JP2782986B2 - Combined cycle equipment - Google Patents

Combined cycle equipment

Info

Publication number
JP2782986B2
JP2782986B2 JP16394891A JP16394891A JP2782986B2 JP 2782986 B2 JP2782986 B2 JP 2782986B2 JP 16394891 A JP16394891 A JP 16394891A JP 16394891 A JP16394891 A JP 16394891A JP 2782986 B2 JP2782986 B2 JP 2782986B2
Authority
JP
Japan
Prior art keywords
exhaust gas
water supply
water heater
gas cooler
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16394891A
Other languages
Japanese (ja)
Other versions
JPH04362208A (en
Inventor
忍 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP16394891A priority Critical patent/JP2782986B2/en
Publication of JPH04362208A publication Critical patent/JPH04362208A/en
Application granted granted Critical
Publication of JP2782986B2 publication Critical patent/JP2782986B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、複合サイクル設備に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combined cycle facility.

【0002】[0002]

【従来の技術】近年、火力発電の高効率化を目ざして、
加圧流動層ボイラを用いた複合発電設備等の複合サイク
ル設備の研究開発が行われている。
2. Description of the Related Art In recent years, with the aim of increasing the efficiency of thermal power generation,
Research and development of combined cycle equipment such as combined power generation equipment using a pressurized fluidized bed boiler has been conducted.

【0003】以下、図3により加圧流動層複合発電設備
の一例を説明する。
[0003] An example of a pressurized fluidized bed combined cycle power plant will be described below with reference to FIG.

【0004】加圧流動層複合発電設備における加圧流動
層ボイラ18は、蒸発器5、過熱器1及び再熱器2を内
装するセル3と、該セル3を内装する圧力容器7とを備
え、前記セル3内には、所定量のベッド材4が装入され
ている。
A pressurized fluidized-bed boiler 18 in a combined pressurized fluidized-bed power plant includes a cell 3 containing an evaporator 5, a superheater 1 and a reheater 2, and a pressure vessel 7 containing the cell 3. A predetermined amount of bed material 4 is loaded in the cell 3.

【0005】過熱器1の蒸気流通方向上流側端部は蒸発
器5を介して給水管路19により給水ポンプ9に、下流
側端部は管路20により蒸気タービン設備10の高圧タ
ービン11の蒸気入口に接続され、又、再熱器2の蒸気
流通方向上流側端部は管路21により蒸気タービン設備
10の高圧タービン11の蒸気出口に、下流側端部は管
路22により蒸気タービン設備10の中低圧タービン1
2の蒸気入口に接続されており、更に、前記中低圧ター
ビン12の蒸気出口は管路23により復水器13を介し
て前記給水ポンプ9に接続されている。
[0005] The upstream end of the superheater 1 in the steam flow direction is connected to the feed pump 9 via a water supply line 19 via the evaporator 5, and the downstream end is connected to the steam of the high-pressure turbine 11 of the steam turbine facility 10 via a line 20. An upstream end of the reheater 2 in the steam flow direction is connected to a steam outlet of the high-pressure turbine 11 of the steam turbine facility 10 via a pipe 21, and a downstream end is connected to a steam outlet of the steam turbine facility 10 via a pipe 22. Medium and low pressure turbine 1
2 and a steam outlet of the medium-to-low pressure turbine 12 is connected to the feed pump 9 via a condenser 13 through a conduit 23.

【0006】前記給水ポンプ9と復水器13との間の給
水管路19途中には、低圧給水ヒータ29と脱気器8と
が設けられ、給水ポンプ9より下流側の給水管路19途
中には、高圧給水ヒータ30と後述するガスタービン2
6下流側の管路31を流れる排ガスを冷却するための排
ガスクーラ32とが設けられている。
A low-pressure water heater 29 and a deaerator 8 are provided in the water supply line 19 between the water supply pump 9 and the condenser 13, and are provided in the water supply line 19 downstream of the water supply pump 9. Includes a high-pressure water heater 30 and a gas turbine 2 described later.
An exhaust gas cooler 32 for cooling exhaust gas flowing through the pipe line 31 on the downstream side is provided.

