JPS60259802A - Waste-heat recovery heat pump system of marine diesel main engine - Google Patents

Waste-heat recovery heat pump system of marine diesel main engine

Info

Publication number
JPS60259802A
JPS60259802A JP59115440A JP11544084A JPS60259802A JP S60259802 A JPS60259802 A JP S60259802A JP 59115440 A JP59115440 A JP 59115440A JP 11544084 A JP11544084 A JP 11544084A JP S60259802 A JPS60259802 A JP S60259802A
Authority
JP
Japan
Prior art keywords
heat
temperature
power generation
pump system
heat pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59115440A
Other languages
Japanese (ja)
Inventor
剛 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui Zosen KK
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui Zosen KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd, Mitsui Zosen KK filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP59115440A priority Critical patent/JPS60259802A/en
Publication of JPS60259802A publication Critical patent/JPS60259802A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 一イ、産業上の利用分野 本発明は、船舶のディーゼル推進プラント等で、比較的
低温の廃熱源から、高温で利用価値の高い熱源を回収す
るシステムに関する。
DETAILED DESCRIPTION OF THE INVENTION 1. Field of Industrial Application The present invention relates to a system for recovering a high-temperature, highly useful heat source from a relatively low-temperature waste heat source in a diesel propulsion plant for a ship or the like.

R従来の技術 船舶のディーゼル推進プラントでは、従来その排気ガス
熱をエコノマイザで回収し、蒸気を発生させてタービン
発電機を駆動し、航海中船内の所要電力を賄っている。
R Conventional Technology In a diesel propulsion plant for a ship, heat from the exhaust gas is conventionally recovered by an economizer to generate steam to drive a turbine generator, thereby providing the necessary electricity on board the ship during the voyage.

この場合、排気ガス温度が硫酸の露点以下になると、排
気ガス中の亜硫酸が硫酸として凝縮し、接ガス部の材料
を腐食する。したがって、エコノマイザへの給水は2通
例硫酸の露点である130℃程度以上に加熱して送る必
要があり、このためエコノマイザ発生蒸気で駆動される
タービンの、中間段の適当な温度のところから抽気し、
その蒸気で給水を加熱している。
In this case, when the exhaust gas temperature falls below the dew point of sulfuric acid, sulfurous acid in the exhaust gas condenses as sulfuric acid, corroding the materials in contact with the gas. Therefore, the water supplied to the economizer needs to be heated above 130°C, which is the dew point of sulfuric acid, and for this reason, the water is extracted from an appropriate temperature in the intermediate stage of the turbine, which is driven by the steam generated by the economizer. ,
The steam heats the water supply.

第2図は従来の一般的な排ガス発電システムを示す。I
Oは排ガスエコノマイザで、この中を矢印の方向にディ
ーゼル機関の排気ガスが通過し、高温側より順にエコノ
マイザ10の過熱部15.蒸発部14.予熱部13が配
置されている。ここで発生した蒸気は、タービン1と直
結発電機16を駆動し、その後復水器2で海水冷却によ
って凝縮水となる。この復水は復水ポンプ3により給水
予熱器5aに送られ、ここでタービンlの中間段より抽
気した蒸気によって硫酸の露点である約130℃程度以
上に加熱される。この高温水は、給水ポンプ9によって
エコノマイザ10の予熱部13に送られ、蒸発部。
FIG. 2 shows a conventional general exhaust gas power generation system. I
0 is an exhaust gas economizer, through which the exhaust gas of the diesel engine passes in the direction of the arrow, and passes through the superheated section 15. of the economizer 10 in order from the high temperature side. Evaporation section 14. A preheating section 13 is arranged. The steam generated here drives the turbine 1 and the direct-coupled generator 16, and then becomes condensed water in the condenser 2 by cooling with seawater. This condensate is sent to the feed water preheater 5a by the condensate pump 3, where it is heated to about 130° C. or higher, which is the dew point of sulfuric acid, by steam extracted from the intermediate stage of the turbine 1. This high-temperature water is sent to the preheating section 13 of the economizer 10 by the water supply pump 9 and then to the evaporation section.

過熱部を経て再び蒸気となり循環する。After passing through the superheating section, it becomes steam again and circulates.

