JPS60132055A - Waste-heat recovering apparatus for diesel engine - Google Patents

Waste-heat recovering apparatus for diesel engine

Info

Publication number
JPS60132055A
JPS60132055A JP58237889A JP23788983A JPS60132055A JP S60132055 A JPS60132055 A JP S60132055A JP 58237889 A JP58237889 A JP 58237889A JP 23788983 A JP23788983 A JP 23788983A JP S60132055 A JPS60132055 A JP S60132055A
Authority
JP
Japan
Prior art keywords
preheater
boiler
temperature heating
heating section
inlet side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58237889A
Other languages
Japanese (ja)
Other versions
JPS6365818B2 (en
Inventor
Sadahiko Maeda
前田 禎彦
Shinjiro Yokota
横田 信次郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP58237889A priority Critical patent/JPS60132055A/en
Publication of JPS60132055A publication Critical patent/JPS60132055A/en
Publication of JPS6365818B2 publication Critical patent/JPS6365818B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)

Abstract

PURPOSE:To efficiently recover waste heat by installing a preheater for heating condensed water on the downstream side of a supercharger installed into an air feeding pipe and branching a bypass passage from the upstream side of the preheater and connecting said bypass passage to the inlet side of the high- temperature heating part of a discharged-gas boiler. CONSTITUTION:A preheater 20 which constitutes a waste-heat recovery cycle system 6 is installed onto the downstream side of a supercharger 4 installed into an intake pipe 2. A circulation passage 21 for the condensed-water returned from the heat utilizing equipment 12 and a fuel-oil storage tank 13 is connected to the preheater 20, and the thermal energy of the inhaled air is recovered. The preheater 20 is connected to the low-temperature heating part 19 of a boiler 5 through a circulation passage 22. A bypass passage 23 is installed into the circulation passage 21 on the upstream side of the preheater 20, and the bypass passage 23 is connected to the inlet side of a high-temperature heating part 18, and the boiler inlet side is kept at the temperature over the acid dew point of SO3 portion by adjusting the bypass amount. The hot water obtained in the boiler 5 is converted to low-pressure steam and hot water in a multistage flasher tank 24 and utilized in the equipment 12.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、たとえば船舶用機関などとして用いられるデ
ィーゼル機関の排熱回収装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an exhaust heat recovery device for a diesel engine used, for example, as a marine engine.

〔従来技術〕[Prior art]

近年、変型なる石油価格の高騰によって各方面において
省エネルギ化を図ることがめられており、これは重油等
を燃料とするディーゼル機関も例外ではなく、その高効
率化を図るべく各種の改善が進められ、またこれに合わ
せて従来無駄に廃棄されていた排ガスのもつ熱エネルギ
をも効率よく回収してその再利用化を図ることが望まれ
ている。特に、後者のように排熱を回収しこれを他の機
器、装置のエネルギ源として利用することは、余分なエ
ネルギの浪費を力<シ、その節減化を図るうえでその効
果は大きいものである。
In recent years, due to the sudden rise in the price of oil, there has been a push to save energy in all areas, and diesel engines that use heavy oil as fuel are no exception, and various improvements are being made to make them more efficient. In line with this, there is a desire to efficiently recover and reuse the thermal energy of exhaust gas, which was previously wasted. In particular, recovering waste heat and using it as an energy source for other equipment and equipment, as in the latter case, has a great effect in reducing unnecessary energy waste. be.

そして、この種の排熱回収装置として、比較的高温域に
ある排熱を回収して再利用するようにしたものについて
は従来から種々提案されているが、効率面からまだまだ
改善の余地が残されておシ、また中、低温域にある排熱
をも合わせて効率よく回収してその再利用化を図ること
ができ得るものは未だ提案されておらず、何らかの対策
を講じることが必要とされている。
Various proposals have been made for this type of waste heat recovery device that recovers and reuses waste heat in a relatively high temperature range, but there is still room for improvement in terms of efficiency. Furthermore, there is no proposal yet that can efficiently recover and reuse waste heat in medium and low temperature ranges, and it is necessary to take some measures. has been done.

