JPH01129202A - Grating optical element - Google Patents

Grating optical element

Info

Publication number
JPH01129202A
JPH01129202A JP62287483A JP28748387A JPH01129202A JP H01129202 A JPH01129202 A JP H01129202A JP 62287483 A JP62287483 A JP 62287483A JP 28748387 A JP28748387 A JP 28748387A JP H01129202 A JPH01129202 A JP H01129202A
Authority
JP
Japan
Prior art keywords
grating
optical element
diffraction efficiency
light
order diffraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62287483A
Other languages
Japanese (ja)
Inventor
Yasuo Kimura
靖夫 木村
Yuzo Ono
小野 雄三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP62287483A priority Critical patent/JPH01129202A/en
Publication of JPH01129202A publication Critical patent/JPH01129202A/en
Pending legal-status Critical Current

Links

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Optical Head (AREA)

Abstract

PURPOSE:To provide an optical element having high utilization efficiency of light by providing asymmetry with the center within one period of a grating to the sectional shape of the grating in such a manner that the product of 0th-order diffraction efficiency and 1st-order diffraction efficiency is larger than the similar product of a grating having a rectangular section. CONSTITUTION:The rectangular grating is limited by the presence of the -1st- order diffracted light of the intensity equal to the intensity of the +1st-order diffracted light and, therefore, the sectional shape of the grating is formed asymmetrical with the center within one period of the grating as the grating having the -1st-order diffraction efficiency and the high +1st-order diffraction efficiency. Namely, the grating 3 consisting of a dielectric material is formed on a transparent substrate 1 and the sectional shape thereof is formed to a saw tooth shape. The +1st-order diffracted light diffracted to the right side is stronger than the -1st-order diffracted light diffracted to the left side with the saw tooth-shaped grating 3 and, therefore, the higher light utilization rate than in the case of the grating symmetrical with the center is obtd. The bidirectional grating optical element having the high utilization rate of light is thereby obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、光学機器、特に光ディスクへの情報の記録
、再生を行う光ヘッドに用いられる格子光学素子に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a grating optical element used in optical equipment, particularly in an optical head for recording and reproducing information on an optical disk.

・〔従来の技術〕 光学機器、特に光ディスクへの情報の記録、再生を行う
光ヘッドに用いられる格子光学素子は大別して、透過ま
たは反射の1次回折光のみを用いる第1のタイプと、透
過または反射の+1次回折光、−1次回折光の両者また
はどちらか一方を用いる第2のタイプがある。
・[Prior art] Grating optical elements used in optical devices, especially optical heads that record and reproduce information on optical disks, can be roughly divided into two types: a first type that uses only transmitted or reflected first-order diffracted light, and a first type that uses only transmitted or reflected first-order diffracted light; There is a second type that uses either or both of reflected +1st-order diffracted light and -1st-order diffracted light.

第1のタイプは格子光学素子をコリメートレンズ、ある
いはフォーカシングレンズに用いた場合に相当する。
The first type corresponds to the case where the grating optical element is used as a collimating lens or a focusing lens.

第2のタイプは、さらに2つに分けられ、第1は光源か
らの放射光に対する透過光と回折光を利用するもので、
光ヘッドでは、3ビーム法によるトラック誤差検出装置
で用いられるサブビーム発生用の格子がこれに相当する
。第2は本発明と最も関連の深いもので、ある方向から
の光に対しては透過光を用い、それとは逆方向へ進む光
に対しては1次回折光を利用するものである。光へ・ノ
ドでは、焦点誤差検出、トラック誤差検出、光軸分離の
3つの機能を有する格子光学素子が相当する。
The second type is further divided into two types; the first type uses transmitted light and diffracted light from the light emitted from the light source;
In an optical head, this corresponds to a sub-beam generation grating used in a tracking error detection device using a three-beam method. The second method is most closely related to the present invention, in which transmitted light is used for light coming from a certain direction, and first-order diffracted light is used for light traveling in the opposite direction. In the optical direction, a grating optical element has three functions: focus error detection, tracking error detection, and optical axis separation.