ハ9発明が解決しようとする問題点 以上の従来技術においては、抽気によって給水を加熱し
ており、この蒸気はタービン駆動に参加していない。し
たがって、できれば他の熱源によって給水の加熱を行い
、タービン出力の増大を図りたい。
C.9 Problems to be Solved by the Invention In the prior art described above, feed water is heated by extraction air, and this steam does not participate in turbine drive. Therefore, if possible, it is desirable to heat the feed water using another heat source to increase the turbine output.

また、最近省エネルギが強く叫ばれ、ディーゼル機関の
効率が著しく向上し2機関出口の排気ガス温度は低下の
傾向にある。一方燃料費の高騰によってC重油等粗悪燃
料の使用が増大し。
In addition, energy saving has recently been strongly advocated, and the efficiency of diesel engines has improved significantly, and the exhaust gas temperature at the outlet of the two engines has tended to decrease. On the other hand, the rise in fuel costs has led to an increase in the use of inferior fuels such as C heavy oil.

これらの燃料は比較的硫黄含有量が多いので。As these fuels have relatively high sulfur content.

(3) 排ガス中の硫酸もその露点が」=昇傾向にある。(3) The dew point of sulfuric acid in exhaust gas is also on the rise.

したがって、エコノマイザ入口ガス温度の低下と、エコ
ノマイザ出口ガス湿度上昇傾向は2回収エネルギ減少の
傾向にあり、タービン出力の増大を図ることはこの点か
らも要求される問題点である。
Therefore, a decrease in the economizer inlet gas temperature and an increase in the economizer outlet gas humidity tend to decrease the recovered energy, and from this point of view as well, it is a problem that is required to increase the turbine output.

二0間顆点を解決するための手段 船舶のディーゼル推進プラントでは、前述のエコノマイ
ザで回収する排気ガス熱以外に、シリンダジャケット冷
却水の熱、ターボ過給機出口の圧縮空気熱、潤滑油熱等
がある。これらはあまり温度が高くないので通常海水で
冷却し。
Means for solving the 20-year condylar point In a marine diesel propulsion plant, in addition to the exhaust gas heat recovered by the economizer mentioned above, the heat of the cylinder jacket cooling water, the compressed air heat at the turbocharger outlet, and the lubricating oil heat are used. etc. These are not very hot, so they are usually cooled with seawater.

その熱は船外に捨てられている。That heat is dumped overboard.

本発明は、これら比較的低温の排熱を、その温度レベル
によって、低温でそのまま利用する部分と、ヒートポン
プを利用して高熱源を得るために利用する部分に分け、
ヒートポンプシステム自体は、その作動媒体を発電シス
テムの媒体と同一とし、その結果1両者媒体を混合接触
させることが可能で、熱交換の高効率化と装置(4) のコンパクト化が図れる直接接触型凝縮器を採用し、わ
ずかな動力の付加によって有効な廃熱の回収を行おうと
するものである。
The present invention divides these relatively low-temperature waste heat into a portion that is used as is at low temperature and a portion that is used to obtain a high heat source using a heat pump, depending on the temperature level,
The heat pump system itself uses the same working medium as the medium of the power generation system, and as a result, it is a direct contact type that allows both media to mix and come into contact, resulting in high heat exchange efficiency and compactness of the device (4). It uses a condenser to effectively recover waste heat with the addition of a small amount of power.

ホ、実施例 第1図は1本発明の舶用エコノマイザ発電プラントへの
適用実施例を示す。同図でtfl、t、・・・・ta、
T+・・・・T4はその部分の流体の温度を示す。
E. Embodiment FIG. 1 shows an embodiment in which the present invention is applied to a marine economizer power generation plant. In the same figure, tfl, t, ... ta,
T+...T4 indicates the temperature of the fluid at that portion.

排気ガスエコノマイザで発生した蒸気は、温度toでタ
ービンlに送られ発電機16を駆動する。タービン1を
出た蒸気は復水器2に至り。
The steam generated by the exhaust gas economizer is sent to the turbine l at a temperature to to drive the generator 16. The steam leaving the turbine 1 reaches the condenser 2.

海水で冷却され凝縮し、復水ポンプ3により温度t2=
35℃程度で熱交換器4に送られる。
It is cooled by seawater and condensed, and the condensate pump 3 lowers the temperature to t2=
It is sent to the heat exchanger 4 at about 35°C.

