JPS60131973A - Method for vaporizing organometallic compound - Google Patents

Method for vaporizing organometallic compound

Info

Publication number
JPS60131973A
JPS60131973A JP23923883A JP23923883A JPS60131973A JP S60131973 A JPS60131973 A JP S60131973A JP 23923883 A JP23923883 A JP 23923883A JP 23923883 A JP23923883 A JP 23923883A JP S60131973 A JPS60131973 A JP S60131973A
Authority
JP
Japan
Prior art keywords
gas
guide
holes
organic metal
jig
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23923883A
Other languages
Japanese (ja)
Other versions
JPH0379436B2 (en
Inventor
Mototsugu Ogura
基次 小倉
Nobuyasu Hase
長谷 亘康
Yuzaburo Ban
雄三郎 伴
Motoji Morizaki
森崎 元司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP23923883A priority Critical patent/JPS60131973A/en
Publication of JPS60131973A publication Critical patent/JPS60131973A/en
Publication of JPH0379436B2 publication Critical patent/JPH0379436B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material
    • C23C16/4482Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material by bubbling of carrier gas through liquid source material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/001Feed or outlet devices as such, e.g. feeding tubes
    • B01J4/002Nozzle-type elements

Abstract

PURPOSE:To feed a uniformly vaporized organometallic compound to a growing reaction furnace with high controllability by attaching a bubble forming jig having spouting holes to the tip of a gas spouting part to make bubbles fine when an organometallic compound is bubbled. CONSTITUTION:A bubble forming jig 12 having plural gas spouting holes 13 is attached to the tip of the spouting part 4a of a guide 4 for guiding a gas for bubbling to a position under the surface 6 of a liq. The jig 12 is in the form of a trumpet or the like, and it is made to act as a control plate by gradually increasing the diameters of the holes 13 in the radial direction. The density of the holes 13 may be increased. A gas sent from the guide 4 is converted into fine and uniform bubbles 14 by spouting from the holes 13, and a uniformly vaporized organometallic compound can be fed to the outside with high controllability.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、有機金属を用いて効率よく制御よく化合物半
導体の良好な成長層が得ることの出来る有機金属の気化
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an organic metal vaporization method that can efficiently and controllably obtain a good growth layer of a compound semiconductor using an organic metal.

従来例の構成とその問題点 百機金属を用いた気相エビタキシャμ法であるM O0
V D (Metatorganic Chemica
7 VaporDeposifion )法が化合物半
導体の結晶成長法として、従来の液相成長法に比べ、量
産性及び薄膜極微構造をもつ新機能デバイスの作製の高
精度制御の占で優れておp 、 Ga(−エムtエムB
 / GaムS系の半導体レーザの開発等に大いに用い
られている。
Configuration of conventional example and its problemsM
V D (Metatorganic Chemica)
As a crystal growth method for compound semiconductors, the VaporDeposition method is superior to conventional liquid phase growth methods in terms of mass production and high-precision control for the production of new functional devices with thin film microstructures. MtMB
/ Widely used in the development of Ga-S-based semiconductor lasers.

このMOCVD法において、例えばm−v化合物半導体
層を成長する場合、一般には■族元素としては有機金属
を、V族元素としては水素化物を用いる。この41機金
属の成長反応炉への供給方法としては、液化した有機金
属中にキャリアガスを導入し、バブリングすることによ
シ設定された温度での飽和蒸気圧にほぼ相当する分子が
気体として前記成長反応炉へ送シこまれる。
In this MOCVD method, for example, when growing an m-v compound semiconductor layer, an organic metal is generally used as the Group I element, and a hydride is used as the Group V element. The method of supplying this 41 metal to the growth reactor is to introduce a carrier gas into the liquefied organic metal, and by bubbling it, molecules approximately corresponding to the saturated vapor pressure at a set temperature are converted into gas. It is sent to the growth reactor.