【0007】上述した加圧流動層複合発電設備では、コ
ンプレッサ14により大気15を圧縮した圧縮空気を圧
縮空気供給管路16から圧力容器7へ供給し、セル3内
にベッド材4の流動層17を形成させたうえ、流動層1
7へ燃料(石炭)6を供給して流動層17内で燃焼させ
る。
In the pressurized fluidized bed combined cycle power generation system described above, compressed air obtained by compressing the atmosphere 15 by the compressor 14 is supplied to the pressure vessel 7 from the compressed air supply line 16, and the fluidized bed 17 And a fluidized bed 1
The fuel (coal) 6 is supplied to 7 and burned in the fluidized bed 17.

【0008】燃料6が燃焼すると、その熱エネルギー
は、流動状態のベッド材4に伝達され、更に、ベッド材
4が蒸発器5、過熱器1、再熱器2に接触することによ
って、前記熱エネルギーが蒸発器5、過熱器1、再熱器
2に伝達される。
When the fuel 6 burns, its thermal energy is transmitted to the bed material 4 in a fluidized state, and the bed material 4 comes into contact with the evaporator 5, the superheater 1 and the reheater 2, whereby the heat energy is transferred. Energy is transmitted to the evaporator 5, the superheater 1, and the reheater 2.

【0009】復水器13を出たボイラ水は、低圧給水ヒ
ータ29で加熱され脱気器8を経て給水ポンプ9により
蒸発器5へ供給される途中で、高圧給水ヒータ30によ
り加熱されると共に排ガスクーラ32で後述する排ガス
と熱交換した後、蒸発器5へ流入し前記熱エネルギーに
よって蒸気化し、その蒸気は過熱器1により過熱蒸気と
なり、該過熱蒸気は蒸気タービン設備10の高圧タービ
ン11に流入して該高圧タービン11が駆動される。
The boiler water that has exited the condenser 13 is heated by the low-pressure water heater 29, passes through the deaerator 8 and is supplied to the evaporator 5 by the water pump 9, and is heated by the high-pressure water heater 30 while being supplied to the evaporator 5. After heat exchange with the exhaust gas to be described later in the exhaust gas cooler 32, the gas flows into the evaporator 5 and is vaporized by the thermal energy. The vapor is superheated by the superheater 1, and the superheated steam is supplied to the high-pressure turbine 11 of the steam turbine facility 10. The high pressure turbine 11 is driven by the inflow.

【0010】高圧タービン11を駆動した後の蒸気は、
再熱器2へ流入し、該再熱器2によって再熱された蒸気
は中低圧タービン12に流入して、該中低圧タービン1
2を駆動し、更に中低圧タービン12を駆動した後の蒸
気は、復水器13によってボイラ水に戻されたうえ、給
水ポンプ9により再び蒸発器5へ供給される。
The steam after driving the high-pressure turbine 11 is:
The steam which flows into the reheater 2 and is reheated by the reheater 2 flows into the medium / low pressure turbine 12 and
The steam after driving the turbine 2 and further driving the medium-to-low pressure turbine 12 is returned to the boiler water by the condenser 13 and is again supplied to the evaporator 5 by the feed water pump 9.

【0011】このようにして、蒸気タービン設備10は
蒸気により駆動され、蒸気タービン設備10に接続され
た蒸気タービン発電機24によって発電が行われる。
In this manner, the steam turbine facility 10 is driven by the steam, and the power is generated by the steam turbine generator 24 connected to the steam turbine facility 10.

【0012】一方、セル3内において燃焼した燃料6の
排ガスは、管路25によりガスタービン26に供給され
た後、管路31を流れ排ガスクーラ32で冷却されて煙
突28から排出され、前記ガスタービン26に接続され
たガスタービン発電機27によって発電が行われ、又、
同時に、ガスタービン26によって前記コンプレッサ1
4が駆動される。
On the other hand, the exhaust gas of the fuel 6 burned in the cell 3 is supplied to a gas turbine 26 by a pipe 25, flows through a pipe 31 and is cooled by an exhaust gas cooler 32, and is discharged from a chimney 28. Electric power is generated by a gas turbine generator 27 connected to a turbine 26, and
At the same time, the compressor 1 is
4 is driven.