熱交換器4へは、シリンダジャケット冷却水がシリンダ
で加熱され、Tl=80℃程度で入ってくるので、これ
により復水は温度t3が約70℃近く加熱され直接接触
型凝縮器5に入る。ここでは圧縮機8から高圧高温蒸気
が温度t7で送られてきて前記復水と接触混合し、凝縮
してt4=140℃程度の温水となり、これがエコノマ
イザ予熱部へ、給水ポンプ9によって送られる。
The cylinder jacket cooling water is heated in the cylinder and enters the heat exchanger 4 at Tl=80°C, so the condensate is heated to a temperature t3 of about 70°C and enters the direct contact condenser 5. . Here, high-pressure, high-temperature steam is sent from the compressor 8 at a temperature t7, contacts and mixes with the condensate, and is condensed to become hot water at about 140° C., which is sent to the economizer preheating section by the water pump 9.

凝縮器5で凝縮した温水の一部は減圧弁6を通って膨張
し、熱交換器7で過給機出口空気Ta = 120℃程
度によって加熱され、気化し温度t6−110℃程度の
蒸気となって圧縮機8に吸入され、ここで圧力を高め温
度t7となって凝縮器5に入り前述のサイクルに戻る。
A portion of the hot water condensed in the condenser 5 expands through the pressure reducing valve 6, is heated in the heat exchanger 7 by the supercharger outlet air Ta = approximately 120°C, and is vaporized into steam at a temperature of approximately t6-110°C. The air is then sucked into the compressor 8, where the pressure is increased to a temperature t7, and the air enters the condenser 5, returning to the cycle described above.

熱交換器?で発生した低圧蒸気の一部は、そのままター
ビンlの低圧部に送り、エコノマイザを通さないで動力
発生に使用し、あるいは船内で燃料油の加熱等の雑用蒸
気として使用することができる。
Heat exchanger? A part of the low-pressure steam generated can be directly sent to the low-pressure section of the turbine 1 and used for power generation without passing through an economizer, or can be used as miscellaneous steam for heating fuel oil onboard the ship.

熱交換器7は第8図に示すように、廃熱の高温部7aと
低温部?bに分割し、熱交換器4を出た渇水を更に7b
を通して昇温後凝縮器に送り。
As shown in FIG. 8, the heat exchanger 7 has a high temperature part 7a and a low temperature part 7a for waste heat. Divide the water from heat exchanger 4 into 7b.
After raising the temperature through the heat pump, it is sent to the condenser.

高温部7aは蒸発部だけに使用する方法によって蒸発温
度をできるだけ高くする方法をとることもできる。廃熱
源はこの他にもあり、その組み合わせは上記に限定され
るものではなく、廃熱源のなかで比較的低温のものは直
接給水の加熱に、高温のものはヒートポンプシステムの
蒸発部に使用することが好ましい。
Alternatively, the high temperature section 7a may be used only as an evaporation section to make the evaporation temperature as high as possible. There are other waste heat sources, and their combinations are not limited to those listed above. Among waste heat sources, those with relatively low temperatures are used to directly heat the water supply, and those with high temperatures are used in the evaporation section of the heat pump system. It is preferable.

以上は舶用ディーゼル推進プラントについて説明したが
、このシステムは、当然陸上の化学プラント、産業プラ
ント等の場合にも適用可能で、化学プラント等の場合、
その特性により多種類の廃熱源があり1回収後の高熱源
のル途も多様であるが、これら多元廃熱源を組み合わせ
The above explanation was about a marine diesel propulsion plant, but this system can of course also be applied to land-based chemical plants, industrial plants, etc.
There are many types of waste heat sources depending on their characteristics, and the routes to high heat sources after recovery are also diverse, but these multi-source waste heat sources can be combined.

前述舶用の場合と同様直接接触型凝縮器を使用するヒー
トポンプシステムを適用し、比較的低温の廃熱源から利
用可能な高温熱源を回収利用することができる。
By applying a heat pump system that uses a direct contact condenser as in the case of the marine vessel described above, it is possible to recover and utilize the available high-temperature heat source from the relatively low-temperature waste heat source.

