JPS60133205A - Low nox burning method - Google Patents

Low nox burning method

Info

Publication number
JPS60133205A
JPS60133205A JP23897683A JP23897683A JPS60133205A JP S60133205 A JPS60133205 A JP S60133205A JP 23897683 A JP23897683 A JP 23897683A JP 23897683 A JP23897683 A JP 23897683A JP S60133205 A JPS60133205 A JP S60133205A
Authority
JP
Japan
Prior art keywords
flame
air
flow
flames
powdered coal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23897683A
Other languages
Japanese (ja)
Inventor
Tadahisa Masai
政井 忠久
Toshio Uemura
俊雄 植村
Shigeki Morita
茂樹 森田
Shigeto Nakashita
中下 成人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP23897683A priority Critical patent/JPS60133205A/en
Publication of JPS60133205A publication Critical patent/JPS60133205A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To perform the bearing of a thermal load and the gaseous phase reduction of NOx effectively by one burner, by separating the flame, which undertakes the thermal load, and the flame, which forms an intermediate reducing product on the upstream side of the flames, and mixing both flames on the downstream side of the flames. CONSTITUTION:The amounts of the primary air, the secondary air and an inactive gas are adjusted, respectively. Adjustment is performed so that the partial pressure of O2 becomes the low value of about 1-7% at the base part of a high temperature flame formed by the flow of powdered coal 3. As a result, in the vicinity of a primary jetting port 5, only the primary air is burned. Owing to the burning of the flow of powdered coal 3, a low O2 region and a high temperature region are formed. The nitrogent component in the coal is converted into N. Thereafter, burning is accelerated by the secondary air 8. Then, from the jetting port 15, a flow of powdered coal 13, which is transported by an air stream of an inactive gas as an exhausted gas, is jetted. The flow of the powdered coal 13 is diffused to the outside by a baffle plate 16. During the diffusion, an intermediate reducing product is formed by the heat in a furnace. The intermediate product is mixed at the downstream side of the flame. NOx in the flame is reduced in the gaseous phase by the intermediate product.

Description

【発明の詳細な説明】 この発明は窒素酸化物の排出量を低減させる燃焼方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to a combustion method that reduces nitrogen oxide emissions.

窒素酸化物(以下「NO−Jと略称する)は大気汚染物
質の一つとしてその排出量を減少させる燃焼方法、燃焼
装置が種々提案されかつ実用化されている。燃焼段階に
おいて生じるNOxとしては先ず、(1)燃料中に含有
するN分が比較的低温域で酸化されることにより生成さ
れるもの(フューエルN0X) 、 (2)ある程度燃
焼反応が進んで燃料の熱分解により発生したOHラジカ
ル等に空気中のN2が作用してHONを生じ、更にこれ
に対して0□が作用して生成されるもの(プロング) 
NOx ) 、 (3)さらに燃焼が進んで局部的に発
生し、た高温域において燃焼空気中の安定したN、が酸
化されて発生するもの(サーマルN0X)があると考え
られている。
Nitrogen oxides (hereinafter abbreviated as "NO-J") are one of the air pollutants, and various combustion methods and combustion devices have been proposed and put into practical use to reduce their emissions. First, (1) those generated when the N content in the fuel is oxidized at relatively low temperatures (fuel NOX), and (2) the OH radicals generated by thermal decomposition of the fuel after the combustion reaction has progressed to some extent. N2 in the air acts on HON, and 0□ acts on it to generate HON (prong).
(3) It is thought that there is some (thermal NOX) that is generated locally as combustion progresses, and stable N in the combustion air is oxidized in the high temperature range.

従来から行なわれ、ているNOx低減燃焼方法としては
、 (力 排ガスの一部を燃焼用空気に混合して酸素分圧を
下げて燃焼温度の低下を図る排ガス再循環法。
The NOx reduction combustion methods that have been used in the past include the exhaust gas recirculation method, which mixes a portion of the exhaust gas with combustion air to lower the oxygen partial pressure and lower the combustion temperature.

(ロ)燃焼用空気を二段階もしくはそれ以上に分け、一
段目の空気供給量を理論空気量以下とし、不足分の空気
を2段目以後で供給するようにした二段燃焼法。
(b) A two-stage combustion method in which combustion air is divided into two or more stages, the air supply amount in the first stage is less than the theoretical air amount, and the insufficient amount of air is supplied in the second and subsequent stages.

(ハ)燃焼用空気を低温化させて燃焼温度を低下させる
方法、 専権々のものが提案されているが、いづれも熱効率が大
幅に低下したり、燃焼が不安定となる等の問題があり、
これらの方法のみではNOxの低減率をさらに大幅に高
めることは困難であるのが実情である。
(c) Proprietary methods have been proposed for lowering the combustion temperature by lowering the temperature of the combustion air, but all of them have problems such as a significant decrease in thermal efficiency and unstable combustion. ,
The reality is that it is difficult to further significantly increase the NOx reduction rate using only these methods.

