JPH0231523Y2 - - Google Patents

Info

Publication number
JPH0231523Y2
JPH0231523Y2 JP6048185U JP6048185U JPH0231523Y2 JP H0231523 Y2 JPH0231523 Y2 JP H0231523Y2 JP 6048185 U JP6048185 U JP 6048185U JP 6048185 U JP6048185 U JP 6048185U JP H0231523 Y2 JPH0231523 Y2 JP H0231523Y2
Authority
JP
Japan
Prior art keywords
pressure
waste heat
water
steam
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6048185U
Other languages
Japanese (ja)
Other versions
JPS61175505U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP6048185U priority Critical patent/JPH0231523Y2/ja
Publication of JPS61175505U publication Critical patent/JPS61175505U/ja
Application granted granted Critical
Publication of JPH0231523Y2 publication Critical patent/JPH0231523Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 産業上の利用分野 本考案は内燃機関の掃気、排ガスの廃熱回収を
行なつて熱水/蒸気を発生させ、ターボ発電機に
蒸気を送給して発電を行なう熱水フラツシユ発電
システムに関するものである。
[Detailed description of the invention] Industrial application field This invention generates hot water/steam by scavenging air from an internal combustion engine and recovering waste heat from exhaust gas, and then supplies the steam to a turbo generator to generate electricity. This relates to a hydrothermal flash power generation system.

従来技術 従来、内燃機関の廃熱回収、特に船舶における
廃熱回収システムの有効な一手法として熱水フラ
ツシユ発電システムがある。これは、主に主機掃
気エネルギーを回収して排ガスエコノマイザーへ
の給水加熱を行ない、主機排ガスエネルギーを回
収して高圧蒸気、中圧蒸気、熱水を発生させ、更
にその熱水を多段フラツシヤに導き、減圧蒸発に
より多段低圧蒸気を発生させている。
BACKGROUND ART Conventionally, a hot water flash power generation system has been known as an effective method for waste heat recovery from internal combustion engines, particularly for waste heat recovery systems in ships. This mainly recovers the main engine scavenging air energy to heat the feed water to the exhaust gas economizer, recovers the main engine exhaust gas energy to generate high-pressure steam, intermediate-pressure steam, and hot water, and then sends the hot water to a multi-stage flusher. multi-stage low-pressure steam is generated through vacuum evaporation.

このうち、中圧蒸気の一部を利用して船内所要
加熱を行ない、高圧及び中圧、多段低圧蒸気を混
合タービンに導き発電するというシステムであ
る。
The system uses a portion of the intermediate-pressure steam to heat the ship as required, and then directs high-pressure, intermediate-pressure, and multi-stage low-pressure steam to a mixing turbine to generate electricity.

この考案が解決すべき問題点 しかしながら、従来のシステムでは主機ジヤケ
ツトの廃熱は利用されておらず、主機掃気エネル
ギーは排ガスエコノマイザへの給水加熱にのみ利
用されているのが現状で、主機関の発生する総熱
量の割には廃熱回収効率が低かつた。
Problems to be solved by this idea However, in the conventional system, the waste heat of the main engine jacket is not utilized, and the main engine scavenging air energy is currently used only for heating the water supply to the exhaust gas economizer. The waste heat recovery efficiency was low compared to the total amount of heat generated.

このため、ターボ発電機による出力電力は相対
的に低めで、比較的大出力の主機関でないと船内
電力を充分に賄うことができず、中小出力の主機
関では補助発電システムが必要となる場合があつ
た。
For this reason, the output power from the turbo generator is relatively low, and only a relatively high-output main engine can provide enough power for the ship, and an auxiliary power generation system may be required for small to medium-output main engines. It was hot.

そこで本考案は前記の様な従来型の熱水フラツ
シユ発電システムの不都合な点を改善して、より
廃熱回収効率を高め、省エネルギを実現できるフ
ラツシユ発電システムを提供することを目的とす
る。
Therefore, an object of the present invention is to improve the disadvantages of the conventional hot water flash power generation system as described above, and to provide a flash power generation system that can further improve waste heat recovery efficiency and realize energy savings.

