the like, is formed on the SiO2 film 54, and a photoresist is applied over the film 55. A lattice pattern is written on the photoresist, and the photoresist is exposed to light. Only the photoresist remaining on unnecessary portions is removed by etching to form gratings 56 on the transparent film 55. Accordingly, when an anode electrode 57 is formed by removing a part of the SiO2 film on the p-type layer 53, the lattice pattern is formed together with a light receiving section of a light receiving element in an integrated fashion, and hence it is possible to constitute a small simple light receiving element.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光学的に物体の変位
(移動量、回転量、速度、加速度)を検出する装置、具
体的にはエンコーダ、速度センサ、加速度センサ等と、
これらのセンサに使用される受光素子とに関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for optically detecting displacement (movement amount, rotation amount, speed, acceleration) of an object, specifically, an encoder, a speed sensor, an acceleration sensor, and the like.
The present invention relates to a light receiving element used for these sensors.

【0002】[0002]

【従来の技術】光を物体に照射して高精度に物体の変位
を求める光学式変位センサ、例えば光学式エンコーダ、
レーザードップラ速度計、レーザー干渉計などが、NC
工作機械、OA機器、ロボット、精密製造装置等の分野
で広く利用されている。
2. Description of the Related Art An optical displacement sensor, such as an optical encoder, which irradiates an object with light to obtain the displacement of the object with high accuracy.
Laser Doppler speedometer, laser interferometer, etc.
It is widely used in the fields of machine tools, office automation equipment, robots, precision manufacturing equipment, etc.

【0003】こうした変位センサのあるものは、被検物
体に取り付けたスケ−ルを照明することにより、当該ス
ケ−ルからのビ−ムが作る当該スケ−ルの移動に応じて
明暗の位相が変化する縞模様を別のスケ−ルの格子パタ
−ンに投影し、当該インデックススケ−ルの格子パタ−
ンを通過した縞模様を作るビ−ムを、当該インデックス
スケ−ルから比較的離して置いた受光素子で受光し、被
検物体の変位を指し示す電気信号に変換する。
Some of such displacement sensors illuminate a scale attached to an object to be inspected so that the phase of light and dark is changed in accordance with the movement of the scale produced by a beam from the scale. The changing striped pattern is projected on the grid pattern of another scale, and the grid pattern of the index scale concerned is projected.
A beam forming a striped pattern that has passed through the sensor is received by a light receiving element placed relatively far from the index scale and converted into an electric signal indicating the displacement of the object to be inspected.

【0004】[0004]

【発明が解決しようとする課題】上記の変位センサは、
被件物体に取り付けるスケ−ルの格子ピッチを小さくし
且つインデックススケ−ルの格子パタ−ンのピッチも小
さくすることにより分解能を上げることができるが、イ
ンデックススケ−ルの格子パタ−ンのピッチを小さくし
た場合に当該格子パタ−ンを通過するビ−ムを効率よく
受光素子に向けるには、インデックススケ−ルと受光素
子の間にレンズ等の集光手段を配せざるをえず、構成が
複雑・大型になるという問題が生じる。
DISCLOSURE OF INVENTION Problems to be Solved by the Invention
The resolution can be increased by reducing the grid pitch of the scale attached to the object and the pitch of the grid pattern of the index scale, but the pitch of the grid pattern of the index scale can be increased. In order to efficiently direct the beam passing through the lattice pattern to the light receiving element when the value is reduced, it is unavoidable to dispose a condensing means such as a lens between the index scale and the light receiving element. There is a problem that the configuration becomes complicated and large.

【0005】[0005]

【課題を解決するための手段】本発明の受光素子は、受
光部に入射したビ−ムに応答して電気信号を生じせしめ
る受光素子において、前記受光部がリソグラフィ−技術
により形成された格子パタ−ンを有することにより、受
光素子と格子パタ−ンを一体化し、上記課題を解決する
ものである。
The light receiving element of the present invention is a light receiving element which generates an electrical signal in response to a beam incident on the light receiving portion, wherein the light receiving portion is formed by a lithography technique. By having the light emitting element, the light receiving element and the grating pattern are integrated to solve the above problems.

【0006】又、本発明の変位検出装置は、被検物体か
らのビ−ムが作る縞模様の位相変化に基づいて、受光素
子に対する被検物体の相対的な変位を検出する装置にお
いて、前記受光素子が、格子パタ−ンを有する受光部を
備え、該受光部に前記縞模様を作るビ−ムに応答して電
気信号を出力するよう構成することにより、受光素子と
格子パタ−ンを一体化し、上記課題を解決するものであ
る。
Further, the displacement detecting apparatus of the present invention is an apparatus for detecting a relative displacement of an object to be detected with respect to a light receiving element based on a phase change of a striped pattern formed by a beam from the object to be inspected. The light receiving element is provided with a light receiving section having a lattice pattern, and the light receiving section is configured to output an electric signal in response to the beam forming the striped pattern. They are integrated to solve the above problems.

【0007】本発明の好ましい形態には、前記格子パタ
−ンがレジスト材料より成るもの、前記格子パタ−ンが
配線パタ−ンより成るもの、前記格子パタ−ンが半導体
層を覆う光透過層上に形成されるもの、前記格子パタ−
ンが半導体層を覆う光透過層により形成されるもの、前
記格子パタ−ンが半導体層のP層及びN層の少なくとも
一方により形成されるもの、等があり、いづれの格子パ
タ−ンもリソグラフィ−技術により作成することが可能
で、以下の実施例に開示される。
In a preferred embodiment of the present invention, the lattice pattern is made of a resist material, the lattice pattern is made of a wiring pattern, and the lattice pattern covers a semiconductor layer. What is formed on the grid pattern
And the grating pattern is formed by at least one of the P layer and the N layer of the semiconductor layer. Each grating pattern is formed by lithography. It can be created by the technology and is disclosed in the examples below.