最近、パイ・ア、ス燃焼法の一つとして空燃比を極端に
低下したバーナにおいて発生した還元性中間生成物によ
りNOxを燃焼段階で還元除去する方法、すなわち炉内
脱硝法が開発され、注目されている。
Recently, an in-furnace denitrification method, which reduces and removes NOx during the combustion stage using reducing intermediate products generated in a burner with an extremely low air-fuel ratio, has been developed as a type of combustion method. has been done.

この炉内脱硝法は、通常、還元性中間生成物の生成を主
目的とする還元バーナと、燃焼装置の熱負荷を負担する
ことを目的とする主バーナとを設置することにより実施
されている。しかしこの方法については次の点が問題点
として指摘されている。
This in-furnace denitrification method is usually carried out by installing a reduction burner whose main purpose is to generate reducing intermediate products and a main burner whose purpose is to bear the heat load of the combustion equipment. . However, the following points have been pointed out as problems with this method.

還元性中間生成物を大量に含有する火炎(還元火炎)は
、火炎の中心部はど酸素と接触する機会が少ないため、
中心部側に前記中間生成物が多量に含まれる傾向を示す
が、この結果、主バーナ火炎との混合時にNOxと還元
特質との混合が不を分となり効率良(NOxを還元する
ことができない。
Flames that contain large amounts of reducing intermediate products (reducing flames) have little chance of contacting oxygen in the center of the flame.
There is a tendency for a large amount of the intermediate products to be contained in the center side, but as a result, when mixed with the main burner flame, the mixing of NOx and the reducing properties is poor, resulting in a high efficiency (NOx cannot be reduced). .

また、還元バーナはかなり低い空気比(例えば0.6程
度)で燃焼を行うため燃料過剰となり過ぎて火炎が不安
定となる。
Further, since the reduction burner performs combustion at a considerably low air ratio (for example, about 0.6), the fuel becomes excessively excessive and the flame becomes unstable.

さらに還元バーナにおいては、完全燃焼を行うまでの時
間が長くなり、火炉を大型化せざるを得ない。
Furthermore, in a reduction burner, it takes a long time to achieve complete combustion, and the furnace has to be made larger.

この発明は上述した問題点を除去し、−基のバーナで熱
負荷の負担と、炉内脱硝つまりNOxの気相還元を効果
的に行うことのできる燃焼方法を提供することにある。
The object of the present invention is to provide a combustion method that eliminates the above-mentioned problems and allows a single burner to bear the heat load and effectively perform in-furnace denitration, that is, gas phase reduction of NOx.

要するにこの発明は、−基のバーナにおいて□ 熱負荷
の負担とNOxの気相還元の両方を行う方法であり5.
火炎上流側においては熱負荷を負担する火炎と還元性中
間生成物を生成する火炎とを効果的に分離し、かつ火炎
下流側においては両火炎の混合を促進するようにした燃
焼方法である。
In short, this invention is a method for carrying out both the burden of heat load and the gas phase reduction of NOx in a burner based on 5.
This is a combustion method that effectively separates the flame that bears the heat load and the flame that produces reducing intermediate products on the upstream side of the flame, and promotes the mixing of both flames on the downstream side of the flame.

以下この発明の実施例を図面により説明する。Embodiments of the present invention will be described below with reference to the drawings.

第1図および第2図において、バーナの起動に当っては
起動用バーナ1により油、ガス等の起動用燃料を燃焼さ
せ、その周囲から搬送用空気(−次空気)により搬送さ
れ、かつベンチュリー4で整流された微粉炭(例えば2
00メツシュ通過量70%程度)を噴射し、−次火炎を
形成する。この場合噴口5の外周線にフレームホルダと
称する環状部材12を取り付けておけばこのフレームホ
ルダにより形成される渦流によって火炎が下流側に吹き
飛ばされることはなく、火炎保持に効果的である。この
−次火炎は空気比を約1またはこれよりもやや少なめと
して燃焼し、高温の火炎を形成する。この火炎の周囲か
らは、環状に形成された一次ガス噴口を経て不活性ガス
6が噴射される。この不活性ガスは、例えばこの燃焼装
置下流側から抽出した燃焼排ガスとする。不活性ガス6
の周囲からは、エアレジスタ9において旋回力を与えら
れた二次空気8が環状の二次空気噴口10を経て噴射さ
れる。
In Figures 1 and 2, when starting the burner, a starting burner 1 burns a starting fuel such as oil or gas, which is conveyed from the surrounding area by conveying air (-secondary air), and is Pulverized coal rectified at 4 (e.g. 2
00 mesh passing amount (approximately 70%) is injected to form a -order flame. In this case, if an annular member 12 called a frame holder is attached to the outer periphery of the nozzle 5, the flame will not be blown downstream by the vortex formed by the frame holder, which is effective for flame retention. This secondary flame burns with an air ratio of about 1 or slightly less, forming a high temperature flame. Inert gas 6 is injected from around this flame through a primary gas nozzle formed in an annular shape. This inert gas is, for example, combustion exhaust gas extracted from the downstream side of the combustion device. Inert gas 6
Secondary air 8, which has been given a swirling force in the air register 9, is injected from the surrounding area through an annular secondary air nozzle 10.

