JPH0379436B2 - - Google Patents

Info

Publication number
JPH0379436B2
JPH0379436B2 JP58239238A JP23923883A JPH0379436B2 JP H0379436 B2 JPH0379436 B2 JP H0379436B2 JP 58239238 A JP58239238 A JP 58239238A JP 23923883 A JP23923883 A JP 23923883A JP H0379436 B2 JPH0379436 B2 JP H0379436B2
Authority
JP
Japan
Prior art keywords
organic metal
guide
gas
growth
bubble forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58239238A
Other languages
Japanese (ja)
Other versions
JPS60131973A (en
Inventor
Mototsugu Ogura
Nobuyasu Hase
Juzaburo Ban
Motoji Morizaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP23923883A priority Critical patent/JPS60131973A/en
Publication of JPS60131973A publication Critical patent/JPS60131973A/en
Publication of JPH0379436B2 publication Critical patent/JPH0379436B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material
    • C23C16/4482Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material by bubbling of carrier gas through liquid source material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/001Feed or outlet devices as such, e.g. feeding tubes
    • B01J4/002Nozzle-type elements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、有機金属を用いて効率よく制御よく
かつ膜厚や組成の制御性良く化合物半導体の良好
な成長層を得ることの出来る有機金属の気化方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is directed to the vaporization of organic metals, which enables efficient and controlled vaporization of compound semiconductors with good controllability of film thickness and composition. It is about the method.

従来例の構成とその問題点 有機金属を用いた気相エピタキシヤル法である
MOCVD(Metalorganic Chemical Vapor
Deposifion)法が化合物半導体の結晶成長法とし
て、従来の液相成長法に比べ、量産性及び薄膜極
微構造をもつ新機能デバイスの作製の高精度制御
の点で優れており、Ga1-xAlxAs/GaAs系の半導
体レーザの開発等に大いに用いられている。
Conventional structure and problems It is a vapor phase epitaxial method using organic metals.
MOCVD (Metalorganic Chemical Vapor)
As a crystal growth method for compound semiconductors, the Ga 1-x Al x It is widely used in the development of As/GaAs-based semiconductor lasers.

このMOCVD法において、例えば−V化合
物半導体層を成長する場合、一般には族元素と
しては有機金属を、V族元素としては水素化物を
用いる。この有機金属の成長反応炉への供給方法
としては、液化した有機金属中にキヤリアガスを
導入し、バブリングすることにより設定された温
度での飽和蒸気圧にほぼ相当する分子が気体とし
て前記成長反応炉へ送りこまれる。
In this MOCVD method, for example, when growing a -V compound semiconductor layer, an organic metal is generally used as the group element, and a hydride is used as the group V element. The method of supplying this organometal to the growth reactor is to introduce a carrier gas into the liquefied organometal and bubble it, so that molecules approximately corresponding to the saturated vapor pressure at a set temperature are converted into a gas into the growth reactor. sent to.

第1図にMOCVD成長において、現在用いら
れている有機金属のバブリングボンベの構造を示
す。ステンレス製ボンベ容器1内に液化した有機
金属(例えばトリエチルインジウム)2を入れ、
入口3よりキヤリアガス(例えばH2)を導入す
る。導入されたキヤリアガスはガイド4を介して
このガイド4の下端噴出部4aから気泡5が出て
ボンベ1内の有機金属2中を上昇し、液面6に到
達して前記気泡5が破れ、ボンベ1内の液面上部
空胴部7中にある設定温度における飽和蒸気圧に
相当する気体分子の有機金属が前記気泡5の体積
分だけ押しのけられ、ストレートT治具8を介し
て出口9に押し出され成長炉へと送られる。尚、
バルブ10はキヤリアガスの流れのON−OFF用
である。めくらねじ11はこのボンベ1内に有機
金属を入れるための導入穴のふた用である。
Figure 1 shows the structure of the organometallic bubbling cylinder currently used in MOCVD growth. A liquefied organic metal (for example, triethyl indium) 2 is placed in a stainless steel bomb container 1,
A carrier gas (for example, H 2 ) is introduced from the inlet 3. The introduced carrier gas passes through the guide 4, and bubbles 5 come out from the lower end spout 4a of the guide 4, rise in the organic metal 2 in the cylinder 1, reach the liquid level 6, burst the bubbles 5, and leave the cylinder. The organometallic gas molecules corresponding to the saturated vapor pressure at the set temperature in the cavity 7 above the liquid level in 1 are pushed away by the volume of the bubbles 5, and are pushed out to the outlet 9 via the straight T jig 8. and sent to the growth reactor. still,
The valve 10 is for ON/OFF of the flow of carrier gas. The blind screw 11 is used to cover the introduction hole for introducing the organic metal into the cylinder 1.