第1図にMOCvD成長において、現在用いられている
有機金属のバグリングボンベの構造を示す。ステンレス
製ボンベ容器1内に液化した有機金属(例えばトリエチ
ルインジウム)2を入れ、入口3よシキャリアガヌ(例
えばH2)を導入する。導入されたキャリアガスはガイ
ド4を介してこのガイド4の下端噴出部4aから気泡5
が出てボンベ1内の有機金属2中を上昇し、液面6に到
達して前記気泡6が破れ、ボンベ1内の液面上部空胴部
7中にある設定温度における飽和蒸気圧に相当する気体
分子の有機金属が前記気泡6の体積分だけ押しのけられ
、スト!J−トT治具8を介して出口9に押し出され成
長炉へと送られる。尚、パルプ10はキャリアガスの流
れの0N−OFF用である。めくらねじ11はこのボン
ベ1内に有機金属を入れるだめの導入穴のふ産月である
FIG. 1 shows the structure of an organometallic bug ring bomb currently used in MOCvD growth. A liquefied organic metal (for example, triethyl indium) 2 is placed in a stainless steel cylinder 1, and a cicarious gas (for example, H2) is introduced through an inlet 3. The introduced carrier gas passes through the guide 4 from the lower end spouting part 4a of the guide 4 into bubbles 5.
comes out and rises in the organic metal 2 in the cylinder 1, reaches the liquid level 6, the bubbles 6 burst, and the vapor pressure corresponds to the saturated vapor pressure at the set temperature in the cavity 7 above the liquid level in the cylinder 1. The organometallic gas molecules are pushed away by the volume of the bubble 6, and strike! It is pushed out through the J-T jig 8 to the outlet 9 and sent to the growth furnace. Note that the pulp 10 is for ON-OFF of the flow of carrier gas. The blind screw 11 is the opening for introducing the organic metal into the cylinder 1.

この方法においては、有機金属2がボンベ1内に十分溝
たされている時は空胴部7が狭いため、ガイド4の先端
から出てくる大きめの気泡6の破裂による液面6の激し
い揺れ等から有機金属の出口への飛び出しがかなりあシ
、出口9以後の供給管等にたまシ、バブリングする気体
の流量による成長層の構成元素の供給量の制御は全くで
きなくなる。使用mが増し、液面6が下ってもやはシそ
の危険は高い。
In this method, when the organic metal 2 is sufficiently grooved in the cylinder 1, the cavity 7 is narrow, so the liquid level 6 shakes violently due to the bursting of the large bubble 6 coming out from the tip of the guide 4. There is a considerable amount of organometallic material flowing out to the outlet from the outlet 9, etc., and it becomes impossible to control the supply amount of constituent elements of the growth layer by the flow rate of the bubbling gas. As usage increases and the liquid level 6 drops, the danger is high.

出口以後の供給管は通常室温におかれることも多く、室
温で蒸気圧の低い有機金属では、特に長期間にわたって
たまったままである。これはとシもなおさず気泡5が大
きいためである。又′これを緩和するためにガイド4の
下端部に複数の孔を設けたものも考えられるが、ガイド
4がストレート形状のだめ下端部に設けられた孔の最上
部に近い孔からのみ気泡が発生し、効率が悪い。
The supply pipe after the outlet is often kept at room temperature, and organic metals, which have a low vapor pressure at room temperature, remain accumulated for a particularly long period of time. This is because the bubbles 5 are still large. Also, in order to alleviate this problem, it is conceivable that a plurality of holes are provided at the lower end of the guide 4, but since the guide 4 has a straight shape, air bubbles are generated only from the hole near the top of the holes provided at the lower end. And it's inefficient.

MOCVD成長はI族元素の供給律速で決り、有機金属
はIv族元素に多いことから、成長速度制御あるいは混
晶半導体の組成制御の点で従来のボンベを用いた有機金
属の気化方法では問題が多い。
MOCVD growth is determined by the rate of supply of group I elements, and since organic metals are mostly group Iv elements, there are problems with conventional organic metal vaporization methods using cylinders in terms of growth rate control or composition control of mixed crystal semiconductors. many.

発明の目的 本発明は、有機金属のバブリングにおいて、そのキャリ
アガスの気泡を小さくし、かつ制御よく有機金属を成長
反応炉系へ提供できる有機金属の気化方法を提供するこ
とを目的とする。
OBJECTS OF THE INVENTION An object of the present invention is to provide a method for vaporizing an organometallic material in which the bubbles of a carrier gas can be reduced in bubbling of an organometallic material and the organometallic material can be supplied to a growth reactor system in a well-controlled manner.