これを第1図に示す従来例を用いて簡単に説明すると、
図中符号1は、ディーゼル機関、2,3は、それぞれそ
の吸、排気管で、これら吸、排気管2,3にまたがって
排気タービン式の過給機4が設けられている。この過給
機4は排気管3内の排ガスにより吸気管2内の吸入空気
を加圧するためのもので、これによう排ガスのもつ熱エ
ネルギの一部が吸入空気加圧用として回収利用される。
This can be briefly explained using the conventional example shown in Fig. 1.
In the figure, reference numeral 1 is a diesel engine, 2 and 3 are its intake and exhaust pipes, respectively, and an exhaust turbine type supercharger 4 is provided astride these intake and exhaust pipes 2 and 3. The supercharger 4 is used to pressurize the intake air in the intake pipe 2 using the exhaust gas in the exhaust pipe 3, and a part of the thermal energy of the exhaust gas is recovered and used for pressurizing the intake air.

5は過給機4を通過した排ガスが導入されることによシ
その熱エネルギを回収する排熱回収ボイラで、このボイ
ラ5内には排熱回収サイクル系6を構成する蒸発部T、
給給水熟熱部が設けられている。そして、これら蒸発部
Tおよび給水予熱部8にて水タンク9から給水ポンプ1
0によ如供給される水が排ガスのもつ熱エネルギを回収
して順次蒸発し、そお熱水が蒸発部7および給水予熱部
8の下流側に設けられた気水分離器11にて分離されて
蒸気として取出される。この取出された蒸気は、たとえ
ば発電機を駆動する蒸気タービン等の熱利用機器12の
エネルギ源として使用されるほか、その一部は燃料油ス
トレージタンク13の加熱用々どに利用されている。そ
して、この熱利用された蒸気は復水されて戻り凝縮水と
してタンク9に戻り、再びボイラ5側に給水されるもの
である。なお、前記気水分離器11は、ボイラ5の給水
予熱部8の出口側に接続されるとともに、この給水予熱
部8から導入された熱水が蒸発部7に接続された循環路
14を循環ポンプ14aにて順次流れることにより加熱
されて気水分離が行なわれるものである。また、図中1
5はディーゼル機関1の各部を冷却する冷却水循環路で
、海水等により熱せられた冷却水を冷却するクー215
aと、その循環用のポンプ15bとを備えている。
Reference numeral 5 denotes an exhaust heat recovery boiler that recovers heat energy by introducing exhaust gas that has passed through the supercharger 4. Inside this boiler 5, there are an evaporation section T constituting an exhaust heat recovery cycle system 6;
A water heating section is provided. Then, in the evaporation section T and the water supply preheating section 8, the water is transferred from the water tank 9 to the water supply pump 1.
The water supplied as shown in FIG. It is extracted as steam. The extracted steam is used as an energy source for a heat utilization device 12 such as a steam turbine that drives a generator, and a portion of it is also used to heat a fuel oil storage tank 13. The heat-utilized steam is then condensed and returned to the tank 9 as return condensed water, and is again supplied to the boiler 5 side. The steam-water separator 11 is connected to the outlet side of the feed water preheating section 8 of the boiler 5, and the hot water introduced from the feed water preheating section 8 is circulated through a circulation path 14 connected to the evaporation section 7. The water is heated by sequentially flowing through the pump 14a, and steam and water are separated. Also, 1 in the figure
5 is a cooling water circulation path that cools each part of the diesel engine 1, and a cooling water circulation path 215 that cools the cooling water heated by seawater, etc.
a, and a pump 15b for circulation.

ところで、上述したように過給機4を用いたディーゼル
機関1にあっては、吸気管2を流れる吸入空気が過給機
4にて断熱圧縮されるため発熱し、その温度が約160
℃程度まで上昇してしまうものであった。そして、この
ままでは空気の容積が増3− えすぎ、その吸入空気密度が低下するため、吸気管2の
途中に空気冷却器16を設け、空気温度を約60℃程度
まで低下させて所望の機関出力が得られるようにするこ
とが従来から行なわれている。
By the way, as mentioned above, in the diesel engine 1 using the supercharger 4, the intake air flowing through the intake pipe 2 is adiabatically compressed by the supercharger 4, so it generates heat, and its temperature reaches about 160℃.
The temperature would rise to about ℃. If this continues, the volume of air will increase too much and the density of the intake air will decrease, so an air cooler 16 is installed in the middle of the intake pipe 2 to lower the air temperature to about 60°C to achieve the desired engine temperature. Conventionally, it has been done to enable output to be obtained.