この方法においては、有機金属2がボンベ1内
に十分満たされている時は空胴部7が狭いため、
ガイド4の先端から出てくる大きめの気泡5の破
裂による液面6の激しい揺れ等から有機金属の出
口への飛び出しがかなりあり、出口9以後の供給
管等にたまり、バブリングする気体の流量による
成長層の構成元素の供給量の制御は全くできなく
なる。使用量が増し、液面6が下つてもやはりそ
の危険は高い。
In this method, when the organometallic metal 2 is sufficiently filled in the cylinder 1, the cavity 7 is narrow;
Due to the violent shaking of the liquid level 6 due to the bursting of large bubbles 5 coming out from the tip of the guide 4, a considerable amount of organic metal is thrown out to the outlet, and due to the flow rate of the bubbling gas that accumulates in the supply pipe etc. after the outlet 9. It is no longer possible to control the supply amount of constituent elements of the growth layer. Even if the amount used increases and the liquid level 6 falls, the risk is still high.

出口以後の供給管は通常室温におかれることも
多く、室温で蒸気圧の低い有機金属では、特に長
期間にわたつてたまつたままである。これはとり
もなおさず気泡5が大きいためである。又これを
緩和するためにガイド4の下端部に複数の孔を設
けたものも考えられるが、ガイド4がストレート
形状のため下端部に設けられた孔の最上部に近い
孔からのみ気泡が発生し、効率が悪い。
The supply pipe after the outlet is often kept at room temperature, and organic metals, which have a low vapor pressure at room temperature, remain accumulated for a particularly long period of time. This is because the bubbles 5 are large. In order to alleviate this problem, a plurality of holes may be provided at the lower end of the guide 4, but since the guide 4 is straight, air bubbles are generated only from the hole near the top of the holes provided at the lower end. And it's inefficient.

またMOCVD成長はたとえば−V族化合物
半導体では族元素の供給律速で決る。したがつ
て、従来のボンベを用いた有機金属の気化方法で
は均一かつ制御性良く有機金属ガスを発生させる
ことが困難であり、半導体結晶成長膜の成長速度
制御あるいは組成制御が極めて難しく、
MOCVD法による良好な半導体膜の形成が困難
であつた。
Furthermore, MOCVD growth is determined by the rate of supply of group elements, for example in -V group compound semiconductors. Therefore, it is difficult to generate organometallic gas uniformly and with good controllability using conventional organometallic vaporization methods using cylinders, and it is extremely difficult to control the growth rate or composition of semiconductor crystal growth films.
It has been difficult to form a good semiconductor film using the MOCVD method.

発明の目的 本発明は、有機金属のバブリングにおいて、そ
のキヤリアガスの気泡を小さくし、かつ制御よく
有機金属を成長反応炉系へ提供でき、MOCVD
法において構造的にも好適な気化装置を用い、有
機金属を用いた制御性の良い気相エピタキシヤル
成長に適した気化方法を提供することを目的とす
る。
Purpose of the Invention The present invention is capable of reducing the size of carrier gas bubbles in bubbling of an organometallic material and providing the organometallic material to a growth reactor system in a well-controlled manner.
The present invention aims to provide a vaporization method suitable for vapor phase epitaxial growth with good controllability using organic metals, using a structurally suitable vaporization apparatus.