【0013】図3に示される如く、排ガスクーラ32を
高圧給水ヒータ30と直列に設ける形式のものの他に、
従来、図5に示されるごとく、給水ポンプ9と高圧給水
ヒータ30との間の給水管路19から分岐し高圧給水ヒ
ータ30より下流側の給水管路19に接続されるバイパ
ス管路33途中に、排ガスクーラ34を設ける形式のも
のもある。
As shown in FIG. 3, in addition to the type in which the exhaust gas cooler 32 is provided in series with the high-pressure water heater 30,
Conventionally, as shown in FIG. 5, a bypass line 33 branches from a water supply line 19 between the water supply pump 9 and the high-pressure water heater 30 and is connected to the water supply line 19 downstream of the high-pressure water heater 30. There is also a type in which an exhaust gas cooler 34 is provided.

【0014】[0014]

【発明が解決しようとする課題】図3に示される直列型
のものの場合、高圧給水ヒータ30によって加熱された
全流量のボイラ水が排ガスクーラ32に供給されるた
め、図4に示される如く、排ガスクーラ32出口排ガス
温度は高圧給水ヒータ30出口給水温度以上でなければ
ならず、排ガスクーラ32での排ガス温度降下量が小さ
くなって、該温度差に比例するボイラ水の排ガスからの
受熱量も小さくなり、排ガスクーラ32を出て蒸発器5
へ供給されるボイラ水の温度が低く、熱効率が悪かっ
た。
In the case of the in-line type shown in FIG. 3, since the boiler water at the full flow rate heated by the high-pressure water heater 30 is supplied to the exhaust gas cooler 32, as shown in FIG. The temperature of the exhaust gas at the outlet of the exhaust gas cooler 32 must be equal to or higher than the temperature of the feed water at the outlet of the high-pressure water heater 30, so that the amount of temperature decrease of the exhaust gas in the exhaust gas cooler 32 becomes small, It becomes smaller and exits the exhaust gas cooler 32 and
The temperature of the boiler water supplied to the furnace was low, and the thermal efficiency was poor.

【0015】又、図5に示される並列型のものの場合、
高圧給水ヒータ30によって加熱される前のボイラ水の
一部がバイパス管路33へ分岐し排ガスクーラ34に供
給されると共に残りのボイラ水が高圧給水ヒータ30へ
供給されるため、図6に示される如く、排ガスクーラ3
4における排ガス温度の降下量が大きくなっており、該
温度差に比例するボイラ水の排ガスからの受熱量も大き
くなり、排ガスクーラ34を出て、前記高圧給水ヒータ
30によって加熱された後のボイラ水と合流し蒸発器5
へ供給されるボイラ水の温度が、直列型のものに比べ高
く、熱効率が良い反面、前記受熱量に比例する伝熱面積
を大きくしなければならずコストアップにつながってい
た。 尚、図6には、高圧給水ヒータ30によって加熱
された後のボイラ水の温度が、排ガスクーラ34を出た
後のボイラ水の温度より低く、両者が再び合流すること
により、ボイラ水の温度が所要量だけ下がる場合を示し
ている。
In the case of the parallel type shown in FIG.
Since a part of the boiler water before being heated by the high-pressure water heater 30 branches to the bypass pipe 33 and is supplied to the exhaust gas cooler 34, and the remaining boiler water is supplied to the high-pressure water heater 30, it is shown in FIG. Exhaust gas cooler 3
4, the amount of heat received from the exhaust gas of the boiler water increases in proportion to the temperature difference, and the boiler exits the exhaust gas cooler 34 and is heated by the high-pressure water heater 30. Merge with water and evaporator 5
The temperature of the boiler water supplied to the furnace is higher than that of the in-line type, and the heat efficiency is good, but the heat transfer area proportional to the amount of heat received has to be increased, leading to an increase in cost. In FIG. 6, the temperature of the boiler water after being heated by the high-pressure water heater 30 is lower than the temperature of the boiler water after leaving the exhaust gas cooler 34, and when the two merge again, the temperature of the boiler water is reduced. Indicates a case where the required amount decreases.

【0016】本発明は、斯かる実情に鑑み、熱効率が良
く、且つ排ガスクーラの伝熱面積を小さくし得、コスト
ダウンを図り得る複合サイクル設備を提供しようとする
ものである。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a combined cycle facility having good thermal efficiency, a small heat transfer area of an exhaust gas cooler, and cost reduction.