ここで、図中17はこの空気冷却器16の冷却水循環路
で、ポンプ17aと海水等による間接的な冷却を行なう
クー)17bとが設けられている。
Here, 17 in the figure is a cooling water circulation path of this air cooler 16, and is provided with a pump 17a and a cooler 17b that performs indirect cooling using seawater or the like.

しかしながら、このような構成では、せっかく排ガスを
利用して加圧した吸入空気のもつ熱エネルギを単に空気
冷却器16にて冷却して廃棄しているだけであり、無駄
であるばかりで力く、空気冷却器16としてもある程度
の容量をもつものが必要で、省エネルギ対策上からその
改善がめられている。
However, in such a configuration, the thermal energy of the pressurized intake air using exhaust gas is simply cooled and disposed of in the air cooler 16, which is not only wasteful but also wasteful. The air cooler 16 also needs to have a certain capacity, and improvements are being sought from the standpoint of energy conservation.

tた、上述した構成において、ボイラ5゛の入口側排ガ
ス温度は約320℃程度で、一方出口側温度は約171
℃程度であり、より一層回収効率を高めることが望まれ
ており、さらに回収した熱エネルギの再利用化にあたっ
てもその多様化を図ることが要求されている。
In addition, in the above-described configuration, the temperature of the exhaust gas on the inlet side of the boiler 5 is about 320°C, while the temperature on the outlet side is about 171°C.
℃, and it is desired to further improve the recovery efficiency, and it is also required to diversify the reuse of the recovered thermal energy.

4− しかし、その一方において、注意すべきことは、排ガス
中に含まれるイオウ(S)0の酸化による無水硫酸(S
03)が水分と化合し硫酸(H2SO4) とかってボ
イラ5等の伝熱管壁に結露することがないようにその管
壁温度を酸露点(約135℃)以上に保つことである。
4- However, on the other hand, it should be noted that sulfuric anhydride (S) due to oxidation of sulfur (S) contained in exhaust gas
03) is combined with moisture to form sulfuric acid (H2SO4), and the temperature of the tube wall is kept above the acid dew point (approximately 135° C.) so that dew does not form on the wall of the heat transfer tube of the boiler 5, etc.

すガわち、上述したような803分の結露がボイラ5の
伝熱管の管壁などに付着すると、その部分が腐蝕して損
傷してしまうもので、このような点を考慮することが必
要とされている。
In other words, if the 803 minutes of dew condensation mentioned above adheres to the tube wall of the heat exchanger tube of boiler 5, that part will corrode and be damaged, so it is necessary to take these points into consideration. It is said that

〔発明の概要〕[Summary of the invention]

本発明はこのような事情に鑑みてなされたものであり、
ディーゼル機関の吸気管で過給機よ)も下流側に排熱回
収サイクル系の戻り凝縮水路が接続された予熱器を設け
、この予熱器を排熱回収ボイラの低温加熱部を介してそ
の高温加熱部の入口側に接続するとともに、この予熱器
よりも上流側から分岐した戻シ凝縮水のバイパス路を前
記ボイラの高温加熱部の入口側に接続し、かつこの高温
加熱部の出口側に7ラツシヤタンクを設けるという簡単
々構成によって、従来無駄に捨てられていた吸入空気の
熱エネルギを効率よく回収し、その再利用化を図るとと
もに、ボイラ伝熱管壁での温度を803分の酸露点以上
に保ち、その腐蝕防止を図ることができ、またボイラで
の回収効率をも向上させ、さらにフランシャタンクにて
蒸気および熱水を得てその再利用化にあたっての多様化
を図ることが可能とがるディーゼル機関の排熱回収装置
を提供するものである。
The present invention was made in view of these circumstances, and
The intake pipe of a diesel engine (supercharger) is also equipped with a preheater connected to the return condensation waterway of the exhaust heat recovery cycle system on the downstream side, and this preheater is connected to the high temperature temperature through the low temperature heating section of the exhaust heat recovery boiler. Connected to the inlet side of the heating section, and connected to the inlet side of the high-temperature heating section of the boiler, and connected to the inlet side of the high-temperature heating section of the boiler, and connected to the outlet side of the high-temperature heating section of the boiler. 7 The simple structure of installing a lattice tank allows us to efficiently recover and reuse the heat energy of the intake air, which was previously wasted, and reduce the temperature at the boiler heat exchanger tube wall to the 803 minute acid dew point. It is possible to maintain the above temperature and prevent corrosion, improve the recovery efficiency in the boiler, and furthermore, it is possible to obtain steam and hot water in the Francia tank and diversify its reuse. The present invention provides an exhaust heat recovery device for a sharp diesel engine.