更に本考案は、内燃機関の冷却液と掃気ガスの
両方より廃熱回収した熱エネルギーを用いてフラ
ツシヤでの発生蒸気量を増大させ、ターボ発電機
における発電量を増大させることを目的とする。
A further object of the present invention is to increase the amount of steam generated in the flusher by using thermal energy recovered from waste heat from both the coolant of the internal combustion engine and the scavenging gas, thereby increasing the amount of power generated by the turbo generator.

考案の構成 本考案による熱水フラツシユ発電システムは、
内燃機関のジヤケツト液冷サイクルを通過する作
動流体を多段フラツシヤの一方に環流させてジヤ
ケツト廃熱回収を行ない、かつ内燃機関の掃気冷
却器で掃気からエネルギーを回収した作動流体を
多段フラツシヤに還流させて掃気廃熱回収を行な
い、こうしてフラツシヤ内での蒸気発生量を増加
させてターボ発電機に送給し、熱回収効率の改善
を図つた点に特徴がある。
Composition of the invention The hydrothermal flash power generation system according to the invention is
The working fluid passing through the jacket liquid cooling cycle of the internal combustion engine is recycled to one side of the multi-stage flusher to recover jacket waste heat, and the working fluid that has recovered energy from the scavenging air in the scavenging air cooler of the internal combustion engine is recycled to the multi-stage flusher. The system is characterized by recovering waste heat from the scavenging air, thereby increasing the amount of steam generated within the flusher and feeding it to the turbo generator, improving heat recovery efficiency.

実施例 以下、本考案による熱水フラツシユ発電システ
ムについて、図示する実施例により説明する。
Embodiments Hereinafter, a hot water flash power generation system according to the present invention will be described with reference to illustrated embodiments.

第1図に、船舶のデイーゼル機関に本考案を適
用したシステムの系統図を示した。
Figure 1 shows a system diagram of a system in which the present invention is applied to a diesel engine of a ship.

このシステムにおいて、デイーゼル機関1へ、
主機空気冷却器2を介して掃気用空気が送給され
る。この空気冷却器2は、通常140℃前後の空気
を45℃前後まで冷却する。また、デイーゼル機関
1からの排ガスは通常250℃前後あり、排ガスエ
コノマイザ4に送り込まれる。
In this system, to diesel engine 1,
Scavenging air is supplied via the main engine air cooler 2. This air cooler 2 cools air that is normally around 140°C to around 45°C. Further, the exhaust gas from the diesel engine 1 is normally around 250°C, and is sent to the exhaust gas economizer 4.

一方、後述するドレンタンク20及び復水器1
7からの水は復水ポンプ16及び給水ポンプ3に
より主機空気冷却器2の高温部へ供給される。そ
して、主機空気冷却器2において主デイーゼル機
関1へ送られる空気との熱交換により120℃程度
に加熱された冷却水は多段フラツシヤの一方を構
成する低圧フラツシヤ9に送られる。この低圧フ
ラツシヤ9は前記主機空気冷却器2で掃気廃熱回
収を行なつた給水により加熱され、別途供給され
る中圧飽和水からの低圧蒸気発生量が増大する。
On the other hand, a drain tank 20 and a condenser 1, which will be described later,
Water from 7 is supplied to the high temperature section of the main engine air cooler 2 by a condensate pump 16 and a water supply pump 3. Cooling water heated to about 120° C. by heat exchange with the air sent to the main diesel engine 1 in the main engine air cooler 2 is sent to a low pressure flasher 9 constituting one of the multistage flashers. This low-pressure flasher 9 is heated by the water supplied from which scavenging waste heat has been recovered by the main engine air cooler 2, and the amount of low-pressure steam generated from medium-pressure saturated water that is separately supplied increases.