【0017】[0017]

【課題を解決するための手段】本発明は、ガスタービン
と、蒸気タービン設備とを備え、該蒸気タービン設備の
復水器の下流側の給水管路途中に、低圧給水ヒータと給
水ポンプと高圧給水ヒータとを上流側から順次設けてな
る複合サイクル設備において、前記給水ポンプと高圧給
水ヒータとの間の給水管路から分岐し高圧給水ヒータ下
流側の給水管路に接続されるバイパス管路途中に、前記
ガスタービンの排ガスを冷却するための第一排ガスクー
ラを設けると共に、前記バイパス管路の給水管路への接
続部より下流側における給水管路途中に、前記ガスター
ビン下流側の排ガスを冷却するための第二排ガスクーラ
を設けたことを特徴とするものである。
SUMMARY OF THE INVENTION The present invention comprises a gas turbine and steam turbine equipment, and a low-pressure water heater, a water supply pump, and a high-pressure water heater are provided in a water supply line downstream of a condenser of the steam turbine equipment. In a combined cycle facility in which a water supply heater and a water supply heater are sequentially provided from an upstream side, in a bypass line that branches off from a water supply line between the water supply pump and the high-pressure water supply heater and is connected to a water supply line on the downstream side of the high-pressure water supply heater. A first exhaust gas cooler for cooling the exhaust gas of the gas turbine is provided, and the exhaust gas on the downstream side of the gas turbine is provided in the middle of the water supply line downstream from a connection portion of the bypass line to the water supply line. A second exhaust gas cooler for cooling is provided.

【0018】[0018]

【作用】従って、高圧給水ヒータと並列に設けた第一排
ガスクーラと、高圧給水ヒータと直列に設けた第二排ガ
スクーラとにより、ボイラ水と排ガスとの熱交換が行わ
れるため、第一、第二排ガスクーラを通過したボイラ水
の温度は、低くならず、熱効率が良く、しかも、第一排
ガスクーラと第二排ガスクーラの各伝熱面積が夫々小さ
くでき、コストダウンが可能となる。
Therefore, heat exchange between boiler water and exhaust gas is performed by the first exhaust gas cooler provided in parallel with the high-pressure water heater and the second exhaust gas cooler provided in series with the high-pressure water heater. The temperature of the boiler water that has passed through the second exhaust gas cooler does not decrease, the thermal efficiency is good, and the respective heat transfer areas of the first exhaust gas cooler and the second exhaust gas cooler can each be reduced, so that the cost can be reduced.

【0019】[0019]

【実施例】以下、本発明の実施例を図面を参照しつつ説
明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0020】図1は本発明の一実施例であって、図中図
3、5と同一の符号を付した部分は同一物を表わしてお
り、基本的な構成は図3、5に示す従来のものと同様で
あるが、本実施例の特徴とするところは、図1に示す如
く、給水ポンプ9と高圧給水ヒータ30との間の給水管
路19から分岐し高圧給水ヒータ30下流側の給水管路
19に接続されるバイパス管路33途中に、ガスタービ
ン26下流側の排ガスを冷却するための第一排ガスクー
ラ35を前記高圧給水ヒータ30と並列に設けると共
に、前記バイパス管路33の給水管路19への接続部よ
り下流側における給水管路19途中に、前記ガスタービ
ン26下流側の排ガスを冷却するための第二排ガスクー
ラ36を前記高圧給水ヒータ30と直列に設けた点にあ
る。
FIG. 1 shows an embodiment of the present invention. In FIG. 1, the portions denoted by the same reference numerals as those in FIGS. 3 and 5 represent the same components, and the basic configuration is the same as that shown in FIGS. However, as shown in FIG. 1, the present embodiment is characterized in that it branches off from the water supply line 19 between the water supply pump 9 and the high-pressure water heater 30 and is located downstream of the high-pressure water heater 30. A first exhaust gas cooler 35 for cooling exhaust gas on the downstream side of the gas turbine 26 is provided in parallel with the high-pressure water heater 30 in the middle of the bypass line 33 connected to the water supply line 19. A second exhaust gas cooler 36 for cooling exhaust gas on the downstream side of the gas turbine 26 is provided in series with the high-pressure water heater 30 in the middle of the water supply line 19 on the downstream side of the connection portion to the water supply line 19. is there.