〔実施例〕〔Example〕

以下、本発明を図面に示した実施例を用いて詳細に説明
する。
Hereinafter, the present invention will be explained in detail using embodiments shown in the drawings.

第2図は本発明に係るディーゼル機関の排熱回収装置の
一実施例を示すものであシ、同図において第1図と同一
または相当する部分には同一番号を付してその説明は省
略する。
Fig. 2 shows an embodiment of the exhaust heat recovery device for a diesel engine according to the present invention. In the figure, the same or corresponding parts as in Fig. 1 are given the same numbers and their explanations are omitted. do.

さて、本発明によれば、機関吸気管2の過給機4下流側
に、排熱回収サイクル系6を横取する予熱器20を設け
、この予熱器20に熱利用機器12C12A、 12B
、 120)や燃料油ストレージタンク13からの戻り
凝縮水の循環路21を接続することにより、過給機4に
て昇温された吸入空気からの熱エネルギを効率よく回収
してその再利用化を図れるように構成している。そして
、この予熱器20は循環路22を介してボイラ5の低温
加熱部19に接続されるとともに、この低温加熱部19
の出口側は高温加熱部1Bの入口側に接続され、前記予
熱器20にて予熱された熱水を排ガスにより加熱して昇
温させるように構成されている。また、前記予熱器20
の上流側の循環路21途中には、戻り凝縮水の一部が導
びかれるバイパス路23が分岐して設けられており、こ
のバイパス路23は前記ボイラ5の高温加熱部1Bの入
口側に接続されている。したがって、このような構成に
よれば、循環路21内の戻り凝縮水は、前記予熱器20
とボイラ5の低温加熱部19とで熱せられたものと、バ
イパス路23を通って導びかれたものとが、ボイラ5の
高温加熱部18の入口側で合流されてボイラ5内に導入
され、排ガスにより加熱されることになる。
Now, according to the present invention, the preheater 20 that intercepts the exhaust heat recovery cycle system 6 is provided downstream of the supercharger 4 in the engine intake pipe 2, and the heat utilization devices 12C12A and 12B are installed in the preheater 20.
, 120) and the return condensed water circulation path 21 from the fuel oil storage tank 13, the thermal energy from the intake air heated by the supercharger 4 can be efficiently recovered and reused. It is structured so that it can be achieved. This preheater 20 is connected to the low temperature heating section 19 of the boiler 5 via a circulation path 22, and this low temperature heating section 19
The outlet side of is connected to the inlet side of the high temperature heating section 1B, and is configured to heat the hot water preheated by the preheater 20 with exhaust gas to raise its temperature. Further, the preheater 20
In the middle of the circulation path 21 on the upstream side of the boiler 5, a bypass path 23 to which a portion of the return condensed water is guided is provided. It is connected. Therefore, according to such a configuration, the return condensed water in the circulation path 21 is transferred to the preheater 20.
The heat heated in the low-temperature heating section 19 of the boiler 5 and the heat guided through the bypass path 23 are combined at the inlet side of the high-temperature heating section 18 of the boiler 5 and introduced into the boiler 5. , will be heated by exhaust gas.

このような構成を採用した理由は、ボイラ5内7− で特に低温域にある伝熱管管壁の温度を、排ガス中に含
まれる803分の酸露点以上に保ち、との管壁などへの
結露による腐蝕を防止するためである。
The reason for adopting such a configuration is to maintain the temperature of the heat exchanger tube wall, which is in a particularly low temperature region in the boiler 5, above the acid dew point of 803 minutes contained in the exhaust gas, and to This is to prevent corrosion due to dew condensation.