この低圧フラツシヤ9を通過した給水は90℃程
度の温水となつて排ガスエコノマイザ4に送給さ
れる。ここで、主機空気冷却器2と低圧フラツシ
ヤ9及び排ガスエコノマイザ4との間を結ぶ管路
の連結部に設けられた三方弁24及び弁23を制
御することで、給水ポンプ3から直接排ガスエコ
ノマイザー4の側へ冷却水を送給することも可能
である。
The water that has passed through the low-pressure flusher 9 becomes hot water at about 90° C. and is sent to the exhaust gas economizer 4. Here, by controlling the three-way valve 24 and valve 23 provided at the connecting part of the pipe connecting the main engine air cooler 2, the low-pressure flusher 9, and the exhaust gas economizer 4, the exhaust gas economizer can be directly connected to the water supply pump 3. It is also possible to feed cooling water to the 4 side.

ここで、排ガスエコノマイザ4は予熱部4A、
中圧蒸発部4B、高圧蒸発部4C及び過熱部4D
の2段圧力式であり、前記低圧フラツシヤ9から
の給水は90℃前後の温度で予熱部4Aに送給され
る。
Here, the exhaust gas economizer 4 includes a preheating section 4A,
Medium pressure evaporation section 4B, high pressure evaporation section 4C and superheating section 4D
It is a two-stage pressure type, and the water supplied from the low pressure flusher 9 is fed to the preheating section 4A at a temperature of about 90°C.

この予熱部4Aである程度にまで予熱された給
水は弁26により中圧蒸発部4Bと高圧分離ドラ
ム(又は補助ボイラ)5とに送給される。この高
圧分離ドラム5からはボイラ水循環ポンプ6によ
り高圧ドレインが高圧蒸発部4Cに送給され、高
圧蒸気となつて高圧分離ドラムに環流される。さ
らに、この高圧蒸気は高圧分離ドラム5から過熱
部4Dと船内所要加熱器18′に供給される。過
熱部4Dへ流入した高圧蒸気は排ガスとの熱交換
により過熱高圧蒸気となりターボ発電機8に供給
される。
The feed water preheated to a certain degree in the preheating section 4A is sent to the medium pressure evaporation section 4B and the high pressure separation drum (or auxiliary boiler) 5 through the valve 26. High-pressure drain is fed from this high-pressure separation drum 5 to a high-pressure evaporator 4C by a boiler water circulation pump 6, and is turned into high-pressure steam and refluxed to the high-pressure separation drum. Further, this high-pressure steam is supplied from the high-pressure separation drum 5 to the superheating section 4D and the necessary heaters 18' in the ship. The high-pressure steam that has flowed into the superheating section 4D exchanges heat with the exhaust gas to become superheated high-pressure steam and is supplied to the turbo generator 8.

一方、中圧蒸発部4Bへ送給された熱水は中圧
蒸気となつて中圧分離ドラム7に送給され、中圧
飽和蒸気と中圧ドレインである中圧飽和水とに分
離される。ここで、中圧飽和蒸気はターボ発電機
8と船内所要加熱器18に送給され、中圧ドレイ
ンは低圧フラツシヤ9と後述する低低圧フラツシ
ヤ10に送給されて各々低圧及び低低圧蒸気とな
つてターボ発電機8へと導かれる。このターボ発
電機8からの排気蒸気は復水器17で水となり復
水ポンプ16へ戻る。
On the other hand, the hot water fed to the medium pressure evaporator 4B becomes medium pressure steam and is fed to the medium pressure separation drum 7, where it is separated into medium pressure saturated steam and medium pressure saturated water, which is a medium pressure drain. . Here, the medium-pressure saturated steam is fed to the turbo generator 8 and the necessary heater 18 on board, and the medium-pressure drain is fed to the low-pressure flasher 9 and the low-low-pressure flasher 10 (described later) to become low-pressure and low-low-pressure steam, respectively. and is guided to the turbo generator 8. The exhaust steam from the turbo generator 8 turns into water in the condenser 17 and returns to the condensate pump 16.

また、船内所要加熱器18,18′からのドレ
ンはドレンクーラ19及びドレンタンク20を経
て復水器17のホツトウエル部側へと送給され
る。
Further, drain from the inboard heaters 18, 18' is sent to the hot well portion of the condenser 17 via a drain cooler 19 and a drain tank 20.