以上の場合において、−次空気、二次空気および不活性
ガスの供給量は各々調節するが、微粉炭流3により形成
された高温火炎の基部において01分圧が約1〜7%と
低い値となるように調節する。 。
In the above case, although the supply amounts of secondary air, secondary air and inert gas are adjusted respectively, the 01 partial pressure at the base of the high temperature flame formed by the pulverized coal flow 3 is a low value of about 1 to 7%. Adjust so that .

この結果、−次噴口5近くでは事実上1次空気のみの燃
焼とな1す、微粉炭流3の燃焼により低0□領域且つ高
温領域となり、石炭中の窒素分はNに変換される。、そ
の後は前述の2次空気8により燃焼が促進される。
As a result, in the vicinity of the secondary nozzle 5, only the primary air is combusted, and the pulverized coal flow 3 is combusted, resulting in a low 0□ region and high temperature region, and the nitrogen content in the coal is converted to N. After that, combustion is promoted by the above-mentioned secondary air 8.

次に噴口15からは前記排ガス等の不活性ガスにより気
流輸送された微粉炭流13が噴射される。
Next, from the nozzle 15, a pulverized coal flow 13 that is air-transported by an inert gas such as the exhaust gas is injected.

この微粉炭は噴射直後に高温の火炎の熱により揮発分を
発散するが、前述の如く高温火炎の基部においてはO2
分圧は低く、従って燃焼は行われない。微粉炭流13は
漏斗状の偏向板16により外側に拡散されるが、この拡
散の間に炉内の熱により還元性の中間生成物を生成する
Immediately after injection, this pulverized coal releases volatile matter due to the heat of the high-temperature flame, but as mentioned above, at the base of the high-temperature flame, O2
The partial pressure is low so no combustion takes place. The pulverized coal flow 13 is diffused outward by a funnel-shaped deflection plate 16, and during this diffusion, the heat in the furnace produces reducing intermediate products.

発明者等は、中間生成物の生成について種々実験を行っ
た結果、この中間生成物は前述の揮発分の熱分解反応等
により生じることが確認でき、固形分(チャー)はこの
中間生成物の生成には直接関与していないことが確認で
きた。従って、還元性中間生成物の生成は微粉炭の外、
メタン等のチャーを含まないガス燃料でモ高い脱硝率を
得ることができる。
As a result of various experiments conducted by the inventors regarding the production of intermediate products, it was confirmed that this intermediate product is produced by the above-mentioned thermal decomposition reaction of volatile matter, and the solid content (char) is It was confirmed that they were not directly involved in the production. Therefore, the production of reducing intermediate products occurs in addition to pulverized coal.
A high denitrification rate can be obtained using gas fuel that does not contain char such as methane.

前記高温火炎と還元火炎の中間生成物は火炎下流側にお
いて混合し、火炎中のNOxはこの中間生成物によって
気相還元される。この場合、微粉炭流13の周囲からさ
らに空気を供給し、未燃分の完全燃焼を図るようにして
もよい。
The intermediate products of the high temperature flame and the reduction flame mix on the downstream side of the flame, and NOx in the flame is reduced in the gas phase by the intermediate products. In this case, air may be further supplied from around the pulverized coal flow 13 to achieve complete combustion of unburned matter.

なお、微粉炭流13を噴射するに当っては、微粉炭流の
供給通路20を一本に形成し、微粉炭流3の通路の如く
断面環状に形成し得ない場合には第3図の如く噴口15
の上流側に混合室14を形成し、かつ混合室の下部壁面
14aは噴口15の側壁の延長上に位置するよう形成し
、微粉炭が下部に滞留するのを防止する。
When injecting the pulverized coal flow 13, the supply passage 20 for the pulverized coal flow is formed into a single line, and if it cannot be formed to have an annular cross section like the passage for the pulverized coal flow 3, the supply passage 20 as shown in FIG. Gotaku spout 15
A mixing chamber 14 is formed on the upstream side of the mixing chamber, and a lower wall surface 14a of the mixing chamber is formed to be located on an extension of the side wall of the nozzle 15 to prevent pulverized coal from staying in the lower portion.