すなわち、熱利用機器12 (12A、12B、12C
)からの戻り凝縮水の温度が約70℃程度である場合に
おいて、その流量が多いとき、これを全量予熱器20を
通すと、ボイラ5の低温加熱部190入口側温度が上述
した酸露点以下となることがある。このため、本発明は
上述した予熱器2Oへの供給量をその一部をバイパスす
ることにより調整し、ボイラ5の入口側での温度が酸露
点、約135℃以上に維持できるように構成するととも
に、バイパスされた低温水(約70℃)を、ボイラ5の
低温加熱81Bにて加熱された高温水(約163℃)に
合流させて全体の温度を酸露点以上の約140℃程度と
してボイラ5内に導入するように構成している。
That is, the heat utilization equipment 12 (12A, 12B, 12C
) and the temperature of the return condensed water is about 70°C, and when the flow rate is large, if the entire amount is passed through the preheater 20, the temperature on the inlet side of the low temperature heating section 190 of the boiler 5 will be below the acid dew point mentioned above. It may become. For this reason, the present invention adjusts the amount of supply to the preheater 2O described above by bypassing a part of it, so that the temperature at the inlet side of the boiler 5 can be maintained at the acid dew point, about 135° C. or higher. At the same time, the bypassed low-temperature water (approximately 70 degrees Celsius) is merged with the high-temperature water (approximately 163 degrees Celsius) heated by the low-temperature heating 81B of boiler 5 to bring the overall temperature to about 140 degrees Celsius, which is above the acid dew point. The system is configured to be introduced within 5.

なお、前記吸気管2内の吸入空気温度は、前記予熱器2
0を設けることにより約160℃から約85℃まで低減
されるもので、これを約60℃程度の8一 機関導入温度まで空気冷却器16にて冷却したとしても
廃棄される熱量は少なく、省エネルギ化を図るうえで効
果的なものであり、しかもこの空気冷却器16での負荷
が小さいことからその小型化を図れるといった利点もあ
る。勿論、上述した吸入空気を予熱器20にて必要とさ
れる温度まで低減できる場合には空気冷却器16を省略
することも可能である。さらに、本実施例によれば、ボ
イラ5での排ガスの入口側が約320℃程度であるとき
、その出口側を約155℃程度とすることができるもの
で、従来に比べ排熱回収効率を高めることも可能である
Note that the temperature of the intake air in the intake pipe 2 is the same as that of the preheater 2.
By providing 0, the temperature is reduced from about 160°C to about 85°C, and even if this temperature is cooled by the air cooler 16 to the 81 engine introduction temperature of about 60°C, the amount of heat disposed of is small, resulting in savings. This is effective for energy conservation, and also has the advantage that the air cooler 16 can be made smaller because the load on it is small. Of course, if the above-mentioned intake air can be reduced to the required temperature by the preheater 20, the air cooler 16 can be omitted. Furthermore, according to this embodiment, when the temperature at the inlet side of the exhaust gas in the boiler 5 is about 320°C, the temperature at the outlet side can be set at about 155°C, which increases the waste heat recovery efficiency compared to the conventional method. It is also possible.

また、本発明によれば、上述したボイラ5にて得られる
約233℃程度の熱水を、多段フラッシャタンク24(
本実施例では二段)を用いて二種類の低圧蒸気と約12
0℃程度の熱水とを生じさせ、これらの蒸気および熱水
を、各種の熱利用機器12などにより再利用し得るよう
にし、その多様化を図っている。蒸気の適用例としては
たとえばタービンを回して動力あるいは発電機を介して
電力として取出すほか、種々の用途が考えられる。また
、熱水は図示されるように燃料油ストレージタンク加熱
用や冷、暖房用々どに適用し得るもので、このような1
20℃の温水をも利用することによシ全体としてのシス
テム効率が大幅に向上する。
Further, according to the present invention, the hot water of about 233° C. obtained in the boiler 5 described above is transferred to the multi-stage flasher tank 24 (
In this example, two types of low pressure steam and approximately 12
The system generates hot water at a temperature of about 0° C., and allows these steam and hot water to be reused by various types of heat utilization equipment 12, etc., in an effort to diversify them. Examples of the applications of steam include, for example, generating power by turning a turbine or generating electric power through a generator, as well as various other uses. In addition, as shown in the figure, hot water can be used for heating fuel oil storage tanks, cooling, heating, etc.
By also using hot water at 20°C, the overall system efficiency is greatly improved.