ここで、ジヤケツトの廃熱回収を行なうものと
して前記多段フラツシヤのもう一方を構成する低
低圧フラツシヤ10が設けられており、主機ジヤ
ケツト冷却水ポンプ11によりジヤケツト内を通
つて冷却水が送給されてジヤケツト廃熱回収を行
なうよう構成されている。このジヤケツト廃熱を
回収した冷却水は造水装置13にも供給され、し
ぼり弁21により造水装置13を通過する冷却水
量が調節可能となつている。また、低低圧フラツ
シヤ10及び造水装置13から還流する冷却水は
三方弁22により主機ジヤケツト冷却機14を経
て、又は直接主機ジヤケツト冷却水ポンプ11へ
と冷却水を送出する。ここで、冷却水は主機出口
ジヤケツト冷却水温度が85℃になるように三方弁
22を自動制御する。
Here, a low-low-pressure flasher 10 constituting the other side of the multi-stage flasher is provided to recover waste heat from the jacket, and cooling water is supplied through the inside of the jacket by a main engine jacket cooling water pump 11. The jacket is configured to provide waste heat recovery. The cooling water from which this jacket waste heat is recovered is also supplied to the water generator 13, and the amount of cooling water passing through the water generator 13 can be adjusted by a throttle valve 21. Further, the cooling water flowing back from the low-low pressure flusher 10 and the fresh water generator 13 is sent out via the main engine jacket cooler 14 or directly to the main engine jacket cooling water pump 11 by the three-way valve 22. Here, the cooling water is automatically controlled by the three-way valve 22 so that the main engine outlet jacket cooling water temperature is 85°C.

以上の構成において、給水ポンプ3から圧送さ
れた給水は主機空気冷却器2で主機掃気の廃熱回
収を行ない、その一部は低圧フラツシヤ9加熱に
用いられ、残りは排ガスエコノマイザ4に導びか
れる。
In the above configuration, the feed water pumped from the water pump 3 recovers waste heat from the main engine scavenging air in the main engine air cooler 2, a part of which is used to heat the low pressure flusher 9, and the rest is led to the exhaust gas economizer 4. .

排ガスエコノマイザ4の予熱部4Aでは給水が
更に加熱され、その一部は中圧蒸発部4Bへ導か
れ、中圧蒸気分離ドラム7にて中圧蒸気と中圧ド
レインが発生する。ここで、予熱部4Aを出た給
水の残りは高圧分離ドラム5へ入りボイラ水循環
ポンプ6にて高圧蒸発部4Cを循環した後、高圧
分離ドラム5にて高圧蒸気を発生する。高圧蒸気
の一部は船内所要加熱器18′で使用されるが、
大半は過熱部4Dで過熱蒸気となりターボ発電機
8へ導かれる。
The feed water is further heated in the preheating section 4A of the exhaust gas economizer 4, a part of which is guided to the medium pressure evaporation section 4B, and medium pressure steam and medium pressure drain are generated in the medium pressure steam separation drum 7. Here, the remainder of the feed water that has left the preheating section 4A enters the high-pressure separation drum 5 and is circulated through the high-pressure evaporation section 4C by the boiler water circulation pump 6, after which high-pressure steam is generated in the high-pressure separation drum 5. A part of the high pressure steam is used in the necessary heater 18' on board,
Most of it becomes superheated steam in the superheating section 4D and is guided to the turbo generator 8.

また、中圧蒸気分離ドラム7で生じた中圧飽和
蒸気は主として船内所要加熱器18に使用される
が、残りはターボ発電機8の駆動用に使用され
る。
Further, the medium pressure saturated steam generated in the medium pressure steam separation drum 7 is mainly used for the necessary in-ship heater 18, but the rest is used for driving the turbo generator 8.

中圧蒸気分離ドラム7で生じた中圧ドレイン
(中圧飽和水)は多段フラツシヤ9,10へ導か
れ減圧されて低圧、低低圧蒸気を発生する。
The medium-pressure drain (medium-pressure saturated water) generated in the medium-pressure steam separation drum 7 is led to the multi-stage flashers 9 and 10 and is depressurized to generate low-pressure, low-low-pressure steam.

