JPS60140714A - Composite part - Google Patents

Composite part

Info

Publication number
JPS60140714A
JPS60140714A JP25067983A JP25067983A JPS60140714A JP S60140714 A JPS60140714 A JP S60140714A JP 25067983 A JP25067983 A JP 25067983A JP 25067983 A JP25067983 A JP 25067983A JP S60140714 A JPS60140714 A JP S60140714A
Authority
JP
Japan
Prior art keywords
layer
glass
thick film
glass layer
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25067983A
Other languages
Japanese (ja)
Inventor
嘉彦 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP25067983A priority Critical patent/JPS60140714A/en
Publication of JPS60140714A publication Critical patent/JPS60140714A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、焼結型積層コンデンサの表面または裏面に厚
膜抵抗体を積層して構成した複合部品に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a composite component constructed by laminating a thick film resistor on the front or back surface of a sintered multilayer capacitor.

従来例の構成とその問題点 一般に、焼結型積層コンデンサの表面または裏面に厚膜
抵抗体を積層して構成される複合部品においては、上記
コンデンサの表面に抵抗体を形成するとき、コンデンサ
としての誘電体表面に抵抗体が直接形成されると、コン
デンサの内部電極とコンデンサ表面の抵抗体間に容量成
分が発生し、使用回路によっては不都合が生じ易い。こ
れらの欠点を改良するため、コンデンサとその表面上に
形成する抵抗体間に低誘電体層を設けることが行々われ
る。この場合、従来から低誘電率のガラス層を設けるが
、このガラス層は一様な層を形成することが行なわれて
来た。 ・ しかしながら、従来の均−質なガラス層を使用して形成
された複合部品において、そのガラス層の表面に形成し
た抵抗体の抵抗値をレーザービームにより切断し調整す
る場合、レーザービートによる急激な温度変化などによ
りガラス層にクラックを生じ、このクラック発生に起因
して抵抗体にクラックを併発したり、コンデンサとして
の誘電体層にクラックを誘発させたシする問題があ−)
だ。
Conventional configurations and their problems In general, in composite parts constructed by laminating a thick film resistor on the front or back surface of a sintered multilayer capacitor, when forming a resistor on the surface of the capacitor, it is difficult to assemble the capacitor. If a resistor is directly formed on the dielectric surface of the capacitor, a capacitance component will occur between the internal electrode of the capacitor and the resistor on the surface of the capacitor, which may cause problems depending on the circuit used. In order to improve these drawbacks, a low dielectric layer is often provided between the capacitor and the resistor formed on the surface of the capacitor. In this case, a glass layer with a low dielectric constant is conventionally provided, and this glass layer has been formed as a uniform layer.・However, when adjusting the resistance value of a resistor formed on the surface of the glass layer by cutting it with a laser beam in a composite part formed using a conventional homogeneous glass layer, there is a sudden increase in the resistance caused by the laser beat. There are problems in which cracks occur in the glass layer due to changes in temperature, etc., and these cracks can also cause cracks in the resistor or induce cracks in the dielectric layer used as a capacitor.)
is.

そして、ガラス層のクラックによりコンデンサ部と抵抗
体間の接着強度の低下、吸湿特性の劣化などが生じると
いう欠点を有していた。
Moreover, cracks in the glass layer cause a decrease in adhesive strength between the capacitor portion and the resistor, and deterioration in moisture absorption characteristics.

