JPS60136333A - Laser fuse device - Google Patents

Laser fuse device

Info

Publication number
JPS60136333A
JPS60136333A JP24406183A JP24406183A JPS60136333A JP S60136333 A JPS60136333 A JP S60136333A JP 24406183 A JP24406183 A JP 24406183A JP 24406183 A JP24406183 A JP 24406183A JP S60136333 A JPS60136333 A JP S60136333A
Authority
JP
Japan
Prior art keywords
fuse
silicon substrate
oxide film
stepping
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24406183A
Other languages
Japanese (ja)
Inventor
Yoshiki Nagatomo
良樹 長友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP24406183A priority Critical patent/JPS60136333A/en
Publication of JPS60136333A publication Critical patent/JPS60136333A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components

Abstract

PURPOSE:To enable to reduce in size of a highly integrated device by a method wherein steppings are provided on the thermally oxided film located under a laser fuse, thereby enabling to reduce the damage given to a silicon substrate by a laser beam. CONSTITUTION:A fuse 3 consisting of polysilicon and other conductor is formed on the thermally oxided film 2 located on a silicon substrate 1. When a stepping 1a is provided on the upper surface of said silicon substrate 1, the thermally oxided film 2 to be formed on the upper surface of the stepping 1a has a stepping 7 as a matter of course, and the fuse 3 which will be formed thereon also formed in such a manner that it has a stepping. The fuse 3 is covered by a protective film 4 consisting of phosphorus glass and a thermally oxided film. When a laser beam is made to irradiate, the fuse 3 is heated up to a high temperature by the given energy, it is fused, an aperture part 8 is formed, the protective film is flown off, and the fuse 3 is burnt out. The generation of damage on the silicon substrate 1 is suppressed due to the existence of the heavy stepping 7 on the thermally oxided film 2.

Description

【発明の詳細な説明】 (技術分野) この発明は半導体装置の冗長回路に用いるレーザヒユー
ズ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a laser fuse device used in a redundant circuit of a semiconductor device.

(従来技術) 従来、半導体装置上に配置されている冗長回路切り換え
のためのレーザ用ヒユーズはil1図(a)ノごとく構
成されている。この第1図(−において、シリコン基板
1上の熱酸化膜2上に形成されたポリシリコンや、その
他の導体から形成されたヒユーズ3はリンガラスや熱酸
化膜などの保護膜4に坏われている、 このように構成された従来のレーデ用ヒユーズにおいて
、不良の回路を切9換える場合には、矢印A1のように
レーザビームを照射すると、ヒユーズに与えられたエネ
ルギによって、ヒユーズは高温になシ1d融し、次いで
保護膜4を吹き飛ばし、溶融部5を形成し、第1図(b
)のごとくになる。レーデビームエネルギが適当でかつ
安定で熱酸化膜2の膜厚が十分厚い場合には、シリコン
基&1にレーザ照射による欠陥6は生じないが、レーデ
ビームエネルギが不適当な場合(一般的に高い場合)、
あるいはエネルギが適当であっても不安定な場合、ある
いは素子の微細化に対応して熱酸化膜が薄膜化してきた
場合には、第1図(b)における欠陥6に示すようなレ
ーザ照射による欠陥がシリコン基板l中に生じるよ5な
欠点があった。
(Prior Art) Conventionally, a laser fuse for redundant circuit switching disposed on a semiconductor device is configured as shown in FIG. 1(a). In FIG. 1 (-), a fuse 3 made of polysilicon or other conductor formed on a thermal oxide film 2 on a silicon substrate 1 is surrounded by a protective film 4 such as phosphor glass or a thermal oxide film. In the conventional radar fuse configured as described above, when a defective circuit is to be switched out, when a laser beam is irradiated as shown by arrow A1, the fuse is heated to a high temperature by the energy given to the fuse. The protective film 4 is then blown away to form a melted part 5, as shown in FIG. 1(b).
). If the Lede beam energy is appropriate and stable and the thermal oxide film 2 is sufficiently thick, defects 6 will not occur on the silicon base &1 due to laser irradiation, but if the Lede beam energy is inappropriate (general ),
Alternatively, if the energy is unstable even if the energy is appropriate, or if the thermal oxide film has become thinner due to the miniaturization of devices, laser irradiation as shown in defect 6 in Figure 1(b) There were several drawbacks such as defects occurring in the silicon substrate.