ここで、低圧フラツシヤ9は主機空気冷却器2
で掃気廃熱回収を行つた給水で加熱され、蒸気発
生量が増大する。また、低低圧フラツシヤ10は
主機シリンダジヤケツト12で主機廃熱回収を行
つた主機ジヤケツト冷却水により加熱され、蒸気
発生量が増大する。こうして多段フラツシヤ9,
10で発生した蒸気はターボ発電機8の駆動に使
用される。
Here, the low pressure flasher 9 is the main engine air cooler 2.
It is heated by the feed water from which scavenging waste heat is recovered, increasing the amount of steam generated. Further, the low-low pressure flasher 10 is heated by the main engine jacket cooling water from which main engine waste heat is recovered in the main engine cylinder jacket 12, and the amount of steam generated increases. In this way, the multi-stage flasher 9,
The steam generated at 10 is used to drive a turbo generator 8.

このターボ発電機8の排気は復水器17で復水
され、復水ポンプ16により給水ポンプ3に送ら
れる。低低圧フラツシヤ10で生ずる低低圧ドレ
イン(飽和水)はドレンブーストポンプ15によ
り給水ポンプ3へ送られる。
The exhaust gas from the turbo generator 8 is condensed in a condenser 17 and sent to the water supply pump 3 by a condensate pump 16. The low and low pressure drain (saturated water) generated in the low and low pressure flusher 10 is sent to the water supply pump 3 by the drain boost pump 15.

また、船内所要加熱器18,18′からのドレ
ンはドレン冷却器19を経てドレンタンク20に
回収され、復水器17のホツトウエル部へ導かれ
る。
Further, drain from the inboard heaters 18, 18' is collected in a drain tank 20 via a drain cooler 19, and is led to a hot well portion of a condenser 17.

主機ジヤケツト冷却水は主機ジヤケツト冷却水
ポンプ11にて主機シリンダジヤケツト12へ導
かれ、ジヤケツト廃熱回収を行つた後に低低圧フ
ラツシヤ10の加熱及び造水装置13の加熱を行
なう。この冷却水は、主機ジヤケツト冷却器14
を経て主機ジヤケツト冷却水ポンプ11へ導かれ
る。
The main engine jacket cooling water is guided to the main engine cylinder jacket 12 by the main engine jacket cooling water pump 11, and after recovering the jacket waste heat, the low/low pressure flusher 10 and the fresh water generator 13 are heated. This cooling water is supplied to the main engine jacket cooler 14.
The water is guided to the main engine jacket cooling water pump 11 through the.

第2図に主機関出力(常用出力)に対応したタ
ーボ発電機出力の例を示す。同図中で、W1は従
来の熱水フラツシユ発電システムに対応したター
ボ発電機出力、W2は本考案による熱水フラツシ
ユ発電システムのターボ発電機出力、W3は船内
所要電力を示す。
Figure 2 shows an example of the turbo generator output corresponding to the main engine output (normal output). In the figure, W1 indicates the turbo generator output corresponding to the conventional hot water flash power generation system, W2 indicates the turbo generator output of the hot water flash power generation system according to the present invention, and W3 indicates the required power in the ship.

また、計算条件は各々機関室温度:27℃、造水
装置:20T/DAY、排ガスエコノマイザ入口で
の排ガス温度:250℃、機関出口での主機ジヤケ
ツト冷却水温度:85℃、空気冷却器出口での給水
温度:120℃、排ガスエコノマイザ入口での給水
温度:90℃とした。
In addition, the calculation conditions are: engine room temperature: 27℃, water generation device: 20T/DAY, exhaust gas temperature at the exhaust gas economizer inlet: 250℃, main engine jacket cooling water temperature at the engine outlet: 85℃, and air cooler outlet. The temperature of the water supply at the exhaust gas economizer inlet was 120℃, and the temperature of the water supply at the exhaust gas economizer inlet was 90℃.