発明の構成 本発明は液化した有機金属を気体を用いてバグリングし
、前記液化金属を気体化する際に、前記気体を液面下に
導入するガイドの後に複数個の噴出孔を有する形状の気
泡形成治具を設け、これを用いて有機金属を気化するも
のである。すなわち本発明は上記点をかんがみ、気泡形
成治具はたとえばらっは形状をし、ガイド中心よシ遠ざ
かるにつれて、小孔の径が同じか少し大きくなる形状を
しているもの、あるいは小孔のあいた制御板を用いて気
泡を小さくし、ボンベ内で小さな気泡が均一に形成され
、結果として制御よく有機金属を成長反応系へ提供する
ものである。
Structure of the Invention The present invention involves bagging a liquefied organic metal using a gas, and when the liquefied metal is gasified, the gas is introduced below the liquid surface. A bubble forming jig is provided and used to vaporize the organic metal. In other words, the present invention takes the above points into consideration, and the bubble forming jig is, for example, shaped like a square, and the diameter of the small hole is the same or becomes slightly larger as it moves away from the center of the guide. The open control plate is used to reduce the size of the bubbles, so that small bubbles are uniformly formed within the cylinder, and as a result, the organic metal is provided to the growth reaction system in a well-controlled manner.

実施例の説明 第2図に本発明の一実施例の気泡発生部の先端部を示す
。記号は第1図と同一物は同一記号で示す。ガイド4の
先端噴出部4aのすぐ後部にある気泡形成治具12はら
っは形状を有し、そこには複数個の気体噴出孔13が設
けである。この孔13はガイド4から送られてきたガス
を細かい気泡14とするだめのもので、全体的な気泡1
4の量の均一性を保つだめに中心から遠ざかるにつれ孔
の径は大きめかあるいは孔の密度を大きくするのがよい
。もちろん適当な大きさの孔が設けられているだけでも
よい。送られてくるガスの量が多い場合は気泡形成治具
12の底部15よシ漏れることもあるので、この底部1
6は閉じているほうがよい。
DESCRIPTION OF THE EMBODIMENTS FIG. 2 shows the tip of a bubble generating section according to an embodiment of the present invention. Components that are the same as those in FIG. 1 are indicated by the same symbols. The bubble forming jig 12 located immediately behind the tip ejection part 4a of the guide 4 has a square shape, and a plurality of gas ejection holes 13 are provided therein. This hole 13 is for the purpose of converting the gas sent from the guide 4 into fine bubbles 14.
In order to maintain uniformity in the amount of pores 4, it is preferable that the diameter of the pores becomes larger or the density of the pores increases as the distance from the center increases. Of course, it is sufficient to simply provide a hole of an appropriate size. If a large amount of gas is sent, it may leak from the bottom 15 of the bubble forming jig 12, so
6 is better closed.

このような構造でガスを流した場合も気泡14は細かく
均一に形成され、液面6での気泡14の割れによる液化
有機金属の飛びはねは少なく、よって安定かつ均一な気
化した有機金属が次の成長系へと送りこむことができる
Even when gas is flowed in this structure, the bubbles 14 are formed finely and uniformly, and the liquefied organometallic is less likely to scatter due to the cracking of the bubbles 14 at the liquid level 6, so that stable and uniform vaporized organometallic is produced. It can be sent to the next growth system.

第3図に本発明の他の実施例を示す。この場合気体は従
来と同じガイド4より送りこまれ、ガイドの先端噴出部
4aからは大きい気泡6が生じる。
FIG. 3 shows another embodiment of the invention. In this case, the gas is fed through the same guide 4 as in the prior art, and large bubbles 6 are generated from the jetting portion 4a at the tip of the guide.

この上部に気泡制御板16を設置、そこに設けられた無
数の小さな孔17を介して小さな気泡14が均一よく形
成される。このことによシ先程の実施例と同じ様な効果
がうまれる。制御板16のボンベ1のすき間はそのすき
間から大きなあわが生じてはよくないのでなるべく小さ
くする必要がある。又この制御板16は小さな気泡14
の形成上複数枚設けてもよい。
A bubble control plate 16 is installed on top of this, and small bubbles 14 are uniformly formed through countless small holes 17 provided therein. This produces an effect similar to that of the previous embodiment. The gap between the cylinder 1 and the control plate 16 needs to be made as small as possible since it is not good if large bubbles are generated from the gap. Also, this control plate 16 has small air bubbles 14.
In terms of formation, a plurality of sheets may be provided.

第4図にさらに他の実施例を示す。これはガイドの先端
噴出部41Lのすぐ後に載置された気泡形成治具12は
多孔質製のもので形成されている。
FIG. 4 shows yet another embodiment. This is because the bubble forming jig 12 placed immediately after the distal end jetting part 41L of the guide is made of a porous material.