【0008】[0008]

【実施例】図1は本発明の受光素子の一実施例を示す概
略図である。図1の下の図は、図1の上の上面図のa−
a’断面とb−b’断面とを合成し、作図した断面図で
ある。図1において、符号50で示される部分は通常の
シリコンフォトダイオードと同じ構成を持ち、部分50
の下端のカソード電極51の上にN層52、P層53を
順次積層することによりPN接合を成している。又、P
層53の上に保護用としてSiO2膜54が形成されてい
る。
1 is a schematic view showing an embodiment of a light receiving element of the present invention. The bottom view of FIG. 1 is a- in the top view of FIG.
It is sectional drawing which combined the a'section and the bb 'section, and plotted it. In FIG. 1, a portion indicated by reference numeral 50 has the same configuration as that of a normal silicon photodiode.
A N-layer 52 and a P-layer 53 are sequentially stacked on the cathode electrode 51 at the lower end of to form a PN junction. Also, P
A SiO 2 film 54 is formed on the layer 53 for protection.

【0009】本実施例では、SiO2膜54上に、更に、Si
O2等の光透過性材料よりなる膜55を、例えばスピンコ
ート等の成膜技術で、形成し、光透過性(材料)膜55
上にフォトレジストを塗布した後、格子パタ−ンが描か
れたマスクを介して露光するか電子線やレ−ザ−光で格
子パタ−ンを描画・露光し、フッ化水素等を用いたエッ
チングで不要な部分のレジストのみを除去することによ
り、残存レジスト自体で光透過性膜55上に格子56
(回折格子)を形成する。一方、P層53の上部のSiO2
膜54の一部をフォトエッチングにより除去し、アルミ
等によってアノード電極57を形成する。又、上面図が
示す通り、アノード電極を2チャンネル分形成して受光
部を2個にし、互いに位相をずらした一対の格子を対応
する受光部上に形成することにより、素子から、互いに
位相が異なる一対の信号を出力できるよう構成してい
る。
In this embodiment, on the SiO 2 film 54, further, Si
The film 55 made of a light-transmitting material such as O 2 is formed by a film forming technique such as spin coating, and the light-transmitting (material) film 55 is formed.
After applying a photoresist on the surface, it is exposed through a mask on which a lattice pattern is drawn, or the lattice pattern is drawn and exposed by an electron beam or laser light, and hydrogen fluoride or the like is used. By removing only the unnecessary portion of the resist by etching, the residual resist itself forms a grid 56 on the light transmissive film 55.
(Diffraction grating) is formed. On the other hand, SiO 2 above the P layer 53
A part of the film 54 is removed by photoetching, and the anode electrode 57 is formed of aluminum or the like. Further, as shown in the top view, the anode electrodes are formed for two channels to form two light receiving portions, and a pair of gratings whose phases are shifted from each other are formed on the corresponding light receiving portions, so that the phases are mutually offset from the element. It is configured to be able to output different pairs of signals.

【0010】本実施例では、格子パタ−ンが受光素子の
受光部に形成されており、両者が一体化してるので、簡
単・小型の受光素子となっている。
In this embodiment, since the grating pattern is formed in the light receiving portion of the light receiving element and both are integrated, the light receiving element is simple and small.

【0011】このように半導体デバイス製造プロセスを
利用することにより、受光部と格子パタ−ンとを一体的
に構成するが容易になり、格子56と受光部(又は受光
素子)の位置関係を非常に高い精度で抑え込むことがで
きる。
By utilizing the semiconductor device manufacturing process as described above, it becomes easy to integrally form the light receiving portion and the grating pattern, and the positional relationship between the grating 56 and the light receiving portion (or the light receiving element) is extremely reduced. Can be suppressed with high accuracy.

【0012】更に、本受光素子を用いることにより、変
位センサにおいては、組立工程が容易になると共に小型
化が図れる。
Further, by using the present light receiving element, the displacement sensor can be easily assembled and miniaturized.

【0013】格子56の回折格子としての働きを十分確
保したい場合は、格子56と受光面であるP層53との
距離を本受光素子に入射する光の波長(使用波長)より
十分大きめに設定しておく。
When it is desired to sufficiently secure the function of the grating 56 as a diffraction grating, the distance between the grating 56 and the P layer 53 which is the light receiving surface is set to be sufficiently larger than the wavelength of light incident on the light receiving element (working wavelength). I'll do it.

【0014】本受光素子は光透過性膜55上に格子56
を形成して構成されているが、光透過性膜55を形成せ
ず、SiO2膜54上に、直接、格子56を形成しても良
い。
The present light receiving element has a grating 56 on a light transmitting film 55.
However, the grating 56 may be formed directly on the SiO 2 film 54 without forming the light transmitting film 55.

【0015】本受光素子はフォトレジストにより格子5
6を構成したが、本発明は、この構成に限定されない。
The light receiving element is made of a photoresist to form a grating 5.
6 is configured, the present invention is not limited to this configuration.

【0016】図2は本発明の受光素子の他の実施例を示
す概略図であり、図示する通り、アノード電極57に用
いるアルミ配線パターンにより(回折)格子を構成して
いる。又、アルミ配線は、図2の如くアノード電極53
に接続していいし、アノード電極53から独立させてお
き、外部でカソード電極や回路グラウンド等に接続でき
るよう構成してもいい。
FIG. 2 is a schematic view showing another embodiment of the light receiving element of the present invention. As shown in the drawing, the aluminum wiring pattern used for the anode electrode 57 constitutes a (diffraction) grating. Further, the aluminum wiring is the anode electrode 53 as shown in FIG.
It may be connected to the cathode electrode 53, or may be separated from the anode electrode 53 and connected externally to the cathode electrode, circuit ground, or the like.

【0017】図3も本発明の受光素子の他の実施例を示
す概略図であり、図3では格子と受光部1組のみを備え
る素子を例示している。図3において、部分50は通常
のシリコンフォトダイオードで、図1、2の実施例と同
じである。本受光素子は、図2の素子から光透過性膜5
5を省略し、アノード電極57に用いるアルミ配線パタ
ーンより成る(回折)格子をSiO2膜54上に直接形成し
たものである。
FIG. 3 is also a schematic view showing another embodiment of the light receiving element of the present invention, and FIG. 3 exemplifies an element having only a grating and one set of light receiving portions. In FIG. 3, a portion 50 is a normal silicon photodiode, which is the same as the embodiment of FIGS. The light receiving element is the same as the element of FIG.
5 is omitted and a (diffraction) grating made of an aluminum wiring pattern used for the anode electrode 57 is directly formed on the SiO 2 film 54.