以下この格子光学素子を、特に双方向光学素子と呼ぶこ
とにする。この双方向格子光学素子の動作原理ニツイテ
は、Y、KIM(IRA、 S、StlGAMA、 Y
、ONO著のTopical Meeting on 
0ptical Data StorageTechn
ical Digest 5eries 1987の第
10巻、178頁から181頁に掲載のA Compa
ct 0ptical Head−using Hol
ographic 0ptical [!1en+en
t for CD Pla−yer ”と題する論文、
および財団法人 光産業技術振興協会発行の光メモリシ
ンポジウム゛86論文集の93頁から98頁に掲載の、
木村端夫、須釜成人。
Hereinafter, this grating optical element will be particularly referred to as a bidirectional optical element. The working principle of this bidirectional grating optical element is Y, KIM (IRA, S, StlGAMA, Y
, Topical Meeting on by ONO
0ptical Data Storage Techn.
A Compa published in ical Digest 5eries 1987, Volume 10, pages 178 to 181
ct 0ptical Head-using Hole
graphic 0ptical [! 1en+en
A paper entitled “T for CD Player”,
and pages 93 to 98 of the Proceedings of the Optical Memory Symposium 86 published by the Photonics Industry and Technology Promotion Association.
Hanao Kimura, Shigeru Sugama.

小野雄三著の「複数機能ホログラムを用いた小型光ヘッ
ド」と題する論文に詳述されている!従来の双方向格子
光学素子は電子ビーム描画、およびフォトリソグラフィ
技術を用いて作製されている。第2図は、このようにし
て作成された双方向格子光学素子を示すが、基板l上に
作製された格子2の断面形状は略矩形状である。
It is explained in detail in a paper titled "Small optical head using multifunctional hologram" written by Yuzo Ono! Conventional bidirectional grating optical elements are fabricated using electron beam writing and photolithography techniques. FIG. 2 shows a bidirectional grating optical element produced in this manner, and the cross-sectional shape of the grating 2 produced on the substrate l is approximately rectangular.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

双方向格子光学素子では、透過光と1次回折光の両方を
利用することから、光利用率は、双方向格子光学素子の
光利用率と1次回折効率の積で表される。格子の断面形
状が矩形である場合、基板での反射損、吸収等が無いと
仮定しても、理論的に得られる光利用率は約10%(1
/π2)であり、光けの損失が大きいという欠点を有し
ていた。
Since the bidirectional grating optical element uses both transmitted light and first-order diffraction light, the light utilization rate is expressed as the product of the light utilization rate of the bidirectional grating optical element and the first-order diffraction efficiency. When the cross-sectional shape of the grating is rectangular, even assuming that there is no reflection loss or absorption on the substrate, the theoretical light utilization rate is about 10% (1
/π2), and had the drawback of large loss of light.

本発明の目的は、このような欠点を除去し、高い光利用
率を持つ格子光学素子を提供することにある。
An object of the present invention is to eliminate such drawbacks and provide a grating optical element with high light utilization efficiency.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、透明基板と、この透明基板上に形成された格
子よりなる格子光学素子において、前記格子の断面形状
は、前記格子の0次回折効率と1次回折効率の積が矩形
断面形状格子のO次回折効率と1次回折効率の積よりも
大きくなるような、格子工周期内での左右非対称性を有
することを特徴としている。
The present invention provides a grating optical element comprising a transparent substrate and a grating formed on the transparent substrate, wherein the cross-sectional shape of the grating is such that the product of the 0th-order diffraction efficiency and the 1st-order diffraction efficiency of the grating is a rectangular cross-sectional grating. It is characterized by having left-right asymmetry within the grating period, which is greater than the product of the O-th order diffraction efficiency and the first-order diffraction efficiency.