へ3発明の効果 本発明で従来技術に付加されるものは、圧縮機と凝縮器
だけであるが、凝縮器は、ヒートポンプの作動媒体と発
電システムの作動媒体とを同一として直接接触型凝縮器
を採用し、構造が簡単コンパクトで安価である。またヒ
ートポンプシステムは、蒸発温度ta 、凝縮温度t4
であるとき成績係数εh = t4/(t4− ta 
)で、 t4と七6の差が少ない程有利であるが2本発
明の場合5以上。
3 Effects of the Invention The only additions to the prior art in the present invention are a compressor and a condenser, but the condenser is a direct contact type condenser in which the working medium of the heat pump and the working medium of the power generation system are the same. The structure is simple, compact, and inexpensive. In addition, the heat pump system has an evaporation temperature ta and a condensation temperature t4.
When , the coefficient of performance εh = t4/(t4- ta
), the smaller the difference between t4 and 76, the more advantageous it is, but in the case of the present invention, it is 5 or more.

(7) 方法によっては8〜9といった成績係数が期待でき、圧
縮機に要する動力は、得られる廃熱回収エネルギに比べ
て僅少である。
(7) Depending on the method, a coefficient of performance of 8 to 9 can be expected, and the power required for the compressor is small compared to the waste heat recovery energy obtained.

すなわち、従来廃棄されていた比較的低温の廃熱を、一
般のヒートポンプに比べて、構成要素が少なく簡単安価
で、しかも成績係数が高いため消費動力の少ないヒート
ポンプシステムにより高温熱源として回収し、これによ
って従来抽気蒸気によって加熱していた排気ガスエコノ
マイザの給水を加熱する。またヒートポンプシステムの
蒸発部で発生した低圧蒸気は、タービン低圧部へ導き発
電量を増大し、あるいは雑用蒸気として使用することが
できる。
In other words, relatively low-temperature waste heat that was conventionally discarded can be recovered as a high-temperature heat source using a heat pump system that has fewer components and is simpler and cheaper than a general heat pump, and has a high coefficient of performance and consumes less power. This heats the exhaust gas economizer feed water, which was conventionally heated by bleed steam. Furthermore, the low-pressure steam generated in the evaporation section of the heat pump system can be guided to the turbine low-pressure section to increase the amount of power generation, or can be used as miscellaneous steam.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例による系統図、第2図は従来技
術の場合の系統図、第3図は本発明の第1図の場合と異
なった実施例の系統図である。 ■・・・蒸気タービン、2・・・復水器、8・・・復水
ポンプ、4・・・熱交換器、5・・・直接接触型凝縮器
(8) 5a・・・給水加熱器、6・・・膨張弁 ?・・・熱交
換器、7a・・・高温部、7b・・・低温部、8・・・
圧縮機、9・・・給水ポンプ、10・・・排気ガスエコ
ノマイザ、11・・・蒸発ドラム、12・・・循環ポン
プ。 13・・・予熱部、14・・・蒸発部、15・・・過熱
部。 16・・・発電機 特許出願人 三井造船株式会社 第1図 T3 T4 TI T2
FIG. 1 is a system diagram according to an embodiment of the present invention, FIG. 2 is a system diagram according to the prior art, and FIG. 3 is a system diagram of an embodiment of the present invention different from that shown in FIG. ■... Steam turbine, 2... Condenser, 8... Condensate pump, 4... Heat exchanger, 5... Direct contact condenser (8) 5a... Feed water heater , 6...expansion valve? ...Heat exchanger, 7a...High temperature section, 7b...Low temperature section, 8...
Compressor, 9... Water supply pump, 10... Exhaust gas economizer, 11... Evaporation drum, 12... Circulation pump. 13... Preheating section, 14... Evaporation section, 15... Superheating section. 16... Generator patent applicant Mitsui Engineering & Shipbuilding Co., Ltd. Figure 1 T3 T4 TI T2

Claims (1)