【0018】図4も本発明の受光素子の他の実施例を示
す概略図であり、図4でも格子と受光部1組のみを備え
る素子を例示している。本受光素子は、図3の実施例の
P層53の形状を変更したもので、格子を構成するアル
ミ配線が遮光する部分にはP層を形成せずにP層を格子
状にすることにより、PN接合の接合容量を小さく抑
え、素子の応答性を速くしている。
FIG. 4 is also a schematic view showing another embodiment of the light receiving element of the present invention, and FIG. 4 also illustrates an element having only a grating and one set of light receiving portions. In this light receiving element, the shape of the P layer 53 of the embodiment of FIG. 3 is changed, and the P layer is not formed in the portion where the aluminum wiring forming the grid shields light, but the P layer is formed in the grid shape. , The junction capacitance of the PN junction is suppressed small, and the response of the element is increased.

【0019】図5も本発明の他の実施例を示す概略図で
あり、図5でも格子と受光部1組のみを備える素子を例
示している。図5において、部分50は通常のシリコン
フォトダイオードで、図1、2の実施例と同じである。
本受光素子は、通常のシリコンフォトダイオ−ドに相当
する部分50のSiO2膜54上にSiO2をスピンコートによ
り成膜した光透過性膜55を形成し、光透過性膜55の
一部をフォトエッチングにより部分的に除去して位相
(回折)格子を形成したものである。
FIG. 5 is also a schematic view showing another embodiment of the present invention, and FIG. 5 also exemplifies an element having only one set of the grating and the light receiving portion. In FIG. 5, a portion 50 is a normal silicon photodiode, which is the same as the embodiment shown in FIGS.
In this light receiving element, a light transmissive film 55 formed by spin coating of SiO 2 is formed on a SiO 2 film 54 of a portion 50 corresponding to a normal silicon photodiode, and a part of the light transmissive film 55 is formed. Is partially removed by photoetching to form a phase (diffraction) grating.

【0020】図6も本発明の他の実施例を示す概略図で
あり、図6でも格子と受光部1組のみを備える素子を例
示している。図6において、図1、2に示す部材と同じ
部材には図1、2と同様の符号を付してある。本受光素
子は、通常のシリコンフォトダイオ−ドに相当する部分
50の受光部であるP層53の形状自体を格子状にした
ものである。
FIG. 6 is also a schematic diagram showing another embodiment of the present invention, and FIG. 6 also illustrates an element having only one set of grating and light receiving section. 6, the same members as those shown in FIGS. 1 and 2 are denoted by the same reference numerals as those in FIGS. In this light receiving element, the shape itself of the P layer 53, which is the light receiving portion of the portion 50 corresponding to a normal silicon photodiode, is formed into a lattice shape.

【0021】図7も本発明の他の実施例を示す概略図で
あり、図7でも格子と受光部1組のみを備える素子を例
示している。図を理解し易いする為、図7に限り、アノ
ード電極57(アルミ配線部分を含む)を透明表示して
おり、図7の真中及び下の断面図は、夫々、図7の上の
上面図のa−a’断面とb−b’を示す。本受光素子
は、図6の素子の受光面であるP層の内の格子を構成し
ていない部分上にアルミ配線を施して遮光したものであ
る。
FIG. 7 is also a schematic view showing another embodiment of the present invention, and FIG. 7 also illustrates an element having only one set of a grating and a light receiving portion. In order to make the drawing easy to understand, the anode electrode 57 (including the aluminum wiring portion) is transparently displayed only in FIG. 7, and the cross-sectional views in the middle and bottom of FIG. 7 are the top views of FIG. 7, respectively. 2 shows an aa 'cross section and a bb' of FIG. This light receiving element is a light receiving surface of the element of FIG. 6 in which the aluminum wiring is provided on a portion of the P layer which does not form a lattice to shield light.

【0022】一つのチップ上に形成する格子付受光部の
数は、上記実施例の如く1個又は2個だけに限定され
ず、互い位相が異なる信号を出力する3個以上の格子付
受光部を同一チップ上に構成しても良い。
The number of light receiving portions with a grating formed on one chip is not limited to one or two as in the above embodiment, and three or more light receiving portions with a grating for outputting signals having mutually different phases. May be configured on the same chip.

【0023】又、一チップ上に少数の格子付受光部を形
成しておき、ウェハからチップをスライスする際に複数
のチップを1個の受光素子として取り出しても良い。
It is also possible to form a small number of light receiving portions with a grid on one chip and take out a plurality of chips as one light receiving element when slicing the chips from the wafer.

【0024】本発明は、上記各実施例の受光素子とは材
質や構造が違ったフォトダイオードを利用しても実施で
きるし、光電変換器としてフォトトランジスタやCdS
セル等、該受光部に入射するビ−ムに応答して電気信号
を出力するもので実施できる。
The present invention can be implemented by using a photodiode whose material and structure are different from those of the light receiving element of each of the above embodiments, and a phototransistor or CdS is used as a photoelectric converter.
This can be implemented by a cell or the like that outputs an electric signal in response to a beam incident on the light receiving portion.

【0025】本発明において、受光素子が形成されるチ
ップ(ウエハ)に電圧変換回路、増幅回路等の処理回
路、及び/又は本受光素子と共に使用される他の各種回
路を組込んでも良い。
In the present invention, a chip (wafer) on which a light receiving element is formed may be incorporated with a processing circuit such as a voltage conversion circuit, an amplifier circuit, and / or other various circuits used together with the present light receiving element.

【0026】図8に、本発明の受光素子を備える変位セ
ンサの一実施例を示す。
FIG. 8 shows an embodiment of a displacement sensor equipped with the light receiving element of the present invention.