従来、焼結型誘電体層またはセラミ’/り基板上に形成
する積層型複合部品において、基板表面との容量結合を
低減させる目的で使用する低誘電体層としてはガラス層
を形成する。この場合基板と抵抗体の接着を兼ねかつ平
滑性を中心として考慮した材料が使用される。例えば、
使用するガラス層として抵抗体の焼成温度を考慮した組
成、pb〇−8102−A12o3−ZnOにCab、
 T io2. MgO2を添加した絶縁用結晶化ガラ
スが使用されている。これらの組成を持った粉末混合物
捷たは有機化合物溶液中に分散したペーストがガラス層
の素材として使用されている。これらは失透しだ結晶性
のガラスを形成する。例えばS 10240〜60. 
MgO10−30,Ti○27〜1o、A120310
〜36の比率で混合されたガラス素材は約950℃に加
熱溶融させることによりガラス層を形成する。これらの
組成はその添加物の量によって誘電率、電気特性など異
なるが、形成されたガラス層は均一な表面とその内部構
造を持ったものになる。
Conventionally, in a laminated composite component formed on a sintered dielectric layer or a ceramic/reflective substrate, a glass layer is formed as a low dielectric layer used for the purpose of reducing capacitive coupling with the substrate surface. In this case, a material is used that also serves as a bond between the substrate and the resistor and is designed with smoothness in mind. for example,
The glass layer used has a composition that takes into account the firing temperature of the resistor, pb〇-8102-A12o3-ZnO, Cab,
Tio2. Insulating crystallized glass doped with MgO2 is used. A powder mixture having these compositions or a paste dispersed in an organic compound solution is used as the material for the glass layer. These form devitrified crystalline glasses. For example, S 10240-60.
MgO10-30, Ti○27-1o, A120310
The glass materials mixed at a ratio of ~36 are heated and melted at about 950°C to form a glass layer. Although these compositions differ in terms of dielectric constant and electrical properties depending on the amount of additives, the formed glass layer has a uniform surface and internal structure.

従来は、このガラス層の形成過程で内部構造も均質なも
のでなければ信頼度良く使用できなかった。このため、
下層に結晶化ガラス層を設け、さらにこの上に非晶質ガ
ラス層を設けた2層構造になっていた。しかし、この場
合、非晶質ガラス層に気泡が発生すると、これが信頼性
を大きく左右するように言われていた。この結果、気泡
をできるだけ少くする条件を追究した製造方法が取られ
、きわめて許容巾の狭い条件下で製造を行っていた。
Conventionally, the glass layer could not be used reliably unless the internal structure was homogeneous in the process of forming it. For this reason,
It had a two-layer structure in which a crystallized glass layer was provided as a lower layer, and an amorphous glass layer was further provided on top of this layer. However, in this case, it was said that if bubbles were generated in the amorphous glass layer, this would greatly affect the reliability. As a result, manufacturing methods have been adopted that pursue conditions to minimize air bubbles, and manufacturing has been carried out under extremely narrow tolerance conditions.

発明の目的 本発明は、2層のガラス層構造とすることなく、また許
容巾に大きく左右されるととのなく、クラックの発生を
未然に防止することができる複合部品を提供することを
目的とする。
Purpose of the Invention The purpose of the present invention is to provide a composite part that can prevent the occurrence of cracks without having to have a two-layer glass layer structure and without being greatly influenced by the allowable width. shall be.

発明の構成 本発明の複合部品は、上記の目的を達成するため、焼結
型積層コンデンサと厚膜抵抗体との間に、内部に微細な
気泡を発生させたガラス質から乃コる低誘電体層を介在
させたことを特長とするものである。
Structure of the Invention In order to achieve the above object, the composite component of the present invention has a low dielectric material made of a glassy material with fine air bubbles generated inside between a sintered multilayer capacitor and a thick film resistor. It is characterized by the interposition of a body layer.

実施例の説明 第1図および第2図は本発明の一実施例を示しており、
第1図および第2図において、内部電極2を有する焼結
型積層コンデンサ1の表面にはガラス質からなる低誘電
体層3が設けられ、この低誘電体層3上に厚膜抵抗体6
が形成されている。
DESCRIPTION OF EMBODIMENTS FIGS. 1 and 2 show an embodiment of the present invention.
1 and 2, a low dielectric layer 3 made of glass is provided on the surface of a sintered multilayer capacitor 1 having internal electrodes 2, and a thick film resistor 6 is disposed on the low dielectric layer 3.
is formed.

この厚膜抵抗体6は上記低誘電体層3上に設けた導体電
極6にて外部に導出され、レーザービームにより抵抗値
が調整されている。7はその抵抗値調整のだめの切断部
を示す。そして、上記厚膜抵抗体6を複合化した複合部
品本体はオーバーコート層8にて保護されている。
This thick film resistor 6 is led out to the outside through a conductor electrode 6 provided on the low dielectric layer 3, and its resistance value is adjusted by a laser beam. 7 shows the cutting part for adjusting the resistance value. The main body of the composite component made of the thick film resistor 6 is protected by an overcoat layer 8.