発明の構成 本発明は、ステンレス容器内の液化した有機金
属を気体を用いてバブリングし、前記液化金属を
気体化する際に、前記気体を液面下に導入するガ
イドとこのガイドから出た気体を上記ガイドの端
部下方より外側に位置する噴出孔から噴出させる
複数個の噴出孔を有する形状の気泡形成治具をス
テンレス容器と別体に設け、これを用いて有機金
属を気化してエピタキシヤル成長炉に送るもので
ある。
Structure of the Invention The present invention provides a guide for introducing the gas below the liquid surface and a gas discharged from the guide when the liquefied organic metal in a stainless steel container is bubbled with a gas to gasify the liquefied metal. Separately from the stainless steel container, a bubble-forming jig with a plurality of ejection holes for ejecting from the ejection holes located outside the lower end of the guide is provided separately from the stainless steel container, and is used to vaporize the organic metal and perform epitaxy. This is what is sent to the Yaru growth reactor.

すなわち本発明は上記点をかんがみ、気泡形成
治具はたとえばらつぱ形状をし、ガイド中心より
遠ざかるにつれて、小孔の径が同じか少し大きく
なる形状をしているもの、あるいは小孔のあいた
制御板を用いて気泡を小さくし、ボンベ内で小さ
な気泡が均一に形成され、結果として制御よく有
機金属を成長反応系へ提供するものである。
In other words, the present invention takes the above points into consideration, and the bubble forming jig is, for example, shaped like a ripple, and the diameter of the small holes is the same or becomes slightly larger as the distance from the center of the guide increases, or A control plate is used to reduce the size of the bubbles, so that small bubbles are uniformly formed within the cylinder, and as a result, the organic metal is provided to the growth reaction system in a well-controlled manner.

実施例の説明 第2図に本発明の一実施例の気泡発生部の先端
部を示す。記号は第1図と同一物は同一記号で示
す。ガイド4の先端噴出部4aのすぐ後部にある
気泡形成治具12はらつぱ形状を有し、そこには
複数個の気体噴出孔13が設けてある。この孔1
3はガイド4から送られてきたガスを細かい気泡
14とするためのもので、全体的な気泡14の量
の均一性を保つために中心から遠ざかるにつれ孔
の径は大きめかあるいは孔の密度を大きくするの
がよい。もちろん適当な大きさの孔が設けられて
いるだけでもよい。送られてくるガスの量が多い
場合は気泡形成治具12の底部15より漏れるこ
ともあるので、この底部15は閉じているほうが
よい。このような構造でガスを流した場合も気泡
14は細かく均一に形成され、液面6での気泡1
4の割れによる液化有機金属の飛びはねは少な
く、よつて安定かつ均一な気化した有機金属が次
の成長系へと送りこむことができる。
DESCRIPTION OF EMBODIMENTS FIG. 2 shows the tip of a bubble generating section according to an embodiment of the present invention. Components that are the same as those in FIG. 1 are indicated by the same symbols. The bubble forming jig 12 located immediately behind the distal end ejection part 4a of the guide 4 has a flat shape, and a plurality of gas ejection holes 13 are provided therein. This hole 1
3 is for making the gas sent from the guide 4 into fine bubbles 14, and in order to maintain uniformity in the overall amount of bubbles 14, the diameter of the hole becomes larger or the density of the hole increases as it moves away from the center. It is better to make it bigger. Of course, it is sufficient to simply provide a hole of an appropriate size. If a large amount of gas is sent, it may leak from the bottom 15 of the bubble forming jig 12, so it is better to keep the bottom 15 closed. Even when gas flows through such a structure, the bubbles 14 are formed finely and uniformly, and the bubbles 1 at the liquid level 6 are
There is little splashing of the liquefied organic metal due to the cracks in step 4, and thus stable and uniform vaporized organic metal can be sent to the next growth system.