ここで、一般的な従来のレーザヒユーズの諸元について
概述する。ポリシリコンなどの#膜は−3000□N、
全体の厚さは2μ前後であり、幅は10μ程度、熱酸化
膜の厚さは5000A〜1μ、保−膜の厚さは5000
A−1μ、レーデビームの照射エネルギはスポット状で
、2μジユ一ル前後、スポット径は6μφ〜4μφ、N
dYAGレーザで照射時間は40nsのときポリシリコ
ンなどの温度は1400℃位となり、たとえば2ジユー
ルに加熱され溶けて切れる。
Here, the specifications of a typical conventional laser fuse will be outlined. # film such as polysilicon is -3000□N,
The total thickness is around 2μ, the width is around 10μ, the thickness of the thermal oxide film is 5000A to 1μ, and the thickness of the protective film is 5000A.
A-1μ, Radhe beam irradiation energy is in the form of a spot, around 2μ units, spot diameter is 6μφ to 4μφ, N
When the dYAG laser is used for an irradiation time of 40 ns, the temperature of polysilicon and the like reaches approximately 1400° C., and is heated to, for example, 2 Joules, melting and cutting.

たとえば、2μジユールで適切、3μジユールでは過大
(これはレーザ光のバラツキ、レーザヒユーズのパラメ
ータのバラツキによって生じる)となるようにレーザビ
ームが印加された下地のシリコンが過度に加熱され、転
移に代表される欠陥が生じ、隣接素子にリーク電流を増
大させ、素子の品質、信頼性を劣化させる。
For example, 2μ joules is appropriate, and 3μ joules is too much (this is caused by variations in the laser beam and laser fuse parameters).The underlying silicon to which the laser beam is applied will be excessively heated, leading to transitions. defects occur, increasing leakage current to adjacent devices, and deteriorating the quality and reliability of the device.

さらに、素子の高密度化にしたがって、熱酸化膜2を薄
くせざるを得ない。その場合、上述の影響はさらに大き
くなる。
Furthermore, as the density of devices increases, the thermal oxide film 2 must be made thinner. In that case, the above-mentioned effects will be even greater.

(発明の目的) この発明は、レーザのシリコン基板に対するダメージを
小さくでき、それにともない半導体素子の品質、信頼性
の向上に寄するとともに、高集積度化、デバイス寸法の
縮小化に寄与することができるレーザヒユーズ装置を提
供するにある。
(Purpose of the Invention) The present invention can reduce the damage caused by a laser to a silicon substrate, thereby contributing to improving the quality and reliability of semiconductor devices, as well as increasing the degree of integration and reducing device dimensions. Our aim is to provide laser fuse equipment that can.

(発明の概要) コノ発明の要点は、レーザを照射するヒユーズ部に熱酸
化膜の段差を設けたことにある。
(Summary of the Invention) The key point of this invention is that a step of thermal oxide film is provided in the fuse portion where the laser is irradiated.

(実施例) 以下、この発明のレーザヒユーズ装置の実施例について
図面に基づき説明する。第2図(a)はその一実施例の
構成を示す断面図である。この第2図(a)において、
第1図(a)、第1図(b)と同一部分には同一符号を
付して述べる。
(Embodiments) Hereinafter, embodiments of the laser fuse device of the present invention will be described based on the drawings. FIG. 2(a) is a sectional view showing the configuration of one embodiment. In this Figure 2 (a),
The same parts as in FIGS. 1(a) and 1(b) will be described with the same reference numerals.

第2図(a)に示すように、シリコン基板1上の熱酸化
膜2上にポリシリコンや他の導体からなるヒユーズ3が
形成されている。このシリコン基板1の上面に段差1a
を有しておシ、したがって、その上面に形成される熱酸
化膜2も必然的に段差7を有している。この上に形成さ
れるヒユーズ3も段差を有することになる。
As shown in FIG. 2(a), a fuse 3 made of polysilicon or other conductor is formed on a thermal oxide film 2 on a silicon substrate 1. A step 1a is formed on the upper surface of this silicon substrate 1.
Therefore, the thermal oxide film 2 formed on the upper surface also inevitably has a step 7. The fuse 3 formed above this also has a step.

ヒユーズ3はリンガラスや熱酸化膜から成る保護膜4に
よって伊われでいる。熱酸化膜2の段差7は上述のよう
に熱酸化膜2の形成前に形成することができる。以上は
現在のシリコン半導体技術で容易に製造することができ
る。
The fuse 3 is protected by a protective film 4 made of phosphor glass or a thermal oxide film. The step 7 of the thermal oxide film 2 can be formed before the thermal oxide film 2 is formed as described above. The above can be easily manufactured using current silicon semiconductor technology.

次に、仁のように作製されたヒユーズ部に第2図(a)
のように、矢印A1で示すレーザビームを照射すると、
ヒユーズ3は与えられたエネルギによって高温となシ溶
融して開孔部8が形成され、次いで、保護膜4を吹き飛
ばし、第2図(b)のごとく、ヒユーズ3は切断される
Next, as shown in Figure 2(a), attach the fuse part to the
When the laser beam shown by arrow A1 is irradiated as shown in
The fuse 3 is heated to a high temperature by the applied energy and melted, forming an opening 8. Then, the protective film 4 is blown away, and the fuse 3 is cut as shown in FIG. 2(b).