これを用いることによシ無数の小孔18よシ無数の小さ
な気泡14が形成され、液面eの大きな揺れもなく、従
って効率よくスムーズに気化された有機金属をボンベ外
部に送シ出すことができる。
By using this, countless small bubbles 14 are formed through countless small holes 18, and there is no large fluctuation in the liquid level e, so that the vaporized organic metal can be efficiently and smoothly delivered to the outside of the cylinder. I can do it.

これらの実施例において、ガイド4と気泡形成治具12
や制御板16は別物として説明したが、ガイド4と治具
は一体化で形成されたものでももちろんよい。一体化の
場合の例としてガイド4と同径のものに複数個の孔を設
け、ガイド4の下端噴出部4aで5字接続したものつま
シガイド4を長めにし、下端噴出近傍に複数個の孔を設
け、下端噴出部4aを閉じ、5字に曲げたものでも同機
の効果を得ることができる。
In these embodiments, the guide 4 and the bubble forming jig 12
Although the guide 4 and the control plate 16 have been described as separate parts, the guide 4 and the jig may of course be formed integrally. As an example of integration, a guide 4 with the same diameter as the guide 4 has multiple holes, and a 5-shaped connection is made at the lower end spout 4a of the guide 4.The guide 4 is made longer and has multiple holes near the lower end jet The same effect can be obtained even if the lower end spout portion 4a is closed and bent into a five-shape shape.

以上の実施例から明らかなように、液化した有機金属を
気体をバブリングして気化した有機金属を得る際に、そ
のバブリングの気泡を小さく、均一にして液化有機金属
の液面のゆれを抑え、そのバグリングする気体の流量に
比例した量の気化した有機金属が得られ、又従来のよう
な液の飛び出しもなくなり、極めて制御性がよくなる。
As is clear from the above examples, when obtaining a vaporized organometal by bubbling gas through the liquefied organometal, the bubbles of the bubbling are made small and uniform to suppress fluctuations in the liquid level of the liquefied organometal. An amount of vaporized organic metal can be obtained in proportion to the flow rate of the bugling gas, and there is no liquid splashing out as in the conventional method, resulting in extremely good controllability.

通常、MOCVD成長に用いる有機金属の流量としては
約1d−5モ1V7miyr程度であるが、本発明を用
いることによシ、このオーダーの制御が比較的簡単に行
なえる。実施例の気泡形成治具のらっは形状や制御板の
形状や孔の形状6.大きさは問わないし、又ボンベの形
状も問わないが、ボンベに充てんする液化有機金属の充
てん率が7〜8割程度とし、ボンベ内の液面上部空胴部
を十分にとることによシ、更に本発明の効果は大なるも
のとなる。
Normally, the flow rate of the organic metal used in MOCVD growth is about 1d-5 to 1V7 miyr, but by using the present invention, control on this order can be relatively easily performed. 6. The shape of the bubble forming jig in the example, the shape of the control plate, and the shape of the holes. Although the size and shape of the cylinder do not matter, the filling rate of the liquefied organic metal in the cylinder should be around 70 to 80%, and the cylinder should have a sufficient cavity above the liquid level. Furthermore, the effects of the present invention are even greater.

発明の効果 以上のように1本発明は液化有機金属のバグリングによ
る気泡の径を小さく、その密度を均一にすることで制御
よく外部に気化した有機金属を供給することができ、従
ってこれを用いたMOCVD成長で混晶化合物半導体(
In1−xG町−8yP1−y。
Effects of the Invention As described above, the present invention makes it possible to supply vaporized organic metals to the outside with good control by reducing the diameter of bubbles caused by bugling of liquefied organic metals and making the density uniform. Mixed crystal compound semiconductor (
In1-xG-cho-8yP1-y.

(ムt、G&1−Jc)yIn、−yP 等)の■族組
成比を比較的容易に制御できる。
(Mut, G&1-Jc)yIn, -yP, etc.) can be controlled relatively easily.

本発明を用いた結晶成長法であるMoCVD法は化合物
半導体の量産化の大きな可能性を秘めた成長方法であり
、又本発明は有機金属を不純物ドーピング制御にも使用
でき、半導体デバイス製造分野での工業的価値は極めて
高いものである。
The MoCVD method, which is a crystal growth method using the present invention, is a growth method with great potential for mass production of compound semiconductors, and the present invention can also be used to control impurity doping of organic metals, which is useful in the semiconductor device manufacturing field. Its industrial value is extremely high.