第3図に本発明の他の実施例を示す。この場合
気体は従来と同じガイド4より送りこまれ、ガイ
ドの先端噴出部4aからは大きい気泡5が生じ
る。この上部に気泡制御板16を設置、そこに設
けられた無数の小さな孔17を介して小さな気泡
14が均一よく形成される。このことにより先程
の実施例と同じ様な効果がうまれる。制御板16
のボンベ1のすき間はそのすき間から大きなあわ
が生じてはよくないのでなるべく小さくする必要
がある。又この制御板16は小さな気泡14の形
成上複数枚設けてもよい。
FIG. 3 shows another embodiment of the invention. In this case, gas is fed through the same guide 4 as in the prior art, and large bubbles 5 are generated from the jetting portion 4a at the tip of the guide. A bubble control plate 16 is installed on top of this, and small bubbles 14 are uniformly formed through countless small holes 17 provided therein. This produces the same effect as the previous embodiment. control board 16
The gap between the cylinders 1 should be made as small as possible since it is not good for large bubbles to form from the gap. Further, a plurality of control plates 16 may be provided in order to form small air bubbles 14.

第4図にさらに他の実施例を示す。これはガイ
ドの先端噴出部4aのすぐ後に載置された気泡形
成治具12は多孔質製のもので形成されている。
これを用いることにより無数の小孔18より無数
の小さな気泡14が形成され、液面6の大きな揺
れもなく、従つて効率よくスムーズに気化された
有機金属をボンベ外部に送り出すことができる。
FIG. 4 shows yet another embodiment. This is because the bubble forming jig 12 placed immediately after the distal end jetting part 4a of the guide is made of a porous material.
By using this, innumerable small bubbles 14 are formed from innumerable small holes 18, and there is no large fluctuation of the liquid level 6, so that the vaporized organic metal can be efficiently and smoothly delivered to the outside of the cylinder.

これらの実施例において、ガイド4と気泡形成
治具12や制御板16は別物として説明したが、
ガイド4と治具は一体化で形成されたものでもも
ちろんよい。一体化の場合の例としてガイド4と
同径のものに複数個の孔を設け、ガイド4の下端
噴出部4aでL字接続したものつまりガイド4を
長めにし、下端噴出近傍に複数個の孔を設け、下
端噴出部4aを閉じ、L字に曲げたものでも同様
の効果を得ることができる。
In these embodiments, the guide 4, the bubble forming jig 12, and the control plate 16 were explained as being different.
Of course, the guide 4 and the jig may be formed integrally. As an example of integration, a guide 4 with the same diameter as the guide 4 has multiple holes, and is L-shaped connected at the lower end spout 4a of the guide 4. In other words, the guide 4 is made longer and multiple holes are provided near the lower end jet. The same effect can be obtained even if the lower end spout portion 4a is closed and bent into an L-shape.

以上の実施例から明らかなように、液化した有
機金属を気体をバブリングして気化した有機金属
を得る際に、そのバブリングの気泡を小さく、均
一にして液化有機金属の液面のゆれを抑え、その
バブリングする気体の流量に比例した量の気化し
た有機金属が得られ、又従来のような出口への液
の飛び出しもなくなり、極めて制御性よく気体化
した有機金属を成長炉に送れる。通常、
MOCVD成長に用いる有機金属の流量としては
約10-5モル/min程度であるが、本発明を用いる
ことにより、このオーダーの制御が比較的簡単に
行なえる。たとえば−V族化合物半導体の
MOCVD成長は、族の有機金属の供給律速反
応であるため族有機金属の気化ガスの成長系へ
の供給量によつて成長層の膜質(膜厚、組成)が
決定される。それ故本発明の方法にて制御性良く
均一な有機金属ガスを発生させることにより、エ
ピタキシヤル成長膜の膜厚や組成制御が極めて良
好かつ正確に可能となる。
As is clear from the above examples, when obtaining a vaporized organometal by bubbling gas through the liquefied organometal, the bubbles of the bubbling are made small and uniform to suppress fluctuations in the liquid level of the liquefied organometal. An amount of vaporized organic metal can be obtained in proportion to the flow rate of the bubbling gas, and there is no need for liquid to splash out to the outlet as in the conventional method, and the vaporized organic metal can be sent to the growth furnace with excellent controllability. usually,
The flow rate of the organic metal used in MOCVD growth is approximately 10 -5 mol/min, and by using the present invention, control on this order can be relatively easily performed. For example, -V group compound semiconductor
Since MOCVD growth is a rate-determining reaction of the supply of group organometallics, the film quality (thickness, composition) of the grown layer is determined by the amount of vaporized gas of group organometals supplied to the growth system. Therefore, by generating a uniform organometallic gas with good controllability using the method of the present invention, it becomes possible to control the thickness and composition of an epitaxially grown film extremely well and accurately.