〔作用〕[Effect]

矩形格子では、光利用率は主に格子の深さによって決定
され、光利用率が最大となるよう格子深さを選択しても
、+1次回折光と等強度の一1次回折光の存在によって
制限されてしまう。したがって、高光利用率を得るため
には、−1次回折効率が低く+1次回折効率が高い格子
を作製すればよい。このような格子は、格子の断面形状
を格子の1周期内で左右非対称になるようにすれば得る
ことができる。
In a rectangular grating, the light utilization rate is mainly determined by the depth of the grating, and even if the grating depth is selected to maximize the light utilization rate, it is limited by the presence of the 11st-order diffracted light, which has the same intensity as the +1st-order diffracted light. It will be done. Therefore, in order to obtain a high light utilization rate, it is sufficient to fabricate a grating with a low -1st order diffraction efficiency and a high +1st order diffraction efficiency. Such a grating can be obtained by making the cross-sectional shape of the grating asymmetric within one period of the grating.

また、格子断面が第3図に示すように三角波状で、かつ
薄いとみなされる場合、格子の高さをh、格子の屈折率
をnとしたとき(n−1)  ・h・(2π/λ)で与
えられる格子の頂部と底部の光学的位相差をψ0とし、
格子4の頂部から格子の基板1に降ろした垂線が基板と
交わる位置から格子の周期の端までの距離pを格子のピ
ッチLで除した数をαとしたとき、この格子の光利用率
ηは理論的に次式で与えられる。
In addition, when the grating cross section is triangular wave-like and thin as shown in Figure 3, when the height of the grating is h and the refractive index of the grating is n, (n-1) ・h・(2π/ Let the optical phase difference between the top and bottom of the grating given by λ) be ψ0,
When α is the distance p from the point where a perpendicular drawn from the top of the grating 4 to the substrate 1 of the grating intersects with the substrate to the end of the grating period by the pitch L of the grating, the light utilization rate η of this grating is is theoretically given by the following equation.

第4図に種々のψ。、αについてηを計算した結果を示
す。この図から矩形格子の最大光利用率l/π2を越え
るψ。、αの条件は非常に緩いことがわかる。
Figure 4 shows various ψ. , the results of calculating η for α are shown. From this figure, it can be seen that ψ exceeds the maximum light utilization rate l/π2 of the rectangular lattice. , it can be seen that the conditions for α are very relaxed.

〔実施例〕〔Example〕

第1図に本発明の第1の実施例を示す。透明基板1上に
誘電体の格子3が形成されており、その断面形状は鋸歯
状である。第1図に示した鋸歯状格子3では右側へ回折
する+1次回折光は左側へ回折する一1次回折光よりも
強いため、左右対称な格子の場合よりも高い光利用率が
得られる。
FIG. 1 shows a first embodiment of the present invention. A dielectric lattice 3 is formed on a transparent substrate 1, and its cross-sectional shape is sawtooth. In the sawtooth grating 3 shown in FIG. 1, the +1st order diffracted light diffracted to the right is stronger than the 1st order diffracted light diffracted to the left, so a higher light utilization rate can be obtained than in the case of a bilaterally symmetrical grating.

第5図に本発明の第2の実施例を示す。透明基板1上に
形成された誘電体の格子5の断面形状は三角波状で、格
子の頂部と底部の位相差を0.9 π、αを0.8とし
ている。本実施例においても、高い光利用率が得られる
FIG. 5 shows a second embodiment of the invention. The dielectric grating 5 formed on the transparent substrate 1 has a triangular cross-sectional shape, and the phase difference between the top and bottom of the grating is 0.9 π and α is 0.8. Also in this example, a high light utilization rate can be obtained.