なお、本発明は上述した実施例構造に限定されず、各部
の形状、構造等を適宜変形、変更することは自由で、ま
たディーゼル機関としても船舶用に限定されず、種々の
ものに適用できるものである。
It should be noted that the present invention is not limited to the structure of the embodiments described above, and the shape and structure of each part may be modified and changed as appropriate. Also, the present invention is not limited to use in ships as a diesel engine, and can be applied to various types of engines. It is something.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明に係るディーゼル機関の排
熱回収装置によれば、吸気管の過給機下流側に排熱回収
サイクルの戻り凝縮水が流れる予熱器を設け、この予熱
器を排熱回収ボイラの低温加熱部を介してその高温加熱
部の入口側に接続する一方、前記予熱器の上流側から分
岐された戻り凝縮水のバイパス路もこの高温加熱部の入
口側に接続し、かつこの高温加熱部の出口側に7ラツシ
ヤタンクを設けて蒸気および熱水が得られるようにした
ので、簡単な構成にもかかわらず、従来無駄に捨てられ
ていた吸入空気の熱エネルギを効率よく回収し、その有
効利用化を図るとともに、ボイラ伝熱管壁での温度をS
03分の酸露点以上に保ち、その腐蝕防止を図ることが
でき、しかもとのボイラでの回収効率をも向上させ、ま
たフラッシャタンクにて得られる蒸気および熱水にてそ
の熱エネルギの再利用化を図るうえでその多様化を図る
ことができる等の種々優れた効果がある。
As explained above, according to the exhaust heat recovery device for a diesel engine according to the present invention, a preheater is provided downstream of the supercharger in the intake pipe through which the return condensed water of the exhaust heat recovery cycle flows, and the preheater is While connected to the inlet side of the high temperature heating section of the heat recovery boiler via the low temperature heating section, a bypass path of return condensed water branched from the upstream side of the preheater is also connected to the inlet side of the high temperature heating section, In addition, a 7-lush tank is installed on the outlet side of this high-temperature heating section to obtain steam and hot water, so despite the simple structure, the thermal energy of the intake air, which was previously wasted, can be efficiently recovered. In addition to making effective use of the heat exchanger, the temperature at the boiler heat exchanger tube wall can be reduced by S.
It is possible to maintain the acid dew point above 0.3 minutes to prevent corrosion, improve the recovery efficiency in the original boiler, and reuse the thermal energy in the steam and hot water obtained in the flasher tank. It has various excellent effects, such as being able to diversify the market.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来装置の概略を示す系統図、第2図は本発明
に係るディーゼル機関の排熱回収装置の一実施例を示す
系゛読図である。 1・・・・ディーゼル機関、2,3・・・Q吸。 排気管、4・・・・過給機、5・・・・排熱回収ボイラ
、6・・・・排熱回収サイクル系、12(12A、12
B、12C) ・・・会熱利用機器、13・・・・燃料
油ストレージタンク、16・Φ・・・空気冷却器、18
・・・・高温加熱部、19・・・・低温加熱部、20・
・・・予熱器、21.2211− ・・・・循環路、23・・・・ノくイノくス路、24Φ
・・・フラッシュタンク。 特許出願人 宇部興産株式会社 代理人 山川政樹(ほか1名) 12−
FIG. 1 is a system diagram showing an outline of a conventional device, and FIG. 2 is a system diagram showing an embodiment of the exhaust heat recovery device for a diesel engine according to the present invention. 1...Diesel engine, 2,3...Q suction. Exhaust pipe, 4...Supercharger, 5...Exhaust heat recovery boiler, 6...Exhaust heat recovery cycle system, 12 (12A, 12
B, 12C) ... Heat utilization equipment, 13 ... Fuel oil storage tank, 16 Φ ... Air cooler, 18
...High temperature heating section, 19.....Low temperature heating section, 20.
...Preheater, 21.2211- ...Circulation path, 23...Nokuinokusu path, 24Φ
...flash tank. Patent applicant Ube Industries Co., Ltd. agent Masaki Yamakawa (and one other person) 12-

Claims (1)