【0027】本変位センサは格子付受光部32B1、3
2B2を備える受光素子61Bと格子付受光部32C
1、32C2を備える受光素子61Cとを用いており、
受光素子61Bと受光素子61Cの夫々の基本構成は図
1に示す受光部と同じである。本変位センサは受光面上
に回折格子を形成した格子付受光部を備えた受光素子6
1B、61Cを用いているので、受光素子の組立・調整
が正確に行なわれており、従って小型なだけでなく変位
検出精度も高い。
This displacement sensor is provided with light receiving portions 32B1 and 3B with a grid.
Light receiving element 61B including 2B2 and light receiving portion 32C with a grid
Using a light receiving element 61C including 1, 32C2,
The basic structure of each of the light receiving element 61B and the light receiving element 61C is the same as that of the light receiving section shown in FIG. This displacement sensor includes a light receiving element 6 having a light receiving portion with a grating in which a diffraction grating is formed on the light receiving surface.
Since 1B and 61C are used, the light receiving element is accurately assembled and adjusted. Therefore, not only the size is small, but also the displacement detection accuracy is high.

【0028】図8において、半導体レーザや発光ダイオ
ード等の発光素子1から放射された光は、レンズ31A
で平行光束に変換された後、回折格子32Aに垂直入射
する。この光束は回折格子32Aで透過回折され、0次
回折光R0 、+1次回折光R+1、−1次回折光R-1の3
つを含む複数本の光束に分割されて、被検物体に取り付
けたスケール上に形成された回折格子21に照射され
る。
In FIG. 8, the light emitted from the light emitting element 1 such as a semiconductor laser or a light emitting diode is a lens 31A.
After being converted into a parallel light flux by, the light is vertically incident on the diffraction grating 32A. This light beam is transmitted and diffracted by the diffraction grating 32A, and is divided into 0-order diffracted light R 0 , + 1st-order diffracted light R +1 and −1st-order diffracted light R −1 .
The light beam is divided into a plurality of light beams including one, and the light beam is applied to the diffraction grating 21 formed on the scale attached to the object to be inspected.

【0029】因に、本変位センサを構成する回折格子3
2A、受光部61B、61Cとスケール上の回折格子2
1は、同一ピッチ1.6μmに設定されている。
Incidentally, the diffraction grating 3 which constitutes this displacement sensor
2A, light receiving portions 61B and 61C and the diffraction grating 2 on the scale
1 has the same pitch of 1.6 μm.

【0030】回折格子32Aから出て回折格子21を照
射する回折光の内、直進した0次回折光R0 は、回折格
子21上の点P1にて反射回折されて+1次回折光R0
+1 、−1次回折光R0 -1 等に分割されと共に位相変調
も受ける。即ち、スケール(回折格子21)が移動する
と、+1次回折光R0 +1 の位相は+2πx/Pだけずれ
て、−1次回折光R0 -1 の位相は−2πx/Pだけずれ
る。ここで、xは回折格子21の移動量、Pは回折格子
21のピッチである。
Of the diffracted light emitted from the diffraction grating 32A and applied to the diffraction grating 21, the straight-ahead 0th-order diffracted light R 0 is reflected and diffracted at the point P1 on the diffraction grating 21 and the + 1st-order diffracted light R 0.
It is also divided into +1 and −1st order diffracted light R 0 −1 and the like, and also undergoes phase modulation. That is, when the scale (diffraction grating 21) moves, the phase of the + 1st order diffracted light R 0 +1 shifts by + 2πx / P, and the phase of the −1st order diffracted light R 0 −1 shifts by −2πx / P. Here, x is the amount of movement of the diffraction grating 21, and P is the pitch of the diffraction grating 21.

【0031】上記+1次回折光R0 +1 は、受光部32B
1、32B2上の回折格子にて再度透過回折されて0次
回折光、−1次回折光及びその他の回折光に分割され、
この内の−1次回折光は格子面と垂直に取り出され、こ
の波面の位相は+2πx/Pとなる。一方、上記−1次
回折光R0 -1 は受光部32C1、32C2上の回折格子
にて再度透過回折されて、0次回折光、+1次回折光及
びその他の回折光に分割され、この内の+1次回折光R
0 -1 +1 は、格子面と垂直に取り出され、この時の波面の
位相は−2πx/Pとなる。
The + 1st order diffracted light R 0 +1 is received by the light receiving portion 32B.
1, 32B2 is again transmitted and diffracted by the diffraction grating and divided into 0th-order diffracted light, -1st-order diffracted light and other diffracted light,
The −1st order diffracted light in this is extracted perpendicularly to the lattice plane, and the phase of this wavefront is + 2πx / P. On the other hand, the -1st order diffracted light R 0 -1 is again transmitted and diffracted by the diffraction gratings on the light receiving sections 32C1 and 32C2, and is divided into 0th order diffracted light, + 1st order diffracted light and other diffracted lights. Origami R
0 -1 +1 is extracted perpendicularly to the lattice plane, and the phase of the wavefront at this time is -2πx / P.

【0032】本変位センサでは、受光部32C1上の回
折格子を受光部32B1上の回折格子に対して格子配列
の位相関係をP/4だけずらし、+1次回折光R0 -1 +1
の波面の位相がさらに−2π(P/4)/P=−π/2
だけずれて−2πx/P−π/2にしている。又、受光
部32B2の回折格子と受光部32C2の回折格子は、
夫々、隣接する受光部32B1の回折格子と隣接する受
光部32C1の回折格子に対して格子配列を、P/2だ
けずらし、各受光部の受光面に入射する各波面の位相は
次のように設定している。
In this displacement sensor, the phase relationship of the diffraction grating on the light receiving portion 32C1 is shifted from the diffraction grating on the light receiving portion 32B1 by P / 4, and the + 1st order diffracted light R 0 -1 +1 is obtained.
Of the wavefront of is -2π (P / 4) / P = -π / 2
The difference is -2πx / P−π / 2. Further, the diffraction grating of the light receiving portion 32B2 and the diffraction grating of the light receiving portion 32C2 are
The grating array is shifted by P / 2 with respect to the diffraction grating of the adjacent light receiving portion 32B1 and the diffraction grating of the adjacent light receiving portion 32C1, respectively, and the phase of each wavefront incident on the light receiving surface of each light receiving portion is as follows. It is set.