ここで、厚膜抵抗体6を複合化するために上記焼結型積
層コンデンサ1の表面に設けた低誘電体層3は、その内
部に微細な気泡4を発泡させたものである。この気泡の
大きさは、前記した一般粉末を成形焼結した多結晶体の
結晶粒内にある気孔より大きく、0.5ミクロンから2
0ミクロン程度のものである。このような気泡の発生は
ガラス焼成温度の設定条件の許容巾を大きく取シ、従来
とは逆に加熱温度の変化を急にしたり、ガラス素材をペ
ースト状にし、誘電体表面に印刷するとき、気泡の混入
を考慮した条件で印刷するとよい。このような製造条件
は従来の温度設定条件、印刷条件、焼成条件に比較する
と、各々の条件許容範囲が広く、製造効率が向上できる
。このようなガラス質から々る低誘電体層3の表面に導
体電極5を設け、厚膜抵抗体6を形成したのちにその厚
膜抵抗体6の抵抗値を微調整する。このとき、レーザー
ビームにより厚膜抵抗体6を切断し、抵抗値の調整を行
う。
Here, the low dielectric layer 3 provided on the surface of the sintered multilayer capacitor 1 in order to compose the thick film resistor 6 has fine air bubbles 4 formed therein. The size of these bubbles is larger than the pores in the crystal grains of the polycrystalline body formed by molding and sintering the general powder described above, and is from 0.5 microns to 2 microns.
It is about 0 micron. The occurrence of such bubbles greatly increases the tolerance of the glass firing temperature setting conditions, and when changing the heating temperature suddenly or making the glass material into a paste form and printing on the dielectric surface, It is best to print under conditions that take into account the inclusion of air bubbles. Compared to conventional temperature setting conditions, printing conditions, and firing conditions, these manufacturing conditions have a wider allowable range and can improve manufacturing efficiency. A conductor electrode 5 is provided on the surface of such a low dielectric layer 3 made of glass, and after a thick film resistor 6 is formed, the resistance value of the thick film resistor 6 is finely adjusted. At this time, the thick film resistor 6 is cut by a laser beam to adjust the resistance value.

抵抗値の調整方法としてレーザービームによる抵抗値の
調整手法を適用するが、従来構造の場合、抵抗体6の切
断と同時にレーザービームは下層のガラス層表面に達し
、このときレーザービームの熱によりガラス層内に大き
なりラックが発生したがφ実施例の場合、ガラス層内部
に気泡の発生を予め行っているだめ、その気泡によって
クラックの発生を微細に押える事ができる。このため、
レーザービームによる抵抗値の調整においても、高速加
工調整ができ、製造効率を大巾に改良することができる
A method of adjusting the resistance value using a laser beam is applied as a resistance value adjustment method, but in the case of the conventional structure, the laser beam reaches the surface of the underlying glass layer at the same time as the resistor 6 is cut, and at this time, the glass layer is heated by the laser beam. Although large racks were generated within the layer, in the case of the φ example, since air bubbles were generated inside the glass layer in advance, the air bubbles could suppress the generation of cracks. For this reason,
Even when adjusting the resistance value using a laser beam, high-speed processing adjustment is possible, and manufacturing efficiency can be greatly improved.

具体的には、誘電体としてのBaT i○3焼結体表面
に市販絶縁ガラスペースト例えばPH4575(デュポ
ン、ジャパンリミテッド社商品名)をスクリーン印刷し
、160±1o℃で乾燥したのち850±20℃で焼成
して製造するガラス層は多泡性を持った層となり、本例
でいう効果を十分発揮できる。
Specifically, a commercially available insulating glass paste, such as PH4575 (trade name of DuPont, Japan Limited), was screen printed on the surface of the BaT i○3 sintered body as a dielectric, dried at 160±1°C, and then 850±20°C. The glass layer manufactured by firing the glass layer becomes a layer with cellular properties, and can fully exhibit the effect mentioned in this example.