第2図で示したデータの様に、造水装置での造
水量が20T/DAYの場合、本考案のシステムで
は従来システムと比較して発生電力量が約14%増
大している。
As shown in the data shown in Figure 2, when the amount of water generated by the water generation device is 20T/day, the amount of electricity generated by the system of the present invention is increased by approximately 14% compared to the conventional system.

この14%のうち、約10%が主機ジヤケツト廃熱
回収による増分で、残り4%が主機掃気廃熱回収
による増分である。
Of this 14%, approximately 10% is an increase due to main engine jacket waste heat recovery, and the remaining 4% is an increase due to main engine scavenging air waste heat recovery.

これにより、従来システムでは主機出力約
16500PS以上で船内所要電力を全てターボ発電機
で賄えたものが本考案により約14000PS以上で賄
えることになり省エネルギー効果を高めることが
できる。
As a result, in the conventional system, the main engine output was approximately
The turbo generator used to be able to cover all of the onboard power required for 16,500 PS or more, but with this invention, it can now be provided for approximately 14,000 PS or more, increasing the energy-saving effect.

この実施例では、船舶の主機関に適用した場合
について記載したが、これに限らず陸上で使用さ
れる内燃機関の廃熱回収システムとしても有効で
ある。
In this embodiment, the case where the present invention is applied to a main engine of a ship has been described, but the present invention is not limited to this and is also effective as a waste heat recovery system for an internal combustion engine used on land.

考案の効果 本考案による熱水フラツシユ発電システムの実
施例は以上の通りであり、次に述べる効果を挙げ
ることができる。
Effects of the invention The embodiments of the hot water flash power generation system according to the invention are as described above, and the following effects can be achieved.

熱水フラツシユ発電システムにおいて、内燃機
関のジヤケツト及び掃気からも廃熱回収を行ない
これらの廃熱利用により発生させた蒸気をターボ
発電機に送給して熱効率の改善が図れる。
In a hot water flash power generation system, thermal efficiency can be improved by recovering waste heat from the jacket and scavenging air of the internal combustion engine, and by feeding the steam generated by utilizing this waste heat to a turbo generator.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の実施例を示すシステム系統図
第2図は発電機出力−主機関出力線図である。 1……デイーゼル機関、2……主機空気冷却
器、3……給水ポンプ、4……排ガスエコノマイ
ザ、4A……予熱部、4B……中圧蒸発部、4C
……高圧蒸発部、4D……過熱部、5……高圧分
離ドラム、6……ボイラ水循環ポンプ、7……中
圧蒸気分離ドラム、8……ターボ発電機、9……
低圧フラツシヤ、10……低低圧フラツシヤ、1
1……主機ジヤケツト冷却水ポンプ、18,1
8′……船内所要加熱器、19……ドレンクーラ、
20……ドレンタンク、21……しぼり弁、22
……三方弁、23……弁、24,25,26……
三方弁。
FIG. 1 is a system diagram showing an embodiment of the present invention. FIG. 2 is a generator output-main engine output diagram. 1... Diesel engine, 2... Main engine air cooler, 3... Water supply pump, 4... Exhaust gas economizer, 4A... Preheating section, 4B... Medium pressure evaporation section, 4C
...High pressure evaporation section, 4D ... Superheating section, 5 ... High pressure separation drum, 6 ... Boiler water circulation pump, 7 ... Medium pressure steam separation drum, 8 ... Turbo generator, 9 ...
Low pressure flasher, 10...Low low pressure flasher, 1
1...Main engine jacket cooling water pump, 18,1
8'... Required heater inside the ship, 19... Drain cooler,
20... Drain tank, 21... Throttle valve, 22
...Three-way valve, 23... Valve, 24, 25, 26...
Three-way valve.