【図面の簡単な説明】[Brief explanation of drawings]

諏1図は従来の有機金属の気化方法の概略構造図、第2
図、第3図、第4図は本発明の実施例の気化方法に用い
る気泡発生部の構造図である。 4・・・・・・気体のガイド、41L・・・・・・下端
噴出部、6・・・・・・液面、7・・・・・・空胴部、
12・・・・・・気泡形成治具、13.17.j9・・
・・・・噴出孔、16・・・・・・制御板。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第 
1 図 fo 第2図 N 第3図 第4図・
Figure 1 is a schematic structural diagram of the conventional organic metal vaporization method, Figure 2
3 and 4 are structural diagrams of a bubble generating section used in the vaporization method of the embodiment of the present invention. 4... Gas guide, 41L... Lower end spouting part, 6... Liquid level, 7... Cavity part,
12...Bubble forming jig, 13.17. j9...
...Blowout hole, 16...Control board. Name of agent: Patent attorney Toshio Nakao and 1 other person
1 Figure fo Figure 2 N Figure 3 Figure 4・

Claims (1)

【特許請求の範囲】 (1)液化合尭有機金属を気体を用いてバブリング−し
、前記液化有機金属を気体化するに際し、前記気体を液
面下に導くガイドの前記気体噴出部の先に複数個の前記
気体噴出孔を有する気泡形成治具設け、前記噴出孔よシ
前記気体を噴出させることを特徴とする有機金属の気化
方法。 (2)治具が気体を導入するガイドの噴出部の上部に複
数個の孔を有する制御板よシなることを特徴とする特許
請求の範囲第1項に記載の有機金属の気化方法。 (3)治具が、らっは状に開いた形状でガイドの中心か
ら遠ざかるにつれ噴出孔の径が同じが大きいことを特徴
とする特許請求の範囲第1項に記載の有機金属の気化方
法。 (萄 気泡形成治具に設けた噴出孔の密度が、中心から
遠ざかるにつれ大きくなることを特徴とする特許請求の
範囲第3項に記載の有機金属の気化方法。 (6)気泡形成治具の材質が多孔質製のものであること
を特徴とする特許請求の範囲第1項に記載の有機金属の
気化方法。 (6〕 ガイドと気泡形成治具が一体となっていること
を特徴とする特許請求の範囲第1項に記載の有機金属の
気化方法。
[Scope of Claims] (1) Bubbling the liquefied organometallic with gas, and when gasifying the liquefied organometal, the tip of the gas spouting part of the guide that guides the gas below the liquid surface. A method for vaporizing organic metals, comprising: providing a bubble forming jig having a plurality of the gas ejection holes, and ejecting the gas from the ejection holes. (2) The organic metal vaporization method according to claim 1, wherein the jig is a control plate having a plurality of holes at the upper part of the ejection part of the guide for introducing the gas. (3) The method for vaporizing an organic metal according to claim 1, characterized in that the jig has an open-shape shape and the diameter of the ejection hole is the same but increases as the distance from the center of the guide increases. . (6) The method for vaporizing an organic metal according to claim 3, characterized in that the density of the ejection holes provided in the bubble forming jig increases as the distance from the center increases. The organic metal vaporization method according to claim 1, characterized in that the material is porous. (6) The guide and the bubble forming jig are integrated. A method for vaporizing an organic metal according to claim 1.
JP23923883A 1983-12-19 1983-12-19 Method for vaporizing organometallic compound Granted JPS60131973A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23923883A JPS60131973A (en) 1983-12-19 1983-12-19 Method for vaporizing organometallic compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23923883A JPS60131973A (en) 1983-12-19 1983-12-19 Method for vaporizing organometallic compound

Publications (2)

Publication Number Publication Date
JPS60131973A true JPS60131973A (en) 1985-07-13
JPH0379436B2 JPH0379436B2 (en) 1991-12-18

Family

ID=17041794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23923883A Granted JPS60131973A (en) 1983-12-19 1983-12-19 Method for vaporizing organometallic compound

Country Status (1)