このようにすることにより、従来の方法と比べ、ヒユー
ズ3の下の熱酸化膜2の膜厚はレーザビームが照射され
る部分で段差7のごとく厚くなる。
By doing this, the thickness of the thermal oxide film 2 under the fuse 3 becomes thicker like the step 7 in the portion irradiated with the laser beam, compared to the conventional method.

したがって、レーザビームのシリコン基板1に対するダ
メージは熱酸化膜2の段差分だけ見かけ上熱酸化膜2の
段差7が厚いので起りにくくなる。
Therefore, damage to the silicon substrate 1 by the laser beam is less likely to occur because the step 7 of the thermal oxide film 2 is apparently thicker by the difference in step of the thermal oxide film 2.

つまシ、従来の構造に比べ、この発明のレーザヒユーズ
装置の構造は過剰なエネルギのレーザビームやレーデビ
ームの不安定、あるいは素子の微細化にともなう熱酸化
膜2の薄膜化に対してレーザビームのシリコン基板1へ
のダメージをきわめて小さくできる構造である。
Finally, compared to the conventional structure, the structure of the laser fuse device of the present invention is designed to prevent excessive energy of the laser beam, instability of the laser beam, or thinning of the thermal oxide film 2 due to miniaturization of the device. This structure allows damage to the silicon substrate 1 to be extremely small.

ここで、上記段差7の形成工程例について述べる。シリ
コン基板1にフォトレジストを塗布シ、所定のパターン
でドライまたはウェットエツチング法で開孔し、シリコ
ン基板1に上述の段差1aが形成される。この段差1a
の高芒は5000A位である。
Here, an example of the process for forming the step 7 will be described. A photoresist is applied to the silicon substrate 1, and holes are formed in a predetermined pattern by dry or wet etching to form the above-mentioned step 1a on the silicon substrate 1. This step 1a
The height of the awn is about 5000A.

次いで、シリコン基板1を熟成化rることによシ、熱酸
化膜2が形成される。この熱酸化膜2の膜厚は5000
〜10.0OOA程度となる。。
Next, by aging the silicon substrate 1, a thermal oxide film 2 is formed. The thickness of this thermal oxide film 2 is 5000
~10.0OOA. .

次いで、この熱酸化膜2上にポリシリコンをCOD法で
厚さ3000λ程度成長させて、段差を有するヒユーズ
3を形成する。このヒユーズ3上に保護膜4f:厚さ5
000〜10.000A程度形成する。
Next, polysilicon is grown to a thickness of about 3000λ on this thermal oxide film 2 by the COD method to form a fuse 3 having a step. Protective film 4f on this fuse 3: thickness 5
000~10.000A is formed.

また、照射するレーザビームは、従来2μジユールを使
用したが、この発明の実施例では、1.5μジユ一ル程
度に減少できる。この照射エネルギの減少の理由として
は、次に挙げる二つの理由によるものと考えられる。
Furthermore, the laser beam used for irradiation conventionally used 2 μjoules, but in the embodiment of the present invention, it can be reduced to about 1.5μjoules. The reason for this decrease in irradiation energy is considered to be due to the following two reasons.

fl) 段差70部分でポリシリコンが実質的に薄くな
ることによる。
fl) This is because the polysilicon becomes substantially thinner at the step 70 portion.

(2)段差7の部分で下地の熱酸化膜2が厚くなるため
、段差部分のポリシリコンに吸収されるエネルギ量が大
きくなるためである。
(2) This is because the underlying thermal oxide film 2 becomes thicker at the step portion 7, so that the amount of energy absorbed by the polysilicon at the step portion increases.

このように、レーザビームの照射エネルギを減少するこ
とおよび段差部分の熱酸化膜が厚くなることによシ、ヒ
ユーズ溶断時のシリコン基板へのダメージを小さくでき
る。
In this way, by reducing the irradiation energy of the laser beam and increasing the thickness of the thermal oxide film at the stepped portion, damage to the silicon substrate when the fuse blows can be reduced.

また、この発明のヒユーズをたとえば、大容量半導体メ
モリの冗長回路に用いることにより、半導体メモリの品
質信頼性の向上に寄与するとともに、下地の酸化膜を薄
く設計することができ、高集積度化、デバイス寸法の縮
少化に寄与するものである。
Furthermore, by using the fuse of the present invention, for example, in a redundant circuit of a large-capacity semiconductor memory, it will contribute to improving the quality and reliability of the semiconductor memory, and the underlying oxide film can be designed to be thinner, resulting in higher integration. , which contributes to the reduction of device dimensions.