第6図に本発明の第3の実施例を示す。本実施例では透
明基板1上に形成された誘電体の格子6の頂部は隣接周
期内へ入り込んだ断面形状となっている。本実施例に示
す断面形状でも10%を越える光利用率を得るための形
状的条件は緩く、試作の結果14%の効率を持つ格子光
学素子が得られた。
FIG. 6 shows a third embodiment of the present invention. In this embodiment, the top of the dielectric grating 6 formed on the transparent substrate 1 has a cross-sectional shape that extends into the adjacent period. Even with the cross-sectional shape shown in this example, the geometrical conditions for obtaining a light utilization rate exceeding 10% were relaxed, and as a result of trial production, a grating optical element with an efficiency of 14% was obtained.

以上述べた実施例では基板は透明で、格子は誘電体とし
たが格子上面に光反射層を形成して、反射型光学素子と
して用いることももちろん可能である。
In the embodiments described above, the substrate is transparent and the grating is made of a dielectric material, but it is of course possible to form a light reflective layer on the upper surface of the grating and use it as a reflective optical element.

なお、本発明の格子の作製は、電子ビーム描画法を用い
て格子形状に合わせて電子ビームのドーズ量を変化させ
る方法、あるいは矩形断面格子に斜め方向からイオンビ
ームを照射する方法等を用いて行える。
The grating of the present invention can be manufactured by using an electron beam lithography method in which the dose of the electron beam is varied according to the shape of the grating, or by irradiating a rectangular cross-sectional grating with an ion beam from an oblique direction. I can do it.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、高い光利用率を持つ双方向上δ子光学
素子が得られる。この双方向格子光学素子に用いられる
断面形状の格子は従来と全く同一の手法により複製が得
られ、量産性Gこも富むと0う利点がある。
According to the present invention, a bidirectional upper δ-element optical element with high light utilization efficiency can be obtained. The cross-sectional grating used in this bidirectional grating optical element can be reproduced using exactly the same method as in the past, and has the advantage of being mass-producible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例を説明するための図、 第2図は従来の技術を説明するための図、第3図、第4
図は本発明の詳細な説明するための図、 第5図は本発明の第2の実施例を説明するための図、 第6図は本発明の第3の実施例を説明するための図であ
る。 l ・・・基)反 2・・・矩形格子 3・・・鋸歯状格子 4.6・・・格子 5・・・三角波状格子 代理人弁理士   岩  佐  義  幸0次回折光 第1図 第2図 α“ρ/を 第3図 第4図
Fig. 1 is a diagram for explaining the first embodiment of the present invention, Fig. 2 is a diagram for explaining the conventional technique, Figs.
The figures are diagrams for explaining the present invention in detail, Figure 5 is a diagram for explaining the second embodiment of the present invention, and Figure 6 is a diagram for explaining the third embodiment of the present invention. It is. l...Group)Anti2...Rectangular lattice 3...Sawtooth lattice 4.6...Grid 5...Triangular wave latticeRepresentative patent attorneyYoshiyuki Iwasa0th order diffracted light Figure 1Figure 2 Figure α“ρ/Figure 3 Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)透明基板と、この透明基板上に形成された格子よ
りなる格子光学素子において、 前記格子の断面形状は、前記格子の0次回折効率と1次
回折効率の積が矩形断面形状格子の0次回折効率と1次
回折効率の積よりも大きくなるような、格子1周期内で
の左右非対称性を有することを特徴とする格子光学素子
(1) In a grating optical element consisting of a transparent substrate and a grating formed on the transparent substrate, the cross-sectional shape of the grating is such that the product of the 0th-order diffraction efficiency and the 1st-order diffraction efficiency of the grating is a rectangular cross-sectional grating. A grating optical element characterized by having left-right asymmetry within one period of the grating that is greater than the product of the 0th-order diffraction efficiency and the 1st-order diffraction efficiency.
(2)前記格子の断面形状が略三角波状であり、前記格
子の頂部と底部の光学的位相差をψ_0とし、前記格子
の頂部から前記基板に降ろした垂線が前記基板と交わる
位置から前記格子の周期端までの距離を、前記格子のピ
ッチで除した数をαとしたとき、 ▲数式、化学式、表等があります▼ なる関係を満足することを特徴とする特許請求の範囲第
1項記載の格子光学素子。
(2) The cross-sectional shape of the grating is substantially triangular wave-like, the optical phase difference between the top and bottom of the grating is ψ_0, and the grating is measured from a position where a perpendicular line drawn from the top of the grating to the substrate intersects with the substrate. Claim 1, which satisfies the following relationship: ▲There are mathematical formulas, chemical formulas, tables, etc.▼ where α is the number obtained by dividing the distance to the periodic end of the lattice by the pitch of the lattice. lattice optical element.
JP62287483A 1987-11-16 1987-11-16 Grating optical element Pending JPH01129202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62287483A JPH01129202A (en) 1987-11-16 1987-11-16 Grating optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62287483A JPH01129202A (en) 1987-11-16 1987-11-16 Grating optical element