【0033】 32B1 : −2πx/P 32B2 : −2πx/P−π 32C1 : −2πx/P−π/2 32C2 : −2πx/P−3π/232B1: -2πx / P 32B2: -2πx / P-π 32C1: -2πx / P-π / 2 32C2: -2πx / P-3π / 2

【0034】一方、回折格子32Aからの+1次回折光
+1は、スケール上の回折格子21上の点P2にて反射
回折されて、−1次回折光、0次回折光及びその他の回
折光に分割され、夫々位相変調を受ける。特に、−1次
回折光の位相は−2πx/Pだけずれて受光部32B
1、32B2に入射し、この−1次回折光が受光部32
B1、32B2の回折格子をそのまま直進した0次回折
光R+1 -1 0 の波面の位相は−2πx/Pとなる。又、回
折格子32Aからの−1次回折光R-1は、スケール上の
回折格子21上の点P3にて反射回折されて、+1次回
折光、0次回折光R-1 0 及びその他の回折光に分割さ
れ、夫々位相変調を受ける。特に、+1次回折光の位相
は+2πx/Pだけずれて受光部32C1、32C2に
入射し、この+1次回折光が受光部32C1、32C2
をそのまま直進した0次回折光R-1 +1 0 の波面の位相は
+2πx/Pとなる。
On the other hand, the + 1st order diffracted light R +1 from the diffraction grating 32A is reflected and diffracted at the point P2 on the diffraction grating 21 on the scale, and divided into -1st order diffracted light, 0th order diffracted light and other diffracted lights. And undergo phase modulation respectively. Particularly, the phase of the −1st order diffracted light is shifted by −2πx / P and the light receiving unit 32B
1, 32B2, and the −1st order diffracted light is received by the light receiving unit 32.
0-order diffracted light R +1 -1 0 wavefront phase of the diffraction grating and goes straight in B1,32B2 becomes -2πx / P. Also, the -1st-order diffracted light R -1 from the diffraction grating 32A is reflected and diffracted at a point P3 on the diffraction grating 21 on the scale, + 1-order diffracted light, 0 order diffraction light R -1 0 and other diffracted light It is divided and each undergoes phase modulation. Particularly, the phase of the + 1st-order diffracted light is shifted by + 2πx / P and enters the light receiving portions 32C1 and 32C2, and the + 1st-order diffracted light is received by the light receiving portions 32C1 and 32C2.
The phase of the wavefront of the 0th-order diffracted light R −1 +1 0 that has proceeded straight through is + 2πx / P.

【0035】受光部32B1、32B2の各回折格子で
光路を互いに重ね合わされた光束R+1 -1 0 と光束R0 +1
-1 は、2種類の干渉光となって、受光部32B1、3
2B2の対応する受光面に入射し、電気信号に変換され
る。受光部32B1、32B2の各受光面に入射する干
渉光の干渉位相は、夫々、 (+2πx/P)−(−2πx/P)=4πx/P (−2πx/P−π)−(+2πx/P)=−4πx/P−π となり、受光部32B1、32B2から、スケール上の
回折格子21が1/2ピッチ移動する毎に正弦波信号の
1周期分が発生する。回折格子21のピッチが1.6μ
mだから、1周期0.8μmの正弦波信号が得られるこ
とになる。又、受光部32B2からは受光部32B1か
らの信号Aの位相を反転させた信号Aを得ることができ
る。
The light beam superimposed optical paths from each other by the diffraction gratings of the light-receiving portion 32B1,32B2 R +1 -1 0 and the light beam R 0 +1
-1 becomes two types of interference light, and the light receiving portions 32B1 and 3B3
The light enters the corresponding light receiving surface of 2B2 and is converted into an electric signal. The interference phases of the interference light incident on the light receiving surfaces of the light receiving units 32B1 and 32B2 are (+ 2πx / P) − (− 2πx / P) = 4πx / P (−2πx / P−π) − (+ 2πx / P), respectively. ) = − 4πx / P−π, and one period of the sine wave signal is generated from the light receiving units 32B1 and 32B2 each time the diffraction grating 21 on the scale moves by ½ pitch. The pitch of the diffraction grating 21 is 1.6μ
Since m, a sine wave signal with a period of 0.8 μm can be obtained. Further, a signal A obtained by inverting the phase of the signal A from the light receiving section 32B1 can be obtained from the light receiving section 32B2.

【0036】受光部32C1、32C2の各回折格子で
光路を互いに重ね合わされた光束R-1 +1 0 と光束R0 -1
+1 は、2種類の干渉光となって、受光部32C1、3
2C2の対応する受光面に入射し、電気信号に変換され
る。受光部32C1、32C2の各受光面に入射する干
渉光の干渉位相は、夫々、 (−2πx/P−π/2)−(+2πx/P)=−4πx/P−π/2 (−2πx/P−3π/2)−(+2πx/P)=−4πx/P−3π/2 となり、受光部32C1、32C2から、スケール上の
回折格子21が1/2ピッチ移動する毎に正弦波信号の
に1周期分が発生する。回折格子21のピッチが1.6
μmだから、1周期0.8μmの正弦波信号が得られる
ことになる。又、受光部32C1からの信号Bは受光部
32B1からの信号Aとは位相が1/4周期だけずれ、
受光部32C2からの信号Bは受光部32B2からの各
信号Aとは位相が1/4周期だけずれる。
A light beam R -1 +1 0 and a light beam R 0 -1 whose optical paths are superposed on each other by the diffraction gratings of the light receiving sections 32C1 and 32C2.
+1 becomes two types of interference light, and the light receiving portions 32C1 and 32C3
The light enters the corresponding light receiving surface of 2C2 and is converted into an electric signal. The interference phases of the interference light incident on the light receiving surfaces of the light receiving units 32C1 and 32C2 are (−2πx / P−π / 2) − (+ 2πx / P) = − 4πx / P−π / 2 (−2πx / P−3π / 2) − (+ 2πx / P) = − 4πx / P−3π / 2, and a sine wave signal is output from the light receiving units 32C1 and 32C2 each time the diffraction grating 21 on the scale moves by 1/2 pitch. One cycle is generated. The pitch of the diffraction grating 21 is 1.6
Since it is μm, a sine wave signal having a period of 0.8 μm can be obtained. Further, the signal B from the light receiving portion 32C1 is out of phase with the signal A from the light receiving portion 32B1 by 1/4 cycle,
The signal B from the light receiving portion 32C2 is out of phase with each signal A from the light receiving portion 32B2 by 1/4 cycle.