【0021】本実施例においては、高圧給水ヒータ30
によって加熱される前のボイラ水の一部がバイパス管路
33へ分岐し第一排ガスクーラ35に供給され管路31
を流れる排ガスから熱を奪うと共に、残りのボイラ水が
高圧給水ヒータ30へ供給されて加熱され、第一排ガス
クーラ35を出たボイラ水が、前記高圧給水ヒータ30
によって加熱された後のボイラ水と再び合流し、該合流
したボイラ水が第二排ガスクーラ36へ供給され前記排
ガスから熱を奪い、該第二排ガスクーラ36を通過した
ボイラ水が蒸発器5へ供給される。
In this embodiment, the high-pressure water heater 30
A part of the boiler water before being heated by the air is branched to the bypass pipe 33 and supplied to the first exhaust gas cooler 35 to be supplied to the pipe 31.
While removing heat from the exhaust gas flowing through the heater, the remaining boiler water is supplied to the high-pressure water heater 30 and heated, and the boiler water exiting the first exhaust gas cooler 35 is discharged from the high-pressure water heater 30.
And the boiler water after being heated again, the combined boiler water is supplied to the second exhaust gas cooler 36 to remove heat from the exhaust gas, and the boiler water passing through the second exhaust gas cooler 36 is transferred to the evaporator 5. Supplied.

【0022】この結果、蒸発器5へ供給されるボイラ水
の温度は、図2に示す如く、図4に示される直列型のも
のの場合に比べ高く、熱効率が良いと共に、第二排ガス
クーラ36の各伝熱面積を小さくでき、コストダウンを
図ることが可能となる。
As a result, as shown in FIG. 2, the temperature of the boiler water supplied to the evaporator 5 is higher than that of the in-line type shown in FIG. Each heat transfer area can be reduced, and cost can be reduced.

【0023】尚、本発明の複合サイクル設備は、上述の
実施例にのみ限定されるものではなく、加圧流動層複合
発電設備に限らず、排気再燃形コンバインドサイクル等
の複合サイクル設備にも適用可能なこと等、その他、本
発明の要旨を逸脱しない範囲内において種々変更を加え
得ることは勿論である。
The combined cycle equipment of the present invention is not limited to the above-described embodiment, and is not limited to the pressurized fluidized bed combined cycle power equipment, but is also applicable to combined cycle equipment such as an exhaust gas reburning combined cycle. Needless to say, various changes can be made without departing from the spirit of the present invention.

【0024】[0024]

【発明の効果】以上説明したように、本発明の複合サイ
クル設備によれば、熱効率が良く、且つ排ガスクーラの
伝熱面積を小さくして、コストダウンを図れるという優
れた効果を奏し得る。
As described above, according to the combined cycle equipment of the present invention, it is possible to obtain an excellent effect that the thermal efficiency is good, the heat transfer area of the exhaust gas cooler is reduced, and the cost can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の概念図である。FIG. 1 is a conceptual diagram of one embodiment of the present invention.

【図2】本発明の一実施例における排ガス温度と給水温
度との関係を示す線図である。
FIG. 2 is a diagram showing the relationship between exhaust gas temperature and feedwater temperature in one embodiment of the present invention.

【図3】従来例の概念図である。FIG. 3 is a conceptual diagram of a conventional example.

【図4】図3の従来例における排ガス温度と給水温度と
の関係を示す線図である。
FIG. 4 is a diagram showing a relationship between exhaust gas temperature and feedwater temperature in the conventional example of FIG. 3;

【図5】他の従来例の概念図である。FIG. 5 is a conceptual diagram of another conventional example.

【図6】図5の従来例における排ガス温度と給水温度と
の関係を示す線図である。
6 is a diagram showing the relationship between the exhaust gas temperature and the feedwater temperature in the conventional example of FIG.

