JPS58138907A - Whirl type combustion device - Google Patents

Whirl type combustion device

Info

Publication number
JPS58138907A
JPS58138907A JP2119082A JP2119082A JPS58138907A JP S58138907 A JPS58138907 A JP S58138907A JP 2119082 A JP2119082 A JP 2119082A JP 2119082 A JP2119082 A JP 2119082A JP S58138907 A JPS58138907 A JP S58138907A
Authority
JP
Japan
Prior art keywords
air
combustion
furnace
reducing
flames
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2119082A
Other languages
Japanese (ja)
Inventor
Shunichi Tsumura
俊一 津村
Hitoshi Takasugi
仁之 高杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2119082A priority Critical patent/JPS58138907A/en
Publication of JPS58138907A publication Critical patent/JPS58138907A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/002Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion
    • F23C7/004Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion using vanes

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To perform the denitration in a boiler more effectively, by making the mixing of reducing flames with main burner flames containing NOX sufficient, and prolonging the staying time of the reducing flames in the boiler. CONSTITUTION:Combustion air 10 flowed in a blast box 7 is provided with a whirling force at an air register 6, and is jetted from a throat 4 as combustion air for the main burner 1 to produce the main burner flames. In this case, the air-fuel ratio in the main burners 1 is to be about 1 or slightly over 1. On the other hand, only feul 12 is jetted from the reducing burners 2, that is, the fuel 12 is jetted with the air-fuel ratio being 0, so that the fuel is burned with oxygen remaining in the fire furnace 15 to perform low oxygen burning to form reducing flames. Then other combustion air 10 is supplied from air inlets 13, and whirling streams are generated in the furnace by this supply of the combustion air so that the main burner flames and the reducing burner flames are favorably mixed, and therefore NOX, in the main burner flames is reduced with the reducing intermediate products such as CN, NH, etc. in the reducing burner flames to N2.

Description

【発明の詳細な説明】 この発明は炉内脱硝を効率良く行なうことのできる燃焼
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a combustion apparatus that can efficiently perform denitration in a furnace.

窒素酸化物(以下「NOx」と略称する)は大気汚染物
質の一つとしてその排出量を減少させる燃焼方法、燃焼
装置が種々提案されかつ実用化されている◇、燃焼段階
において生じるNOXとしては先ず、(1)燃料中に含
有するN分が比較的低温域で酸化されることにより生成
されるもの(フューエルN0X)、(2)ある程度燃焼
反応が進んで燃料の熱分解により発生したOHラジカル
等に空気中のNp作用してHONを生じ、更にこれに対
して02が作用して生成されるもの(プロング) NO
x ) 、 (3)さらに燃焼が進んで局部的に発生し
た高温域において燃焼空気中の安定したNが酸化されて
発生するもの(サーマルNOりがあると考えられている
Nitrogen oxides (hereinafter abbreviated as "NOx") are one of the air pollutants, and various combustion methods and combustion devices have been proposed and put into practical use to reduce their emissions. First, (1) those generated when the N content in the fuel is oxidized at relatively low temperatures (fuel NOX), and (2) OH radicals generated by thermal decomposition of the fuel after the combustion reaction has progressed to some extent. etc. acts on Np in the air to produce HON, which is further acted on by 02 to produce HON (prong) NO
x), (3) Stable N in the combustion air is oxidized in a locally generated high-temperature region as combustion progresses further (it is thought that there is thermal NO).

従来から行なわれているNOx低減燃焼方法としては、 (イ)排ガスの一部を燃焼用空気に混合して酸素分圧を
下げて燃焼温度の低下を図る排ガス再循環法。
Conventional NOx reduction combustion methods include: (a) Exhaust gas recirculation method in which a portion of exhaust gas is mixed with combustion air to lower oxygen partial pressure and combustion temperature.