【0037】以上の構成を備える為、本変位センサは、
スケール(回折格子21)の変位に伴い、受光素子61
B、61Cから1/4周期ずつ周期がずれた、4個の変
位量を示す正弦波信号A(0)、B(π/2)、A
(π)、B(3π/2)が得られる。これら4個の正弦
波信号を使い、公知の信号処理回路を用いて、受光部
(61B、61C)や投光部(1、31A、32A)に
対するスケール(21)の相対的変位を検出する。
Since the displacement sensor has the above structure,
With the displacement of the scale (diffraction grating 21), the light receiving element 61
Sine wave signals A (0), B (π / 2), A showing four displacement amounts, which are shifted by 1/4 period from B, 61C.
(Π) and B (3π / 2) are obtained. Using these four sine wave signals, a known signal processing circuit is used to detect the relative displacement of the scale (21) with respect to the light receiving portions (61B, 61C) and the light emitting portions (1, 31A, 32A).

【0038】本変位センサは受光素子に図1に示した素
子を用いているが、図2乃至図7に示したいずれかの素
子をそのまま又は適宜変形して、本変位センサの受光素
子の代わりに用いても良い。
The displacement sensor uses the element shown in FIG. 1 as a light receiving element. However, one of the elements shown in FIGS. May be used for.

【0039】又、図1乃至図7の受光素子をそのまま又
は適宜変形して用いうる変位センサの形態も、図8に示
したリニアエンコ−ダに限定されず、例えば、ロ−タリ
−エンコ−ダ、光学式速度計に適用できる。
Further, the form of the displacement sensor which can be used as it is or by appropriately modifying the light receiving element of FIGS. 1 to 7 is not limited to the linear encoder shown in FIG. 8, but is, for example, a rotary encoder. Applicable to optical speedometer.

【0040】図9は上記エンコ−ダの応用例を示した実
施例であり、エンコ−ダを用いた駆動システムのシステ
ム構成図である。モ−タやアクチュエ−タ、エンジン等
の駆動源を有する駆動手段100の駆動出力部、あるい
は駆動される物体の移動部にはエンコ−ダ101が取付
けられ、変位量や変位速度等の変位状態を検出する。こ
のエンコ−ダとして前述図8の実施例を用いる。このエ
ンコ−ダ101の検出出力は制御手段102にフィ−ド
バックされ、制御手段102においては設定手段103
で設定された状態となるように駆動手段100に駆動信
号を伝達する。このようなフィ−ドバック系を構成する
ことによって設定手段103で設定された駆動状態を得
ることができる。このような駆動システムは例えばタイ
プライタ、プリンタ、コピ−マシン、ファクシミリ等の
事務機器、又、カメラ、ビデオ装置等の映像機器、更に
は情報記録再生機器、ロボット、工作機械、製造装置、
輸送装置、更にはこれらに限らず駆動手段を有する装置
全般に広く適用することができる。
FIG. 9 is an embodiment showing an application example of the encoder, and is a system configuration diagram of a drive system using the encoder. An encoder 101 is attached to a drive output portion of a drive means 100 having a drive source such as a motor, an actuator, an engine, or a moving portion of an object to be driven, and a displacement state such as a displacement amount or a displacement speed is set. To detect. The embodiment shown in FIG. 8 is used as this encoder. The detection output of the encoder 101 is fed back to the control means 102, and the control means 102 sets the setting means 103.
The drive signal is transmitted to the drive means 100 so that the state set in 1 is obtained. By constructing such a feedback system, the driving state set by the setting means 103 can be obtained. Such drive systems include office equipment such as typewriters, printers, copy machines, facsimiles, video equipment such as cameras and video equipment, information recording / reproducing equipment, robots, machine tools, manufacturing equipment,
The present invention can be widely applied to transportation devices, and further to general devices having driving means, not limited to these.

【0041】[0041]

【発明の効果】以上、本発明によれば、格子パタ−ンが
受光素子の受光部と一体化した、簡単・小型の受光素子
を提供できる。又、小型・高精度な変位センサを容易に
実現することができる。
As described above, according to the present invention, it is possible to provide a simple and small light receiving element in which the grating pattern is integrated with the light receiving portion of the light receiving element. In addition, a compact and highly accurate displacement sensor can be easily realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の受光素子の第1の実施例を示す概略図
である。
FIG. 1 is a schematic view showing a first embodiment of a light receiving element of the present invention.

【図2】本発明の受光素子の第2の実施例を示す概略図
である。
FIG. 2 is a schematic view showing a second embodiment of the light receiving element of the present invention.

【図3】本発明の受光素子の第3の実施例を示す概略図
である。
FIG. 3 is a schematic view showing a third embodiment of the light receiving element of the present invention.

【図4】本発明の受光素子の第4の実施例を示す概略図
である。
FIG. 4 is a schematic view showing a fourth embodiment of the light receiving element of the present invention.

【図5】本発明の受光素子の第5の実施例を示す概略図
である。
FIG. 5 is a schematic view showing a fifth embodiment of the light receiving element of the present invention.

【図6】本発明の受光素子の第6の実施例を示す概略図
である。
FIG. 6 is a schematic view showing a sixth embodiment of the light receiving element of the present invention.

【図7】本発明の受光素子の第6の実施例を示す概略図
である。
FIG. 7 is a schematic view showing a sixth embodiment of the light receiving element of the present invention.