発明の効果 以上のように本発明によれば、焼結型積層コンデンサの
表面に厚膜抵抗体を積層する際に、その厚膜抵抗体のア
ンダーコートとして内部に微細な気泡が入ったガラス質
からなる低誘電体層を設けたので、上記厚膜抵抗体のレ
ーザービームによる抵抗値調整時に発生するクラックを
未然に防止することができる利点を有する。
Effects of the Invention As described above, according to the present invention, when a thick film resistor is laminated on the surface of a sintered multilayer capacitor, a glass material with fine air bubbles inside is used as an undercoat of the thick film resistor. Since the low dielectric layer is provided, it has the advantage of being able to prevent cracks from occurring when adjusting the resistance value of the thick film resistor using a laser beam.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す複合部品の断面図、第
2図は同複合部品の一部切欠斜視図である0 1・・・・・・コンデンサ、2・・・・・・内部電極、
3・・・・・・低誘電体層、4・・・・・・ガラス層内
に設けた気泡、6・・・・・・導体電極、6・・・・・
抵抗体層。
Fig. 1 is a sectional view of a composite part showing an embodiment of the present invention, and Fig. 2 is a partially cutaway perspective view of the same composite part. internal electrode,
3...Low dielectric layer, 4...Bubble provided in the glass layer, 6...Conductor electrode, 6...
resistor layer.

Claims (1)

【特許請求の範囲】[Claims] 焼結型積層コンデンサの表面捷たは裏面に厚膜抵抗体を
積層するよう構成すると共に、上記コンデンサと厚膜抵
抗体間に、内部に微細な気泡を発生させたガラス質から
々る低誘電体層を介在させてなることを特徴とする複合
部品。
A sintered multilayer capacitor is constructed with a thick film resistor laminated on the front or back surface, and a low dielectric material made of glass with fine bubbles generated inside is placed between the capacitor and the thick film resistor. A composite part characterized by having a body layer interposed therein.
JP25067983A 1983-12-27 1983-12-27 Composite part Pending JPS60140714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25067983A JPS60140714A (en) 1983-12-27 1983-12-27 Composite part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25067983A JPS60140714A (en) 1983-12-27 1983-12-27 Composite part

Publications (1)

Publication Number Publication Date
JPS60140714A true JPS60140714A (en) 1985-07-25

Family

ID=17211431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25067983A Pending JPS60140714A (en) 1983-12-27 1983-12-27 Composite part

Country Status (1)

Country Link
JP (1) JPS60140714A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5227951A (en) * 1992-08-04 1993-07-13 Murata Erie North America, Inc. Composite multilayer capacitive device and method for fabricating the same
US5430605A (en) * 1992-08-04 1995-07-04 Murata Erie North America, Inc. Composite multilayer capacitive device and method for fabricating the same
JP2011151252A (en) * 2010-01-22 2011-08-04 Tdk Corp Electronic component

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5227951A (en) * 1992-08-04 1993-07-13 Murata Erie North America, Inc. Composite multilayer capacitive device and method for fabricating the same
US5430605A (en) * 1992-08-04 1995-07-04 Murata Erie North America, Inc. Composite multilayer capacitive device and method for fabricating the same
JP2011151252A (en) * 2010-01-22 2011-08-04 Tdk Corp Electronic component

Similar Documents

Publication Publication Date Title
US5896650A (en) Method of making ceramic multilayer
US4849379A (en) Dielectric composition
US6055151A (en) Multilayer ceramic circuit boards including embedded components
US4633366A (en) Laminar electrical component with magnesium orthoborate
KR100546471B1 (en) Thick ceramic on metal multilayer circuit board
JPS60140714A (en) Composite part
JPH037130B2 (en)
JPS62272501A (en) Low capacity power resistance element using heatsink layer of beryllia dielectric and manufacture of the same with low toxicity
JP3017530B2 (en) Insulating paste for thick film circuits
JP2989936B2 (en) Glass frit, resistor paste and wiring board
JP3199596B2 (en) Multilayer wiring board and package for housing semiconductor element
JP3622852B2 (en) Thermistor manufacturing method
JP2515202B2 (en) Ceramic wiring board and manufacturing method thereof
JP2766146B2 (en) Multilayer circuit board with built-in capacitor
JPS6231903A (en) Material for insulation layer
JP3193592B2 (en) Ceramic multilayer substrate and method of manufacturing the same
US20230271874A1 (en) Thick film resistor paste, thick film resistor, and electronic component
JPS6077492A (en) Ceramic multilayer circuit board and method of producing same
JPH08172274A (en) Ceramic multilayer board
JPH09153681A (en) Built-in resistor paste for manufacture of lowtemperature fired substrate
JPS5873146A (en) Hybrid integrated circuit and manufacture thereof
JPH0468804B2 (en)
JPH06314916A (en) Strip line resonator
JP2000232006A (en) Chip-type electronic component
JP2001156412A (en) Circuit board