たとえばGaAsのMOCVDを成長温度750℃、
76Torrの条件の下で行うに際し、有機金属とし
てのトリエチルガリウム〔TEG(T=15℃)〕に
本発明を用いて、300c.c./minのH2ガスをバブリ
ングし(モル濃度3×10-5モル/minとして)、
10/minのH2キヤリアガスで成長炉に送り込
み、60c.c./minのAsH3と混合してエピタキシヤ
ル成長を行うと、1.8μm/hrの成長速度で±1%
以内の膜厚バラツキで再現性良くGaAsエピタキ
シヤル膜が得られる。一方、従来法を用いると、
±5%以上の膜厚バラツキがあり、一たん液の飛
び出しがあると、以降小幅に成長速度が変動し、
成長膜厚の制御が困難となる。
For example, MOCVD of GaAs is performed at a growth temperature of 750°C.
When carrying out under the condition of 76 Torr, using the present invention, triethyl gallium [TEG (T = 15 °C)] as an organic metal was bubbled with H 2 gas at 300 c.c./min (molar concentration 3 × 10 -5 mol/min),
When epitaxial growth is performed by feeding H 2 carrier gas at 10/min into the growth furnace and mixing it with AsH 3 at 60 c.c./min, the growth rate is ±1% at a growth rate of 1.8 μm/hr.
GaAs epitaxial films can be obtained with good reproducibility with film thickness variations within On the other hand, using the conventional method,
If there is a film thickness variation of ±5% or more and some liquid jumps out, the growth rate will fluctuate slightly thereafter.
It becomes difficult to control the thickness of the grown film.

組成制御に関してGa1-xInxPを例に述べる。た
とえばGaAsに格子整合するGa1-xInxPのxは0.5
であり、このときの成長条件としては、成長温度
650℃、圧力76Torr、トリエチルガリウム
〔TEG(T=20℃)〕に本発明を用いて300c.c./
minのH2ガスをバブリングして30c.c./minの状態
とし、固体ソースから発生したトリメチルインジ
ウム〔TMI(T=25℃)〕40c.c./minとともに5
/minのH2キヤリアガスで成長炉に送り込み、
炉内でホスフイン(PH3)50c.c./minと混合し
て、基板回転10rpmで成長する。この方法でエピ
タキシヤル成長を行つたところ、組成バラツキは
x=0.5に対し±0.1%程度におさえることが可能
となつた。これは格子整合度合(Δa/a)に換
算すると、±1×10-4程度であり、良好な結晶が
再現性良く得られる。一方、従来の方法では±5
%以上(Δa/a>±3×10-3)のバラツキが生
じ、結晶の組成制御は困難となる。
Composition control will be described using Ga 1-x In x P as an example. For example, x of Ga 1-x In x P, which is lattice matched to GaAs, is 0.5
The growth conditions at this time are the growth temperature
650℃, pressure 76Torr, 300c.c./triethylgallium [TEG (T=20℃)] using the present invention
Min of H 2 gas was bubbled to a state of 30c.c./min, and trimethylindium [TMI (T = 25℃)] generated from a solid source was added to 40c.c./min.
/min of H2 carrier gas into the growth reactor,
It is mixed with phosphine (PH 3 ) at 50 c.c./min in a furnace and grown at a substrate rotation rate of 10 rpm. When epitaxial growth was performed using this method, it became possible to suppress compositional variations to about ±0.1% for x=0.5. When converted into a lattice matching degree (Δa/a), this is about ±1×10 −4 , and good crystals can be obtained with good reproducibility. On the other hand, with the conventional method, ±5
% or more (Δa/a>±3×10 −3 ), making it difficult to control the crystal composition.