(ロ)燃焼用空気を二段階もしくはそれ以上に分けて一
段目の空気供給量を理論空気量以下とし、不足分の空気
を2段目以後で供給するようにした二段燃焼法。
(b) A two-stage combustion method in which combustion air is divided into two or more stages, the air supply amount in the first stage is less than the theoretical air amount, and the insufficient amount of air is supplied in the second and subsequent stages.

(ハ)燃焼用空気を低温化させて燃焼温度を低下させる
方法等種々のものが提案されているがいづれも熱効率が
大幅に低下したり、燃焼が不安定となる等の問題があっ
て、これらの方法のみではNOxの低減率をさらに高め
ることは困難である。
(c) Various methods have been proposed, such as methods of lowering the combustion temperature by lowering the temperature of the combustion air, but all of them have problems such as a significant decrease in thermal efficiency and unstable combustion. It is difficult to further increase the NOx reduction rate using only these methods.

最近、バイアス燃焼法の一つとして空燃比を極端に低下
したバーナにおいて発生した還元性中間生成物によりN
Oxを燃焼段階で還元除去する方法、すなわち炉内脱硝
法が開発され、注目されている。
Recently, as part of the bias combustion method, reducing intermediate products generated in burners with extremely low air-fuel ratios have been
A method for reducing and removing Ox during the combustion stage, that is, an in-furnace denitrification method, has been developed and is attracting attention.

この燃焼法は主として熱負荷を受は持つ主バーすにおい
て生じたNOxを、極端に低I/)空燃比で燃焼を行な
うバーナから発生した還元性中間生成物によって還元す
るものであるため、制御を誤ると燃焼が不安°定となっ
たり、大量の未燃分を排出する等の問題があり、炉内脱
硝を効果的に実施できる燃焼装置が望まれている。
This combustion method mainly reduces NOx generated in the main burner, which receives the heat load, using reducing intermediate products generated from the burner, which performs combustion at an extremely low I/) air-fuel ratio. If this is done incorrectly, there are problems such as unstable combustion and the discharge of a large amount of unburned matter, so a combustion device that can effectively perform denitration in the furnace is desired.

この発明の目的は上述した要望に鑑み、還元火炎とNO
xを含有する主バーナ火炎との混合を良好にし、かつ還
元火炎の炉内滞留時間を長くすることにより炉内脱硝を
より効果的に行なうことのできる燃焼装置を提供するこ
とにある。
In view of the above-mentioned needs, the purpose of this invention is to
It is an object of the present invention to provide a combustion device that can perform denitrification in the furnace more effectively by improving the mixing with the main burner flame containing x and increasing the residence time of the reducing flame in the furnace.

要するにこの発明は前壁に主バーナと還元7(−ナを配
置した燃焼装置の側壁に空気口を形成し、場合によって
はこの空気口に対して別の還元バーナを配置することに
より火炉内に旋回流を形成し主バーナ火炎と還元バーナ
火炎との混合を良好にした燃焼装置である。
In short, this invention forms an air port in the side wall of a combustion device in which a main burner and a reducing burner are arranged on the front wall, and depending on the case, another reducing burner is arranged for this air port, thereby increasing the temperature inside the furnace. This combustion device forms a swirling flow and improves the mixing of the main burner flame and the reducing burner flame.

以下この発明の実施例を図面を用いて説明する。Embodiments of the present invention will be described below with reference to the drawings.

第1図および第2図において、火炉前壁5のバーナスロ
ート4の中心部には保炎板3が配置してあり、この保炎
板3を中心として周囲に主バーナ1が複数本(図示の場
合は4本)配置しである。8は燃料11(例えば天然ガ
ス)用のマニホールドである。2は主バーナ1を中心と
してその周囲に配置した還元バーナ、9はこの還元バー
ナ2に対して燃料12”を供給するマニホールドである
1 and 2, a flame holding plate 3 is arranged at the center of the burner throat 4 of the front wall 5 of the furnace, and a plurality of main burners 1 (not shown) are arranged around this flame holding plate 3. In the case of , 4 pieces) are arranged. 8 is a manifold for fuel 11 (for example, natural gas). 2 is a reduction burner arranged around the main burner 1, and 9 is a manifold for supplying fuel 12'' to the reduction burner 2.