Publications (1)

Publication Number Publication Date
JPH01129202A true JPH01129202A (en) 1989-05-22

Family

ID=17717926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62287483A Pending JPH01129202A (en) 1987-11-16 1987-11-16 Grating optical element

Country Status (1)

Country Link
JP (1) JPH01129202A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06196726A (en) * 1992-12-24 1994-07-15 Canon Inc Light receiving element, and displacement detector equipped with this light receiving device
KR100519636B1 (en) * 2001-10-05 2005-10-07 마쯔시다덴기산교 가부시키가이샤 Diffraction optical element and optical head using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59149305A (en) * 1983-02-16 1984-08-27 Agency Of Ind Science & Technol Formation of diffraction grating
JPS6242103A (en) * 1985-08-20 1987-02-24 Nippon Sheet Glass Co Ltd Manufacture of blaze grating

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59149305A (en) * 1983-02-16 1984-08-27 Agency Of Ind Science & Technol Formation of diffraction grating
JPS6242103A (en) * 1985-08-20 1987-02-24 Nippon Sheet Glass Co Ltd Manufacture of blaze grating

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06196726A (en) * 1992-12-24 1994-07-15 Canon Inc Light receiving element, and displacement detector equipped with this light receiving device
KR100519636B1 (en) * 2001-10-05 2005-10-07 마쯔시다덴기산교 가부시키가이샤 Diffraction optical element and optical head using the same

Similar Documents

Publication Publication Date Title
EP1001413A2 (en) Optical pickup and optical device
JPH07182687A (en) Optical pick-up
JP3175326B2 (en) Optical information recording medium and information reading method thereof
JPH05182203A (en) Optical recording medium disk
JP2000076689A (en) Optical pickup device
TWI344146B (en) Photo head device and photo disk device
KR930003869B1 (en) Optical pick-up device
JP2001290017A (en) Diffraction device for two wavelengths and optical head device
JPH01129202A (en) Grating optical element
JPH0340232A (en) Laser pickup
JPWO2004097819A1 (en) Optical diffraction element and optical information processing apparatus
JP4387141B2 (en) Polarization diffraction grating
JP3208297B2 (en) Optical pickup
JP2683293B2 (en) Optical head device
JPH0630161B2 (en) Optical head device
JP4599763B2 (en) Optical head device
KR100400485B1 (en) Optical Control Device, and Information Read/Write Apparatus and Information Read Apparatus therefor
JP3462987B2 (en) Diffraction grating for generating multiple beams and multi-beam optical pickup
JPH0823603B2 (en) Optical diffraction grating element, optical pickup device, and optical scanning device
JP4404189B2 (en) Diffraction element and optical head device
JP2002341125A (en) Diffraction element and optical head device
JPH1068820A (en) Polarization diffraction element and optical head device formed by using the same
JP3462988B2 (en) Diffraction grating and optical pickup for generating multiple beams
JP2007323762A (en) Diffraction grating, method of manufacturing the same, and optical pickup device
JPS63222340A (en) Optical pickup