【符号の説明】[Explanation of symbols]

9 給水ポンプ 10 蒸気タービン設備 13 復水器 19 給水管路 24 蒸気タービン発電機 26 ガスタービン 27 ガスタービン発電機 29 低圧給水ヒータ 30 高圧給水ヒータ 33 バイパス管路 35 第一排ガスクーラ 36 第二排ガスクーラ Reference Signs List 9 water supply pump 10 steam turbine equipment 13 condenser 19 water supply line 24 steam turbine generator 26 gas turbine 27 gas turbine generator 29 low pressure water heater 30 high pressure water heater 33 bypass line 35 first exhaust gas cooler 36 second exhaust gas cooler

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ガスタービンと、蒸気タービン設備とを
備え、該蒸気タービン設備の復水器の下流側の給水管路
途中に、低圧給水ヒータと給水ポンプと高圧給水ヒータ
とを上流側から順次設けてなる複合サイクル設備におい
て、前記給水ポンプと高圧給水ヒータとの間の給水管路
から分岐し高圧給水ヒータ下流側の給水管路に接続され
るバイパス管路途中に、前記ガスタービンの排ガスを冷
却するための第一排ガスクーラを設けると共に、前記バ
イパス管路の給水管路への接続部より下流側における給
水管路途中に、前記ガスタービン下流側の排ガスを冷却
するための第二排ガスクーラを設けたことを特徴とする
複合サイクル設備。
1. A steam turbine system comprising a gas turbine, a low-pressure water heater, a water supply pump, and a high-pressure water heater in the middle of a water supply pipe downstream of a condenser of the steam turbine equipment. In the combined cycle equipment that is provided, the exhaust gas of the gas turbine is discharged from a water supply line between the water supply pump and the high-pressure water heater, in the middle of a bypass line connected to a water supply line downstream of the high-pressure water heater. A second exhaust gas cooler for cooling the exhaust gas downstream of the gas turbine in the middle of a water supply line downstream from a connection portion of the bypass line to the water supply line while providing a first exhaust gas cooler for cooling. Combined cycle equipment characterized by the following.
JP16394891A 1991-06-07 1991-06-07 Combined cycle equipment Expired - Lifetime JP2782986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16394891A JP2782986B2 (en) 1991-06-07 1991-06-07 Combined cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16394891A JP2782986B2 (en) 1991-06-07 1991-06-07 Combined cycle equipment

Publications (2)

Publication Number Publication Date
JPH04362208A JPH04362208A (en) 1992-12-15
JP2782986B2 true JP2782986B2 (en) 1998-08-06

Family

ID=15783867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16394891A Expired - Lifetime JP2782986B2 (en) 1991-06-07 1991-06-07 Combined cycle equipment

Country Status (1)

Country Link
JP (1) JP2782986B2 (en)

Also Published As

Publication number Publication date
JPH04362208A (en) 1992-12-15

Similar Documents

Publication Publication Date Title
US5375410A (en) Combined combustion and steam turbine power plant
US5293841A (en) Arrangement for utilizing the heat contained in the exhaust gas of a coal-fired boiler
KR100385372B1 (en) Method of operating a gas and steam turbine plant and plant operating according to this method
KR100341646B1 (en) Method of cooling thermally loaded components of a gas turbine group
EP0676532B1 (en) Steam injected gas turbine system with topping steam turbine
US5799481A (en) Method of operating a gas-turbine group combined with a waste-heat steam generator and a steam consumer
RU2009333C1 (en) Combined steam-gas power plant and method of its operation
JPH0758043B2 (en) Method and apparatus for heat recovery from exhaust gas and heat recovery steam generator
SU1521284A3 (en) Power plant
JPH0429923B2 (en)
US6497101B2 (en) Method and apparatus for regulating the steam temperature of the live steam or reheater steam in a combined-cycle power plant
JPH0445643B2 (en)
US5079909A (en) Combined gas and steam turbine plant with coal gasification
RU95105164A (en) Steam power plant for generation of electric energy
EP1468222B1 (en) Feedwater heater
JP2003161164A (en) Combined-cycle power generation plant
CA2932219A1 (en) Combined cycle system
RU2153080C2 (en) Combined-cycle power generation process and combined-cycle plant
US5320070A (en) Method and device for using excess heat not required for operating a desulfurization device
JP2782986B2 (en) Combined cycle equipment
JPH0933004A (en) Waste heat recovery boiler
US3913330A (en) Vapor generator heat recovery system
RU2144994C1 (en) Combined-cycle plant
JPH11117712A (en) Gas turbine combined plant
JPH09170405A (en) Pressurized fluidized bed compound power generation facility

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080522

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080522

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20080522

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090522

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090522

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100522

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100522

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110522

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 14