次に14は燃焼装置の火炉15を形成する側壁であり、
この側壁14に対しては空気口13が形成しである。第
3図は火炉内での火炎の旋回をより良好にするため、空
気口13を側壁に対して斜めに、すなわち旋回流の接線
方向に取り付けた状態を示す。
Next, 14 is a side wall forming the furnace 15 of the combustion device,
An air port 13 is formed in this side wall 14 . FIG. 3 shows a state in which the air port 13 is installed obliquely to the side wall, that is, in the tangential direction of the swirling flow, in order to improve the swirling of the flame within the furnace.

この燃焼装置において、風箱7に流入した燃焼用空気1
0はエアレジスタ6において旋回力を与えられ主バーナ
1用の燃焼用空気としてスロート4から噴射し主バーナ
火炎を形成する。この場合主バーナ1における空燃比は
約1もしくはこれよりやや多めとする。一方還元パーナ
2からは燃料12のみが噴射され、つまり空燃比が0の
状態で噴射され、火炉15内に残存する酸素により低酸
素燃焼を行ない還元火炎を形成する。
In this combustion device, combustion air 1 flowing into the wind box 7
0 is given a swirling force in the air register 6 and is injected from the throat 4 as combustion air for the main burner 1 to form a main burner flame. In this case, the air-fuel ratio in the main burner 1 is approximately 1 or slightly higher. On the other hand, only the fuel 12 is injected from the reducing parner 2, that is, it is injected with an air-fuel ratio of 0, and the oxygen remaining in the furnace 15 performs low-oxygen combustion to form a reducing flame.

次に空気口13からは別の燃焼用空気1oが供給され、
この空気の供給により炉内には第2図、第3図に示す如
き旋回流が生じ主バ〒す火炎と還元バーナ火炎とが良好
に混合し、還元バーナ火炎内の(1!N、NH等の還元
性中間生成物により主バーナ火炎中のNOxを還元して
N2とする。
Next, another combustion air 1o is supplied from the air port 13,
By supplying this air, a swirling flow as shown in Figs. 2 and 3 is generated in the furnace, and the main flame and the reducing burner flame mix well, and the (1!N, NH NOx in the main burner flame is reduced to N2 by reducing intermediate products such as.

この場合、主バーナ1から供給する燃焼用空気および空
気口13から供給する燃焼用空気の合計量を、同装置に
対する全燃料供給量に対する空燃比が約1.1となる様
に供給するとNOx低減率が高く、かつ未燃分の発生量
が少ないことが確認された。
In this case, NOx can be reduced by supplying the total amount of combustion air supplied from the main burner 1 and combustion air supplied from the air port 13 so that the air-fuel ratio with respect to the total amount of fuel supplied to the device is approximately 1.1. It was confirmed that the combustion rate was high and the amount of unburned matter generated was small.

第4図は第2の実施例を示す。この実施例においては前
記実施例に示した空気口13に代えてこの空気口13の
設置部とほぼ同じ位置に空気ノズル20を配置する。空
気ノズル2oは第4図に示すとおりその開口端がバーナ
火炎下流側に向うよう曲折形成しである。21はこの空
気ノズル20の設置部近傍に配置した還元バーナであり
、第1図に示す如く炉壁前壁に設置した還元バーナ2に
加えて、もしくはこれに代えて設置する。
FIG. 4 shows a second embodiment. In this embodiment, instead of the air port 13 shown in the previous embodiment, an air nozzle 20 is arranged at approximately the same location as the air port 13. As shown in FIG. 4, the air nozzle 2o is bent so that its opening end faces downstream of the burner flame. Reference numeral 21 denotes a reduction burner placed near the installation part of this air nozzle 20, and is installed in addition to or in place of the reduction burner 2 installed on the front wall of the furnace wall as shown in FIG.