本発明の気化容器の構造では、ガイド端部の直
下方から所望の気泡が噴出するのではなく、その
周辺に位置する噴出孔(気泡形成治具の噴出孔)
から噴出し、結果として気化容器内液面全域に広
がり、気化ガスの供給量は送り込む気体の多量、
少量にもかかわらず一段と制御しやすくなる。さ
らに、本発明においては、ガイドおよび気泡形成
治具はMOCVDに必要なステンレス本体ボンベ
とは別体であるため、ガイド、治具、ボンベより
なる気化装置の作成が容易であるとともに内部の
洗浄も極めて容易である。したがつて、特に不純
物の汚染のない高純度な気化ガスが必要とされる
MOCVD成長において、高品質なMOCVD成長
を行うに際し極めて有用である。又、ガイドの径
より広い領域に孔を開けることができるので孔を
多く開けることにより、より多数の気泡を形成で
きると共に、気体の通過面積の減少を抑えること
ができ気体を送りこむための送りこむ気体の圧力
が要らず、エピタキシヤル成長用の装置の操作性
は従来の装置と全く変わらない。
In the structure of the vaporization container of the present invention, the desired bubbles are not ejected from directly below the guide end, but rather from the ejection holes (the ejection holes of the bubble forming jig) located around the guide end.
As a result, it spreads over the entire liquid surface inside the vaporization container, and the amount of vaporized gas supplied is the same as the amount of gas being sent.
Despite the small amount, it becomes easier to control. Furthermore, in the present invention, the guide and bubble forming jig are separate from the stainless steel main cylinder required for MOCVD, so it is easy to create a vaporization device consisting of the guide, jig, and cylinder, and the inside can be cleaned. It's extremely easy. Therefore, a highly pure vaporized gas free from impurity contamination is particularly required.
In MOCVD growth, it is extremely useful when performing high quality MOCVD growth. In addition, since the holes can be made in an area wider than the diameter of the guide, by making more holes, a larger number of bubbles can be formed, and the reduction in the gas passage area can be suppressed. No pressure is required, and the operability of the epitaxial growth equipment is no different from that of conventional equipment.

実施例の気泡形成治具のらつぱ形状や制御板の
形状や孔の形状、大きさは問わないし、又ボンベ
の形状も問わないが、ボンベに充てんする液化有
機金属の充てん率が7〜8割程度とし、ボンベ内
の液面上部空胴部を十分にとることにより、更に
本発明の効果は大なるものとなる。
The shape of the bubble forming jig in the example, the shape of the control plate, the shape and size of the holes, and the shape of the cylinder do not matter, but if the filling rate of the liquefied organometallic to be filled into the cylinder is 7 to 7. The effect of the present invention will be further enhanced by setting the amount to about 80% and ensuring a sufficient cavity above the liquid level in the cylinder.