【特許請求の範囲】[Claims] ディーゼル機関からの排ガスにより吸気管内の吸入空気
を加圧すゐ過給機と、この過給機を通過した排ガスが導
入されその熱エネルギを回収する高温加熱部および低温
加熱部を有する排熱回収ボイラと、このボイラの高温加
熱部用口側に接続され蒸気および熱水を得てこれらを熱
利用機器に供給するフラッシュタンクとを備え、前記吸
気管の過給機下流側には前記熱利用機器からの戻り凝縮
水を加熱する予熱器が設けられ、かつこの予熱器が前記
ボイラの低温加熱部を経てその高温加熱部の入口側に接
続されるとともに、前記予熱器の上流側から分岐された
バイパス路が前記ボイラの高温加熱部の入口側に接続さ
れていることを特徴とするディーゼル機関の排熱回収装
置。
An exhaust heat recovery boiler that includes a supercharger that pressurizes the intake air in the intake pipe with exhaust gas from a diesel engine, and a high-temperature heating section and a low-temperature heating section that introduce the exhaust gas that has passed through the supercharger and recover its thermal energy. and a flash tank connected to the high-temperature heating section inlet side of the boiler to obtain steam and hot water and supply them to the heat utilization equipment, and the intake pipe downstream of the supercharger has the heat utilization equipment. A preheater for heating return condensed water from the boiler is provided, and this preheater is connected to the inlet side of the high temperature heating section of the boiler via the low temperature heating section, and is branched from the upstream side of the preheater. An exhaust heat recovery device for a diesel engine, characterized in that a bypass path is connected to an inlet side of a high-temperature heating section of the boiler.
JP58237889A 1983-12-19 1983-12-19 Waste-heat recovering apparatus for diesel engine Granted JPS60132055A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58237889A JPS60132055A (en) 1983-12-19 1983-12-19 Waste-heat recovering apparatus for diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58237889A JPS60132055A (en) 1983-12-19 1983-12-19 Waste-heat recovering apparatus for diesel engine

Publications (2)

Publication Number Publication Date
JPS60132055A true JPS60132055A (en) 1985-07-13
JPS6365818B2 JPS6365818B2 (en) 1988-12-16

Family

ID=17021921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58237889A Granted JPS60132055A (en) 1983-12-19 1983-12-19 Waste-heat recovering apparatus for diesel engine

Country Status (1)

Country Link
JP (1) JPS60132055A (en)

Also Published As

Publication number Publication date
JPS6365818B2 (en) 1988-12-16

Similar Documents

Publication Publication Date Title
FI70298C (en) FOERFARANDE FOER ATT TAGA TILLVARA ENERGI I EN EFFEKTGENERATOROCH EFFEKTGENERATOR FOER TILLAEMPNING AV DETTA FOERFARAND E
JPH08226335A (en) Hydrogen-burning gas turbine plant
JPH094510A (en) Combustion engine plant, supercharging combustion engine device for combustion engine plant and improving method of efficiency of combustion engine plant
US7033420B2 (en) Process and apparatus for the thermal degassing of the working medium of a two-phase process
CN105508055B (en) The system and method for distributed busbar protection cooling circulating water
JPH03221702A (en) Duplex type heat exchanger for waste heat recovery
JP2680288B2 (en) Steam injection gas turbine system and operating method thereof
JPS60132055A (en) Waste-heat recovering apparatus for diesel engine
JP2000161018A (en) Method and device of exhaust heat recovery power generation by water-ammonia mixed fluid
JPS60132057A (en) Waste-heat recovering apparatus for diesel engine
JPS60132056A (en) Waste-heat recovering apparatus for diesel engine
JPH0440524B2 (en)
JPH11270347A (en) Gas turbine combined generating set using lng
JPH11117712A (en) Gas turbine combined plant
JPH0231523Y2 (en)
JPS63235650A (en) Thermoelectric combination feed system
CN111503956B (en) Comprehensive energy supply system in closed space and working method
CN214533097U (en) Rankine cycle waste heat recovery system and turbocharging device thereof
JPH09170405A (en) Pressurized fluidized bed compound power generation facility
JPH0233568A (en) Method of recovering and utilizing waste heat
JPS6249115A (en) Soot removing device in discharged gas boiler tube in marine diesel engine
JP3059124B2 (en) Hydrogen combustion turbine plant
JPS60259802A (en) Waste-heat recovery heat pump system of marine diesel main engine
JPH0330561Y2 (en)
JP2782986B2 (en) Combined cycle equipment