Claims (1)

【実用新案登録請求の範囲】 多段フラツシヤを備え、内燃機関の掃気及び排
ガスの廃熱回収を行なつて熱水/蒸気を発出させ
ターボ発電機に蒸気を送給して発電を行なう熱水
フラツシユ発電システムにおいて、 前記内燃機関のジヤケツト液冷サイクルを通過
する作動流体を多段フラツシヤの一方に還流させ
てジヤケツト廃熱回収を行ない、かつ前記内燃機
関の掃気冷却器で掃気からエネルギーを回収した
作動流体を多段フラツシヤのもう一方に還流させ
て掃気廃熱回収とを行なうよう構成されたことを
特徴とする熱水フラツシユ発電システム。
[Scope of Claim for Utility Model Registration] A hot water flusher equipped with a multi-stage flasher that scavenges air from an internal combustion engine and recovers waste heat from exhaust gas to generate hot water/steam and send the steam to a turbo generator to generate electricity. In the power generation system, the working fluid passing through the jacket liquid cooling cycle of the internal combustion engine is returned to one side of the multi-stage flasher to recover jacket waste heat, and the working fluid recovers energy from the scavenging air in the scavenging air cooler of the internal combustion engine. What is claimed is: 1. A hot water flash power generation system characterized in that the hot water flash power generation system is configured to perform scavenging waste heat recovery by circulating water to the other side of a multistage flasher.
JP6048185U 1985-04-23 1985-04-23 Expired JPH0231523Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6048185U JPH0231523Y2 (en) 1985-04-23 1985-04-23

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6048185U JPH0231523Y2 (en) 1985-04-23 1985-04-23

Publications (2)

Publication Number Publication Date
JPS61175505U JPS61175505U (en) 1986-11-01
JPH0231523Y2 true JPH0231523Y2 (en) 1990-08-27

Family

ID=30587869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6048185U Expired JPH0231523Y2 (en) 1985-04-23 1985-04-23

Country Status (1)

Country Link
JP (1) JPH0231523Y2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19943665B4 (en) * 1999-09-13 2006-04-13 Martin GmbH für Umwelt- und Energietechnik Method for cooling a grate for a firebox by means of water and rust for burning solids
JP2011106302A (en) * 2009-11-13 2011-06-02 Mitsubishi Heavy Ind Ltd Engine waste heat recovery power-generating turbo system and reciprocating engine system including the same
JP5717998B2 (en) * 2010-08-04 2015-05-13 川崎重工業株式会社 Heat recovery unit, exhaust gas economizer and waste heat recovery system
JP2013180625A (en) * 2012-02-29 2013-09-12 Mitsubishi Heavy Ind Ltd Exhaust heat recovery type ship propulsion device, and operation method therefor

Also Published As

Publication number Publication date
JPS61175505U (en) 1986-11-01

Similar Documents

Publication Publication Date Title
US4932204A (en) Efficiency combined cycle power plant
JPS6088806A (en) Waste heat recoverer for internal-combustion engine
SU1258330A3 (en) Method of energy conversion in power plant and power plant
JPH09177508A (en) Exhaust heat recovery type steam generator and method for operating gas turbo system combined with steam consumer
CN209308763U (en) A kind of air-cooled electricity generation system containing internal function of recovering waste heat
CN103398385B (en) The residual neat recovering system of a kind of boats and ships incinerator and power set and recovery method
JPH094510A (en) Combustion engine plant, supercharging combustion engine device for combustion engine plant and improving method of efficiency of combustion engine plant
JPH0231523Y2 (en)
RU2725583C1 (en) Cogeneration plant with deep recovery of thermal energy of internal combustion engine
JPS59221409A (en) Thermal energy recovery device in engine
CN203880720U (en) Waste heat recovery system for marine incinerator and marine power device
JPH0330561Y2 (en)
JPH07259548A (en) Exhaust heat recovery steam driving actuator system
JPH09209714A (en) Composite power generating device with reactor coolant heating steam generator
JPS5853608A (en) Waste heat utilizing system in diesel engine
JPS6161957A (en) Oil heating method of two-stage heating type
JPS635102A (en) Exhaust heat recovery power plant
JPS6244118Y2 (en)
JPS59225203A (en) Device for recovering waste heat
JPS5913325Y2 (en) Exhaust gas heat recovery device for marine engines
JPS58143114A (en) Waste heat recovery plant for diesel engine
JPS6022185B2 (en) Exhaust gas heat recovery device for marine engines
JPS6365819B2 (en)
JPH0517441B2 (en)
JPH0134082B2 (en)