発明の効果 以上のように、本発明は、気体を導くガイドの
端部から外側に噴出孔を形成してここから気体を
噴出させるため、ステンレス容器内の液面全域に
均一な気泡を発生することができ、液化有機金属
のバブリングによる気泡の径を小さく、その密度
を均一にすることで制御よく外部に気化した高純
度な有機金属を気相エピタキシヤル成長炉内へ供
給することができ、従つてこれを用いた
MOCVD成長で膜厚や混晶化合物半導体(In1-x
GaxAsyP1-y、(AlxGa1-xyIn1-yP等)の族組成
比を比較的容易に制御でき、良好なエピタキシヤ
ル成長膜の形成が可能となる。本発明を用いた結
晶成長法であるMOCVD法は気泡形成治具をと
りかえるのみでよく、エピタキシヤル成長条件を
くずすことなく(操作性を変えることなく)、良
好な成長が可能となり、化合物半導体の量産化の
大きな可能性を秘めた成長方法であり、又本発明
は有機金属を不純物ドーピング制御にも使用で
き、半導体デバイス製造分野での工業的価値は極
めて高いものである。
Effects of the Invention As described above, the present invention forms a blowout hole outwardly from the end of the guide that guides the gas and blows out the gas from there, thereby generating uniform air bubbles over the entire liquid surface inside the stainless steel container. By reducing the diameter of the bubbles caused by bubbling of the liquefied organic metal and making the density uniform, it is possible to supply high-purity organic metal that has been vaporized to the outside in a well-controlled manner into the vapor phase epitaxial growth reactor. Therefore, this was used
MOCVD growth improves film thickness and mixed crystal compound semiconductor (In 1-x
The group composition ratio of Ga x As y P 1-y , (Al x Ga 1-x ) y In 1-y P, etc.) can be controlled relatively easily, and a good epitaxially grown film can be formed. The MOCVD method, which is a crystal growth method using the present invention, only requires replacing the bubble forming jig, and it enables good growth without changing the epitaxial growth conditions (without changing the operability), making it possible to improve the growth of compound semiconductors. This growth method has great potential for mass production, and the present invention can also be used to control impurity doping of organic metals, and has extremely high industrial value in the field of semiconductor device manufacturing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の有機金属の気化方法の概略構造
図、第2図、第3図、第4図は本発明の実施例の
気化方法に用いる気泡発生部の構造図である。 4……気体のガイド、4a……下端噴出部、6
……液面、7……空胴部、12……気泡形成治
具、13,17,19……噴出孔、16……制御
板。
FIG. 1 is a schematic structural diagram of a conventional organic metal vaporization method, and FIGS. 2, 3, and 4 are structural diagrams of a bubble generating section used in the vaporization method of an embodiment of the present invention. 4... Gas guide, 4a... Lower end spouting part, 6
. . . liquid level, 7 . . . cavity, 12 . . . bubble forming jig, 13, 17, 19 .

Claims (1)

【特許請求の範囲】 1 ステンレス製容器内に液化した有機金属を入
れ、前記容器内に、気体を液面下に導くガイドと
上記ガイドの端部下方より外側に位置しこのガイ
ドから出た前記気体を噴出させる複数個の気体噴
出孔を有する気泡形成治具を前記容器と別体に設
け、前記液化有機金属を前記気体を用いてバブリ
ングし、前記液化有機金属を、前記噴出孔より前
記気体を噴出させて気体化させ、前記気体化した
有機金属をエピタキシヤル成長炉に送ることを特
徴とする有機金属の気化方法。 2 治具が、気体を導入するガイドの噴出部の上
部に複数個の孔を有する制御板よりなることを特
徴とする特許請求の範囲第1項記載の有機金属の
気化方法。 3 治具が、らつぱ状に開いた形状でガイドの中
心から遠ざかるにつれ噴出孔の径が同じか大きい
ことを特徴とする特許請求の範囲第1項に記載の
有機金属の気化方法。 4 気泡形成治具に設けた噴出孔の密度が、中心
から遠ざかるにつれ大きくなることを特徴とする
特許請求の範囲第3項に記載の有機金属の気化方
法。 5 気泡形成治具の材質が多孔質製のものである
ことを特徴とする特許請求の範囲第1項に記載の
有機金属の気化方法。 6 ガイドと気泡形成治具が一体となつているこ
とを特徴とする特許請求の範囲第1項に記載の有
機金属の気化方法。
[Claims] 1. A liquefied organic metal is placed in a stainless steel container, and in the container there is a guide that guides the gas below the liquid surface, and a guide that guides the gas below the liquid surface, and a gas that is located outside the lower end of the guide and exits from the guide. A bubble forming jig having a plurality of gas ejection holes for ejecting gas is provided separately from the container, and the liquefied organic metal is bubbled using the gas, and the liquefied organic metal is ejected from the gas ejection holes. A method for vaporizing an organic metal, comprising: ejecting and gasifying the organic metal, and sending the gasified organic metal to an epitaxial growth furnace. 2. The organic metal vaporization method according to claim 1, wherein the jig comprises a control plate having a plurality of holes above the ejection part of the guide for introducing gas. 3. The organic metal vaporization method according to claim 1, wherein the jig has an open shape and the diameter of the ejection hole becomes the same or larger as it moves away from the center of the guide. 4. The organic metal vaporization method according to claim 3, wherein the density of the ejection holes provided in the bubble forming jig increases as the distance from the center increases. 5. The organic metal vaporization method according to claim 1, wherein the material of the bubble forming jig is porous. 6. The organic metal vaporization method according to claim 1, wherein the guide and the bubble forming jig are integrated.
JP23923883A 1983-12-19 1983-12-19 Method for vaporizing organometallic compound Granted JPS60131973A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23923883A JPS60131973A (en) 1983-12-19 1983-12-19 Method for vaporizing organometallic compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23923883A JPS60131973A (en) 1983-12-19 1983-12-19 Method for vaporizing organometallic compound