Country Link
JP (1) JPS60131973A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6283400A (en) * 1985-10-02 1987-04-16 Toyo Sutoufuaa Chem:Kk Method of improving cylinder for vapor growth of organometallic compound
US5476547A (en) * 1989-09-26 1995-12-19 Canon Kabushiki Kaisha Gas feeding device for controlled vaporization of an organometallic compound used in deposition film formation
WO2001042539A1 (en) * 1999-12-11 2001-06-14 Epichem Limited Method and apparatus for delivering precursors to a plurality of epitaxial reactor sites
EP1329540A2 (en) * 2000-07-03 2003-07-23 Epichem Limited An apparatus for the delivery of precursors in the vapour phase to epitaxial reactor sites
WO2007121202A1 (en) * 2006-04-11 2007-10-25 Applied Materials, Inc. Apparatus and methods for chemical vapor deposition
JP2015007286A (en) * 2009-03-11 2015-01-15 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Bubbling supply system for stable precursor supply

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5519146U (en) * 1978-07-21 1980-02-06

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5519146U (en) * 1978-07-21 1980-02-06

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6283400A (en) * 1985-10-02 1987-04-16 Toyo Sutoufuaa Chem:Kk Method of improving cylinder for vapor growth of organometallic compound
US5476547A (en) * 1989-09-26 1995-12-19 Canon Kabushiki Kaisha Gas feeding device for controlled vaporization of an organometallic compound used in deposition film formation
WO2001042539A1 (en) * 1999-12-11 2001-06-14 Epichem Limited Method and apparatus for delivering precursors to a plurality of epitaxial reactor sites
US6698728B1 (en) 1999-12-11 2004-03-02 Epichem Limited Method and apparatus for delivering precursors to a plurality of epitaxial reactor sites
EP1329540A2 (en) * 2000-07-03 2003-07-23 Epichem Limited An apparatus for the delivery of precursors in the vapour phase to epitaxial reactor sites
EP1329540A3 (en) * 2000-07-03 2003-11-05 Epichem Limited An apparatus for the delivery of precursors in the vapour phase to epitaxial reactor sites
WO2007121202A1 (en) * 2006-04-11 2007-10-25 Applied Materials, Inc. Apparatus and methods for chemical vapor deposition
JP2009533556A (en) * 2006-04-11 2009-09-17 アプライド マテリアルズ インコーポレイテッド Apparatus and method for chemical vapor deposition
US7967911B2 (en) 2006-04-11 2011-06-28 Applied Materials, Inc. Apparatus and methods for chemical vapor deposition
US8313804B2 (en) 2006-04-11 2012-11-20 Applied Materials, Inc. Apparatus and methods for chemical vapor deposition
JP2013040410A (en) * 2006-04-11 2013-02-28 Applied Materials Inc Apparatus and method for chemical vapor deposition
JP2015007286A (en) * 2009-03-11 2015-01-15 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Bubbling supply system for stable precursor supply

Also Published As

Publication number Publication date
JPH0379436B2 (en) 1991-12-18

Similar Documents

Publication Publication Date Title
JP4789126B2 (en) Equipment for providing vaporized organometallic compounds to chemical vapor deposition systems
US5766682A (en) Process for chemical vapor deposition of a liquid raw material
US5901271A (en) Process of evaporating a liquid in a cyclone evaporator
CN101426953B (en) Apparatus and methods for chemical vapor deposition
KR100272848B1 (en) Chemical vapor deposition apparatus
US6444038B1 (en) Dual fritted bubbler
JP5091380B2 (en) Method and apparatus for supplying precursors to a plurality of epitaxial reactor sections
JP2015007286A (en) Bubbling supply system for stable precursor supply
JP2867306B2 (en) Method and apparatus for producing semiconductor grade polycrystalline silicon
JPS60131973A (en) Method for vaporizing organometallic compound
JP2001115263A (en) Bubbler having two frits
US20050249873A1 (en) Apparatuses and methods for producing chemically reactive vapors used in manufacturing microelectronic devices
JPH038330A (en) Apparatus for vaporizing and supplying liquid material for semiconductor
JPS5973496A (en) Vapor-phase growth apparatus
KR101949030B1 (en) Vapolizer of two room type
CN218404394U (en) Precursor source bottle
JP4423393B2 (en) Microplasma deposition method and apparatus
TW201807241A (en) HfN film manufacturing method and HfN film
JPH0712475U (en) Liquid source evaporator for vapor phase growth
JP2878462B2 (en) Cylinder container for organometallic compound vaporizer
JP2004296614A (en) Liquid material vaporization/supply device
TWI261871B (en) Apparatus and method for thin film deposition
KR20010110909A (en) Apparatus for Supplying a Precursor
JP2005039034A (en) Device and method for supplying vaporized gas
JP2014045143A (en) Method for forming silicon film, cyclohexasilane packing body, and device for forming silicon film