但し、第5図に示すものは前壁に設置した還元バーナに
代えて側壁に設置したものを示す。
However, the one shown in FIG. 5 shows one installed on the side wall instead of the reduction burner installed on the front wall.

次に第4図、第5図を用いてこの装置の燃焼状態につい
て説明すると、前壁5に取り付けた主バーナ1による火
炎は火炎上流側から順に主燃焼域22.還元バーナ21
の火炎と混合を行って炉内脱硝を行なう脱硝域23.空
気ノズルから供給される燃焼用空気により未燃分を燃焼
させる完全燃焼域24が各々形成される。この場合、還
元バーナ21の火炎は火炉15内で旋回するため炉内滞
留時間が長くなりNOxの還元反応の時間を十分にとる
ことができる。
Next, the combustion state of this device will be explained with reference to FIGS. 4 and 5. The flame from the main burner 1 attached to the front wall 5 is transmitted sequentially from the flame upstream side to the main combustion zone 22. Reduction burner 21
Denitrification zone 23, where denitrification is carried out in the furnace by mixing with the flame of Complete combustion zones 24 are each formed in which unburned matter is combusted by combustion air supplied from the air nozzles. In this case, since the flame of the reduction burner 21 rotates in the furnace 15, the residence time in the furnace becomes long, and sufficient time can be taken for the reduction reaction of NOx.

この発明を実施することにより燃焼用空気の一部を火炉
側壁から流入させるので火炎を旋回させることができN
Oxと還元性中間生成物の混合が良好となり脱硝効果を
高めることができる。
By implementing this invention, part of the combustion air is allowed to flow in from the side wall of the furnace, making it possible to swirl the flame.
Ox and reducing intermediate products are mixed well, and the denitrification effect can be enhanced.

また火炎下流側で燃焼用空気が再度供給されることにな
るので、還元バーナ火炎を中心として発生した未燃分を
燃焼させることができ、炉外に排出する未燃分の量を減
少させることができる。
In addition, since combustion air is supplied again downstream of the flame, the unburned matter generated mainly in the reducing burner flame can be burned, reducing the amount of unburned matter discharged outside the furnace. I can do it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の第1の実施例を示す燃焼装置の断面
図、第2図は第1図のA−A線による断面図、第3図は
空気口の取付状態を変えた断面概略図、第4図は別の実
施例を示す火炉断面図、第5図は第4図に示す燃焼装置
の縦断面図である。 1・・・・・・主バーナ  2,21・・・・・・還元
バーナ5・・・・・・火炉前壁  1o・・・・・・燃
焼用空気13・・・・・・空気口  14・・!・・・
火炉側壁15・・・・・・火炉 □ ゛・2o・・・・
・・空気ノズルM3図
Fig. 1 is a cross-sectional view of a combustion device showing a first embodiment of the present invention, Fig. 2 is a cross-sectional view taken along line A-A in Fig. 1, and Fig. 3 is a schematic cross-sectional view with the air port installed differently. 4 is a sectional view of a furnace showing another embodiment, and FIG. 5 is a longitudinal sectional view of the combustion apparatus shown in FIG. 4. 1... Main burner 2, 21... Reduction burner 5... Furnace front wall 1o... Combustion air 13... Air port 14 ...! ...
Furnace side wall 15... Furnace □ ゛・2o...
・Air nozzle M3 diagram

Claims (1)