Publications (2)

Publication Number Publication Date
JPS60131973A JPS60131973A (en) 1985-07-13
JPH0379436B2 true JPH0379436B2 (en) 1991-12-18

Family

ID=17041794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23923883A Granted JPS60131973A (en) 1983-12-19 1983-12-19 Method for vaporizing organometallic compound

Country Status (1)

Country Link
JP (1) JPS60131973A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6283400A (en) * 1985-10-02 1987-04-16 Toyo Sutoufuaa Chem:Kk Method of improving cylinder for vapor growth of organometallic compound
ATE139580T1 (en) * 1989-09-26 1996-07-15 Canon Kk GAS SUPPLY DEVICE AND USE THEREOF FOR A FILM DEPOSITION SYSTEM
GB9929279D0 (en) * 1999-12-11 2000-02-02 Epichem Ltd An improved method of and apparatus for the delivery of precursors in the vapour phase to a plurality of epitaxial reactor sites
EP1329540A3 (en) * 2000-07-03 2003-11-05 Epichem Limited An apparatus for the delivery of precursors in the vapour phase to epitaxial reactor sites
US7967911B2 (en) * 2006-04-11 2011-06-28 Applied Materials, Inc. Apparatus and methods for chemical vapor deposition
TW201040306A (en) * 2009-03-11 2010-11-16 Air Liquide Bubbling supply system for stable precursor supply

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5812827Y2 (en) * 1978-07-21 1983-03-11 日本電気株式会社 Saturator for vapor phase growth

Also Published As

Publication number Publication date
JPS60131973A (en) 1985-07-13

Similar Documents

Publication Publication Date Title
US4533410A (en) Process of vapor phase epitaxy of compound semiconductors
JP3222518B2 (en) Liquid source vaporizer and thin film forming device
JP4789126B2 (en) Equipment for providing vaporized organometallic compounds to chemical vapor deposition systems
US4993357A (en) Apparatus for atomic layer epitaxial growth
US4800173A (en) Process for preparing Si or Ge epitaxial film using fluorine oxidant
US6475563B2 (en) Method for forming a thin film using a gas
JP2001115263A (en) Bubbler having two frits
JPH0379436B2 (en)
JPWO2008035632A1 (en) GaN thin film template substrate manufacturing method, GaN thin film template substrate, and GaN thick film single crystal
US5821155A (en) Method of growing n-type III-V semiconductor materials on a substrate using SiI4
JP6744347B2 (en) Method for manufacturing semiconductor device
US11492726B2 (en) Method of feeding gases into a reactor to grow epitaxial structures based on group III nitride metals and a device for carrying out said method
EP0555614A1 (en) Metal-organic gas supply for MOVPE and MOMBE
JP3472976B2 (en) Method and apparatus for forming group III nitride semiconductor
Ishizaki et al. Atomic layer epitaxy of AlAs and (AlAs) n (GaAs) s
JPH0760800B2 (en) Vapor growth method for compound semiconductors
JPS55167199A (en) Vapor phase epitaxial growing apparatus
JPH11126754A (en) Gaseous-phase growing method of organic metal
JPH0425239B2 (en)
JP2878462B2 (en) Cylinder container for organometallic compound vaporizer
JP2952831B2 (en) Method for manufacturing semiconductor device
JPH1067593A (en) Metal organic chemical vapor deposition apparatus
JPH11121386A (en) Vapor phase growth system of gallium nitride based compound semiconductor
JPH06314658A (en) Vapor growing apparatus
JPH03232221A (en) Vapor growth method for compound semiconductor