【図8】本発明の変位検出装置の構成例を示す概略図で
ある。
FIG. 8 is a schematic diagram showing a configuration example of a displacement detection device of the present invention.

【図9】本発明の変位検出装置を備える駆動システムの
一例を示すブロック図である。
FIG. 9 is a block diagram showing an example of a drive system including the displacement detection device of the present invention.

【符号の説明】[Explanation of symbols]

1 発光素子 2 ミラー 31A、31B、31C レンズ 32A、32B、32C 回折格子 4B、4C 受光素子 50 フォトダイオード 51 カソード電極 52 N層 53 P層 54 保護膜 55 光透過性材料膜 56 フォトレジスト 57 アノード電極 61B、61C 回折格子一体型受光素子 1 Light emitting element 2 Mirror 31A, 31B, 31C Lens 32A, 32B, 32C Diffraction grating 4B, 4C Light receiving element 50 Photodiode 51 Cathode electrode 52 N layer 53 P layer 54 Protective film 55 Light transmissive material film 56 Photoresist 57 Anode electrode 61B, 61C Diffraction grating integrated type light receiving element

───────────────────────────────────────────────────── フロントページの続き (72)発明者 近藤 浩史 東京都大田区下丸子3丁目30番2号キヤノ ン株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Hiroshi Kondo 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc.

Claims (18)

【特許請求の範囲】[Claims] 【請求項1】 受光部に入射したビ−ムに応答して電気
信号を生じせしめる受光素子において、前記受光部がリ
ソグラフィ−技術により形成された格子パタ−ンを有す
ることを特徴とする受光素子。
1. A light receiving element for generating an electric signal in response to a beam incident on the light receiving portion, wherein the light receiving portion has a lattice pattern formed by a lithography technique. .
【請求項2】 前記格子パタ−ンがレジスト材料より成
ることを特徴とする請求項1の受光素子。
2. The light-receiving element according to claim 1, wherein the lattice pattern is made of a resist material.
【請求項3】 前記格子パタ−ンが配線パタ−ンより成
ることを特徴とする請求項1の受光素子。
3. The light-receiving element according to claim 1, wherein the lattice pattern is a wiring pattern.
【請求項4】 前記格子パタ−ンが半導体層を覆う光透
過層上に形成されることを特徴とする請求項1乃至請求
項3の受光素子。
4. The light-receiving element according to claim 1, wherein the lattice pattern is formed on a light transmitting layer that covers the semiconductor layer.
【請求項5】 前記格子パタ−ンが半導体層を覆う光透
過層により形成されることを特徴とする請求項1の受光
素子。
5. The light-receiving element according to claim 1, wherein the lattice pattern is formed of a light transmission layer covering a semiconductor layer.
【請求項6】 前記格子パタ−ンが半導体層のP層及び
N層の少なくとも一方により形成されることを特徴とす
る請求項1の受光素子。
6. The light receiving element according to claim 1, wherein the lattice pattern is formed by at least one of a P layer and an N layer of a semiconductor layer.
【請求項7】 被検物体からのビ−ムが作る縞模様の位
相変化に基づいて、受光素子に対する被検物体の相対的
な変位を検出する装置において、前記受光素子が、リソ
グラフィ−技術により形成された格子パタ−ンを有する
受光部を備え、該受光部に前記縞模様を作るビ−ムに応
答して電気信号を出力することを特徴とする変位検出装
置。
7. An apparatus for detecting a relative displacement of an object to be detected with respect to a light receiving element based on a phase change of a stripe pattern formed by a beam from the object to be inspected, wherein the light receiving element is formed by a lithography technique. A displacement detecting device comprising a light receiving portion having a formed lattice pattern, and outputting an electric signal in response to the beam forming the striped pattern on the light receiving portion.
【請求項8】 前記格子パタ−ンがレジスト材料より成
ることを特徴とする請求項7の変位検出装置。
8. The displacement detecting device according to claim 7, wherein the lattice pattern is made of a resist material.
【請求項9】 前記格子パタ−ンが配線パタ−ンより成
ることを特徴とする請求項7の変位検出装置。
9. The displacement detecting device according to claim 7, wherein the lattice pattern is a wiring pattern.
【請求項10】 前記格子パタ−ンが半導体層を覆う光
透過層上に形成されることを特徴とする請求項7乃至請
求項9の変位検出装置。
10. The displacement detecting device according to claim 7, wherein the lattice pattern is formed on a light transmitting layer which covers the semiconductor layer.
【請求項11】 前記格子パタ−ンが半導体層を覆う光
透過層により形成されることを特徴とする請求項7の変
位検出装置。
11. The displacement detecting device according to claim 7, wherein the lattice pattern is formed by a light transmitting layer covering the semiconductor layer.
【請求項12】 前記格子パタ−ンが半導体層のP層及
びN層の少なくとも一方により形成されることを特徴と
する請求項7の変位検出装置。
12. The displacement detecting device according to claim 7, wherein the lattice pattern is formed by at least one of a P layer and an N layer of a semiconductor layer.
【請求項13】 受光部に入射したビ−ムに応答して電
気信号を生じせしめる受光素子において、前記受光部が
半導体層と半導体層を被う光透過層とを備え、該光透過
層上に格子パタ−ンを形成していることを特徴とする受
光素子。
13. A light-receiving element for generating an electric signal in response to a beam incident on the light-receiving portion, wherein the light-receiving portion comprises a semiconductor layer and a light-transmitting layer covering the semiconductor layer, and the light-transmitting layer is provided on the light-transmitting layer. A light receiving element characterized in that a lattice pattern is formed on.
【請求項14】 前記格子パタ−ンがレジスト材料より
成ることを特徴とする請求項13の受光素子。
14. The light-receiving element according to claim 13, wherein the lattice pattern is made of a resist material.
【請求項15】 前記格子パタ−ンが配線パタ−ンより
成ることを特徴とする請求項13の受光素子。
15. The light receiving element according to claim 13, wherein the lattice pattern is a wiring pattern.
【請求項16】 被検物体からのビ−ムが作る縞模様の
位相変化に基づいて、受光素子に対する被検物体の相対
的な変位を検出する装置において、前記受光素子が半導
体層と半導体層を被う光透過層とを備え、該光透過層上
に格子パタ−ンを形成しており、該格子パタ−ン上に前
記縞模様を作るビ−ムに応答して電気信号を出力するこ
とを特徴とする変位検出装置。
16. A device for detecting a relative displacement of an object to be detected with respect to a light receiving element based on a phase change of a striped pattern formed by a beam from the object to be inspected, wherein the light receiving element is a semiconductor layer and a semiconductor layer. And a grid pattern is formed on the light-transmitting layer, and an electric signal is output in response to the beam forming the striped pattern on the grid pattern. Displacement detection device characterized by the above.
【請求項17】 前記格子パタ−ンがレジスト材料より
成ることを特徴とする請求項16の変位検出装置。
17. The displacement detecting device according to claim 16, wherein the lattice pattern is made of a resist material.
【請求項18】 前記格子パタ−ンが配線パタ−ンより
成ることを特徴とする請求項16の変位検出装置。
18. The displacement detecting device according to claim 16, wherein the lattice pattern is a wiring pattern.
JP4344573A 1992-06-30 1992-12-24 Light receiving element, and displacement detector equipped with this light receiving device Pending JPH06196726A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP4344573A JPH06196726A (en) 1992-12-24 1992-12-24 Light receiving element, and displacement detector equipped with this light receiving device
EP93110388A EP0577088B2 (en) 1992-06-30 1993-06-29 Displacement information detection apparatus
DE69320716T DE69320716T3 (en) 1992-06-30 1993-06-29 Device for detecting displacement information
US08/454,501 US5657125A (en) 1992-06-30 1995-05-30 Apparatus including a light-detecting element having a photo-electric conversion surface and an integral light blocking member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4344573A JPH06196726A (en) 1992-12-24 1992-12-24 Light receiving element, and displacement detector equipped with this light receiving device