(発明の効果) この発明は、以上説明したように、レーデヒユーズ下の
熱酸化膜に段差を設けたので、レーデビームのシリコン
基板に対するダメージを小さくできるととも・に半導体
メモリなどに採用することによシ、半導体素子の品質信
頼性の向上、高集積化デバイスの寸法の縮少化が可能と
なる利点がある。
(Effects of the Invention) As explained above, in this invention, since a step is provided in the thermal oxide film under the Radhe fuse, damage to the silicon substrate by the Radhe beam can be reduced, and it can be applied to semiconductor memories etc. Second, there are advantages in that the quality reliability of semiconductor elements can be improved and the dimensions of highly integrated devices can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は従来のレーザヒユーズ装置の断面図、第
1図(b)は同上レーデヒユーズ装置にレーザビームを
照射した状態を示す断面図、第2図(a)はこの発明の
レーザヒユーズ装置の一実施例の構成を示す断面図、第
2図(b)は第2図(a)のレーザヒユーズ装置にレー
ザビームを照射した状態を示す断面図である。 1・・・シリコン基板、2・・・熱酸化膜、3・・・ヒ
ユーズ、4・・・保護膜、7・・・熱酸化膜の段差、8
・・・開孔部。 特許出願人 沖電気工業株式会社
FIG. 1(a) is a cross-sectional view of a conventional laser fuse device, FIG. 1(b) is a cross-sectional view showing the same laser fuse device irradiated with a laser beam, and FIG. 2(a) is a cross-sectional view of the laser fuse device of the present invention. FIG. 2(b) is a cross-sectional view showing the structure of an embodiment of the apparatus, and FIG. 2(b) is a cross-sectional view showing the state in which the laser fuse device of FIG. 2(a) is irradiated with a laser beam. DESCRIPTION OF SYMBOLS 1... Silicon substrate, 2... Thermal oxide film, 3... Fuse, 4... Protective film, 7... Step difference in thermal oxide film, 8
...opening area. Patent applicant Oki Electric Industry Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] シリコン基板上の熱酸化膜上に形成されたヒユーズにレ
ーザビームを照射する部分の下の上記熱酸化膜に段差を
形成したことを特徴とするレーザヒユーズ装kJ 。
A laser fuse device kJ characterized in that a step is formed in the thermal oxide film below a portion of the fuse formed on the thermal oxide film on a silicon substrate where the laser beam is irradiated.
JP24406183A 1983-12-26 1983-12-26 Laser fuse device Pending JPS60136333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24406183A JPS60136333A (en) 1983-12-26 1983-12-26 Laser fuse device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24406183A JPS60136333A (en) 1983-12-26 1983-12-26 Laser fuse device

Publications (1)

Publication Number Publication Date
JPS60136333A true JPS60136333A (en) 1985-07-19

Family

ID=17113146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24406183A Pending JPS60136333A (en) 1983-12-26 1983-12-26 Laser fuse device

Country Status (1)

Country Link
JP (1) JPS60136333A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6469029A (en) * 1987-09-10 1989-03-15 Nec Corp Semiconductor integrated circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6469029A (en) * 1987-09-10 1989-03-15 Nec Corp Semiconductor integrated circuit

Similar Documents

Publication Publication Date Title
US4617723A (en) Method and device for creating an activatable conducting link in a semiconductor device
US4853758A (en) Laser-blown links
US6130469A (en) Electrically alterable antifuse using FET
KR940001888B1 (en) Fuse melted by laser
EP0083211B1 (en) Semiconductor device with fuse
US4960729A (en) Integrated circuits and a method for manufacture thereof
US4968643A (en) Method for fabricating an activatable conducting link for metallic conductive wiring in a semiconductor device
JP2728412B2 (en) Semiconductor device
JP3509049B2 (en) Fuse window with adjusted fuse oxide thickness
KR920000227B1 (en) A retandant circuit in semiconductor device
US5652169A (en) Method for fabricating a programmable semiconductor element having an antifuse structure
JPS60136333A (en) Laser fuse device
US5665638A (en) Method for repairing a defect generated cell using a laser
US5235154A (en) Laser removal of metal interconnects
JPH0945782A (en) Semiconductor device having redundancy means, and its manufacture
JP2001244344A (en) Fuse for semiconductor device
US6458709B2 (en) Method for fabricating a repair fuse box for a semiconductor device
JPS6084837A (en) Semiconductor integrated circuit device
JPS6076140A (en) Semiconductor device
KR20000001362A (en) Repair fuse of semiconductor element and forming method thereof
JPH0760853B2 (en) Laser beam programmable semiconductor device and manufacturing method of semiconductor device
JPH06244285A (en) Semiconductor device
JPS61110447A (en) Semiconductor device
JPS59124145A (en) Semiconductor device
JP2719751B2 (en) Method for manufacturing semiconductor integrated circuit device