【特許請求の範囲】[Claims] 舶用ディーゼル主機械の排気ガス熱を利用する発電シス
テムにおいて1発電システムと同一の作動媒体と、直接
接触型凝縮器を使用するヒートポンプシステムにより、
ディーゼル主機械の比較的低温の廃熱源を、その温度レ
ベルにより組み合わせ、高温度の熱源として回収し、該
発電システムのエコノマイザ給水の加熱に利用するとと
もに、該ヒートポンプシステムの蒸発部で発生した蒸気
の一部は1発電システムのタービン低圧部に導き、動力
として回収し、又は雑用蒸気として利用することを特徴
とする舶用ディーゼル主機械の廃熱回収ヒートポンプシ
ステム0
In a power generation system that utilizes exhaust gas heat from marine diesel main machinery, a heat pump system that uses the same working medium as the power generation system and a direct contact condenser,
Relatively low-temperature waste heat sources from diesel main machinery are combined according to their temperature levels, recovered as a high-temperature heat source, and used to heat the economizer feed water of the power generation system. 1 Waste heat recovery heat pump system for marine diesel main machinery, characterized in that part of it is guided to the turbine low pressure part of the power generation system and recovered as motive power or used as miscellaneous steam
JP59115440A 1984-06-07 1984-06-07 Waste-heat recovery heat pump system of marine diesel main engine Pending JPS60259802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59115440A JPS60259802A (en) 1984-06-07 1984-06-07 Waste-heat recovery heat pump system of marine diesel main engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59115440A JPS60259802A (en) 1984-06-07 1984-06-07 Waste-heat recovery heat pump system of marine diesel main engine

Publications (1)

Publication Number Publication Date
JPS60259802A true JPS60259802A (en) 1985-12-21

Family

ID=14662609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59115440A Pending JPS60259802A (en) 1984-06-07 1984-06-07 Waste-heat recovery heat pump system of marine diesel main engine

Country Status (1)

Country Link
JP (1) JPS60259802A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011074897A (en) * 2009-10-02 2011-04-14 Miura Co Ltd Fluid machine driving system
WO2016038727A1 (en) * 2014-09-11 2016-03-17 株式会社マリタイムイノベーションジャパン Marine heat supply system
WO2018155239A1 (en) * 2017-02-23 2018-08-30 三菱重工業株式会社 Power generation system and power generation system control method
JP2020007925A (en) * 2018-07-04 2020-01-16 株式会社東芝 Power generator and power generation method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011074897A (en) * 2009-10-02 2011-04-14 Miura Co Ltd Fluid machine driving system
WO2016038727A1 (en) * 2014-09-11 2016-03-17 株式会社マリタイムイノベーションジャパン Marine heat supply system
WO2018155239A1 (en) * 2017-02-23 2018-08-30 三菱重工業株式会社 Power generation system and power generation system control method
CN108779688A (en) * 2017-02-23 2018-11-09 三菱重工业株式会社 The control method of electricity generation system and electricity generation system
JP2020007925A (en) * 2018-07-04 2020-01-16 株式会社東芝 Power generator and power generation method

Similar Documents

Publication Publication Date Title
US4334409A (en) Device for recovering heat energy in a supercharged internal-combustion engine
KR101238728B1 (en) A large turbocharged diesel engine with energy recovery arrangement
US4426842A (en) System for heat recovery for combustion machine including compressor for combustion air
US4182127A (en) Power recovery and feedback system
US20050262842A1 (en) Process and device for the recovery of energy
US5165239A (en) Water augmented indirectly-fired gas turbine systems and method
SE437541B (en) COMBINED GAS TURBIN ANGTURBIN INSTALLATION WITH INTEGRATED PART COMBUSTION OF FUEL
SU1521284A3 (en) Power plant
CN112160808B (en) Waste heat recovery power-cooling combined supply system of ship gas turbine
JPH094510A (en) Combustion engine plant, supercharging combustion engine device for combustion engine plant and improving method of efficiency of combustion engine plant
GB2298243A (en) Steam turbine operation
Saad et al. The new LM2500 Cheng cycle for power generation and cogeneration
JPS60259802A (en) Waste-heat recovery heat pump system of marine diesel main engine
JP4375908B2 (en) Waste heat recovery system
US6877320B2 (en) Turbine arrangement and a method of operating a turbine arrangement
US20100186409A1 (en) Rankine cycle with multiple configuration of vortex
JP2001248409A (en) Exhaust heat recovery system
JPS5853608A (en) Waste heat utilizing system in diesel engine
Mordell The Exhaust-Heated Gas-Turbine Cycle
JPH10231710A (en) Gas turbine generating device
KR20190030918A (en) Combined cycle gas power plant
KR20190030919A (en) Combined cycle gas power plant
RU2745182C1 (en) Liquefied natural gas combined cycle plant
JP3059124B2 (en) Hydrogen combustion turbine plant
US20020189262A1 (en) Method for operating a steam turbine , and a turbine system provided with a steam turbine that functions according to said method