Publications (1)

Publication Number Publication Date
JPH06196726A true JPH06196726A (en) 1994-07-15

Family

ID=18370322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4344573A Pending JPH06196726A (en) 1992-06-30 1992-12-24 Light receiving element, and displacement detector equipped with this light receiving device

Country Status (1)

Country Link
JP (1) JPH06196726A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009088042A (en) * 2007-09-28 2009-04-23 Oki Semiconductor Co Ltd Illuminance sensor
JP2012233883A (en) * 2011-05-05 2012-11-29 Dr Johannes Heidenhain Gmbh Optical position measuring apparatus
JP2017151074A (en) * 2016-07-11 2017-08-31 株式会社メルテック Reflective encoder scale, reflective encoder scale production method, and encoder unit

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55113384A (en) * 1979-12-21 1980-09-01 Agency Of Ind Science & Technol Photoelectric displacement transducing element
JPS564274U (en) * 1979-06-22 1981-01-14
JPS5696658U (en) * 1979-12-24 1981-07-31
JPS57198813A (en) * 1981-06-01 1982-12-06 Mitsutoyo Mfg Co Ltd Optoelectrical encoder
JPH01129202A (en) * 1987-11-16 1989-05-22 Nec Corp Grating optical element
JPH04257801A (en) * 1991-02-13 1992-09-14 Sharp Corp Manufacture of polarized light diffraction element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS564274U (en) * 1979-06-22 1981-01-14
JPS55113384A (en) * 1979-12-21 1980-09-01 Agency Of Ind Science & Technol Photoelectric displacement transducing element
JPS5696658U (en) * 1979-12-24 1981-07-31
JPS57198813A (en) * 1981-06-01 1982-12-06 Mitsutoyo Mfg Co Ltd Optoelectrical encoder
JPH01129202A (en) * 1987-11-16 1989-05-22 Nec Corp Grating optical element
JPH04257801A (en) * 1991-02-13 1992-09-14 Sharp Corp Manufacture of polarized light diffraction element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009088042A (en) * 2007-09-28 2009-04-23 Oki Semiconductor Co Ltd Illuminance sensor
JP4675948B2 (en) * 2007-09-28 2011-04-27 Okiセミコンダクタ株式会社 Illuminance sensor
JP2012233883A (en) * 2011-05-05 2012-11-29 Dr Johannes Heidenhain Gmbh Optical position measuring apparatus
JP2017151074A (en) * 2016-07-11 2017-08-31 株式会社メルテック Reflective encoder scale, reflective encoder scale production method, and encoder unit

Similar Documents

Publication Publication Date Title
US5680211A (en) Apparatus for optically detecting displacement of an object using a synthesizing means utilizing a substrate with two diffraction gratings thereon
US5657125A (en) Apparatus including a light-detecting element having a photo-electric conversion surface and an integral light blocking member
JP3082516B2 (en) Optical displacement sensor and drive system using the optical displacement sensor
JP3478567B2 (en) Rotation information detection device
EP0548848A1 (en) Displacement detecting device
US5448358A (en) Optical apparatus and displacement-information measuring apparatus using the same
EP2087321B1 (en) Opto electronic read head
US7098446B2 (en) Photoelectric encoder
JP3066923B2 (en) Encoder and system having the same
JP7148337B2 (en) Position sensing apparatus, lithographic apparatus, force sensor and apparatus with force sensor
JP4425220B2 (en) Absolute encoder
EP0694764B1 (en) Detector array for use in interferomic metrology systems
JPH08178702A (en) Optical sensor
JP3005131B2 (en) Displacement detector
JP2019219347A (en) Encoder
JPH06196726A (en) Light receiving element, and displacement detector equipped with this light receiving device
JP2000321097A (en) Optical encoder
US10274344B2 (en) Displacement encoder
US7053361B2 (en) Projection encoder with moving side gratings and fixed side gratings
JPS6128923B2 (en)
JP7475973B2 (en) Optical Encoder and Control Device
JP2003294494A (en) Apparatus for detecting origin of photoelectric encoder
JPH05141918A (en) Electrooptic position measuring apparatus
JP2002236033A (en) Optical encoder
JPH068737B2 (en) Optical displacement detector

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010313