次に第4図は微粉炭流13の供給方法の一例を示す。火
炉11から排出される排ガスGの一部はファン17を経
て粉砕機19に導入され、投入された石炭18の乾燥及
び製造された微粉炭の気流輸送に利用され、微粉炭流1
3として前記バーナに供給される。
Next, FIG. 4 shows an example of a method of supplying the pulverized coal stream 13. A part of the exhaust gas G discharged from the furnace 11 is introduced into the crusher 19 via the fan 17, and is used for drying the coal 18 that has been input and for airflow transporting the produced pulverized coal.
3 to the burner.

この発明を実施することにより一基のバーナで熱負荷の
負担と、NOxの気相還元を効果的に行うことができる
By carrying out this invention, it is possible to effectively bear the heat load and reduce NOx in the gas phase with a single burner.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明に係る方法を実施するためのバーナの
断面図、第2図は第1図のA−A線による視図、°第3
図は第2図のB−B線による断面図、第4図は不活性ガ
スとしての排ガスの供給を示す系統図である。
FIG. 1 is a sectional view of a burner for carrying out the method according to the present invention, FIG. 2 is a perspective view taken along line A-A in FIG.
The figure is a sectional view taken along the line B--B in FIG. 2, and FIG. 4 is a system diagram showing the supply of exhaust gas as an inert gas.

Claims (1)

【特許請求の範囲】 1、 高温火炎の周囲に還元性中間生成物を含有する還
元火炎を形成し、窒素酸化物をこの中間生成物により気
相還元する方法において、高温火炎基部の酸素分圧を低
下させて低酸素高温域とし、前記還元火炎とは火炎下流
側で混合するようにしたことを特徴とする低NOx燃焼
方法。 2・ 前記高温火炎の基部近傍における酸素分圧が約1
%ないし約7%となるよう燃焼用空気供給量を調節する
ことを特徴とする特許請求の範囲第1項記載の低NOx
燃焼方法。 3・ 還元性中間生成物生成用火炎の燃料をガス燃料と
したことを特徴とする特許請求の範囲第1項または第2
項記載の低NOx燃焼方法。
[Claims] 1. In a method of forming a reducing flame containing a reducing intermediate product around a high-temperature flame and reducing nitrogen oxides in a gas phase with the intermediate product, the partial pressure of oxygen at the base of the high-temperature flame is reduced. A low NOx combustion method, characterized in that the reduction flame is mixed with the reducing flame on the downstream side of the flame. 2. The oxygen partial pressure near the base of the high temperature flame is approximately 1.
% to about 7%.
Combustion method. 3. Claim 1 or 2, characterized in that the fuel for the flame for producing the reducing intermediate product is gas fuel.
Low NOx combustion method described in section.
JP23897683A 1983-12-20 1983-12-20 Low nox burning method Pending JPS60133205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23897683A JPS60133205A (en) 1983-12-20 1983-12-20 Low nox burning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23897683A JPS60133205A (en) 1983-12-20 1983-12-20 Low nox burning method

Publications (1)

Publication Number Publication Date
JPS60133205A true JPS60133205A (en) 1985-07-16

Family

ID=17038083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23897683A Pending JPS60133205A (en) 1983-12-20 1983-12-20 Low nox burning method

Country Status (1)

Country Link
JP (1) JPS60133205A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1130539C (en) * 1996-03-22 2003-12-10 丰田自动车株式会社 Reverberatory melting keeping furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1130539C (en) * 1996-03-22 2003-12-10 丰田自动车株式会社 Reverberatory melting keeping furnace

Similar Documents

Publication Publication Date Title
US4422391A (en) Method of combustion of pulverized coal by pulverized coal burner
JPS55165405A (en) Combustion method with reduced amount of nitrogen oxide
JP2791029B2 (en) Pulverized coal burner
JPH0518511A (en) Pulverized solid fuel combustion apparatus
JPS624606B2 (en)
US5899680A (en) Low nitrogen oxides generating combustion method and apparatus
JPS60126508A (en) Finely powdered coal burning device
JPS60133205A (en) Low nox burning method
JPS6138961B2 (en)
JPH08121711A (en) Pulverized coal combsition method and pulverized coal combustion device and pulverized coal burner
JPH09126412A (en) Low nox boiler
GB2094969A (en) Method of combustion of pulverized coal by pulverized coal burner
JPH0555763B2 (en)
JPH07301403A (en) Combustion device of boiler furnace
JPH0323804B2 (en)
JPS58182005A (en) Combustion method for low nox
JPS58102006A (en) Low nox pulverized coal burner
JPS60218505A (en) Burner
JPS58182003A (en) Combustion method for pulverized coal and burner for pulverized coal combustion
JPS58138907A (en) Whirl type combustion device
JPS6219645B2 (en)
JPS58138906A (en) Low nox combustion device
JPS6078206A (en) Burner reducing nox
JPS6260606B2 (en)
JP2647461B2 (en) Thermal baking equipment