【特許請求の範囲】 1、 主バーナの燃焼により生じた窒素酸化物を還元バ
ーナの燃焼で生じた還元性中間生成物により還元するも
のにおいて、火炉前壁に主バーナを設置し、火炉側壁に
は燃焼用空気の一部を供給する空気口を形成し、この空
気口から供給される燃焼用空気により火炉内に旋回流を
形成して窒素酸化物と還元性中間生成物との混合を良好
に行なうことを特徴とする旋回型燃焼装置。 2、 前記空気口に代えて端部が火炎の下流側に開口す
る空気ノズルを火炉側壁に取り付けたことを特徴とする
特許請求の範囲第1項記載の旋回型燃焼装置。 3、 火炉前壁に設置した還元バーナに代えてまたはこ
れに加えて空気ノズル設置部近傍の火炉側壁に還元バー
ナを設置したことを特徴とする特許請求の範囲第2項記
載の旋回型燃焼装置。
[Scope of Claims] 1. In a device that reduces nitrogen oxides produced by combustion in a main burner with reducing intermediate products produced by combustion in a reduction burner, the main burner is installed on the front wall of the furnace, and the main burner is installed on the side wall of the furnace. forms an air port that supplies part of the combustion air, and the combustion air supplied from this air port forms a swirling flow in the furnace to improve the mixing of nitrogen oxides and reducing intermediate products. A swirl-type combustion device characterized by the following: 2. The swirl-type combustion apparatus according to claim 1, characterized in that, in place of the air port, an air nozzle whose end opens downstream of the flame is attached to the furnace side wall. 3. The swirl-type combustion device according to claim 2, characterized in that a reduction burner is installed on the side wall of the furnace near the air nozzle installation part in place of or in addition to the reduction burner installed on the front wall of the furnace. .
JP2119082A 1982-02-15 1982-02-15 Whirl type combustion device Pending JPS58138907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2119082A JPS58138907A (en) 1982-02-15 1982-02-15 Whirl type combustion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2119082A JPS58138907A (en) 1982-02-15 1982-02-15 Whirl type combustion device

Publications (1)

Publication Number Publication Date
JPS58138907A true JPS58138907A (en) 1983-08-18

Family

ID=12048029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2119082A Pending JPS58138907A (en) 1982-02-15 1982-02-15 Whirl type combustion device

Country Status (1)

Country Link
JP (1) JPS58138907A (en)

Similar Documents

Publication Publication Date Title
US4790743A (en) Method of reducing the nox-emissions during combustion of nitrogen-containing fuels
KR100394428B1 (en) FUEL DILUTION METHODS AND APPARATUS FOR NOx REDUCTION
JPH05340505A (en) Method for reducing amount of production of nitrogen oxide produced during combustion
JPS60226609A (en) Combustion device for coal
JPH0754162B2 (en) Burner for low NOx combustion
EP0738854A2 (en) A low nitrogen oxide producing combustion method and apparatus
US6409499B1 (en) Variable stoichiometric combustion
JPH076630B2 (en) Gas turbine combustor
EP0774621B1 (en) Method and apparatus for achieving combustion with a low production of nitrogen oxides
RU2242674C2 (en) Burner for multistage fuel combustion in air affording low nox emissions (alternatives) and method for reducing nox emissions
JPS60126508A (en) Finely powdered coal burning device
JP3068435B2 (en) Boiler furnace combustion equipment
JPS58138907A (en) Whirl type combustion device
JP2773831B2 (en) Low NOx boiler
JPH0555763B2 (en)
JPS6021606Y2 (en) Low NO↓x heat sintering equipment
JP2634279B2 (en) Method for burning NOx-containing gas
JP2590216B2 (en) Low NOx combustion method and low NOx combustor
JPS60133205A (en) Low nox burning method
JPS58182005A (en) Combustion method for low nox
JP2619973B2 (en) Ultra low pollutant emission combustion method and equipment
JPS58182003A (en) Combustion method for pulverized coal and burner for pulverized coal combustion
JPS58138906A (en) Low nox combustion device
JPS6078206A (en) Burner reducing nox
RU2293254C2 (en) Method of removing toxic agents from combustion products of gas fuel