JPS60131414A - Detecting method of position of object to be measured - Google Patents

Detecting method of position of object to be measured

Info

Publication number
JPS60131414A
JPS60131414A JP24023383A JP24023383A JPS60131414A JP S60131414 A JPS60131414 A JP S60131414A JP 24023383 A JP24023383 A JP 24023383A JP 24023383 A JP24023383 A JP 24023383A JP S60131414 A JPS60131414 A JP S60131414A
Authority
JP
Japan
Prior art keywords
reflected signal
ultrasonic wave
measured
hole
wave transmitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24023383A
Other languages
Japanese (ja)
Inventor
Hisanori Otsuki
大槻 寿則
Teruo Maruyama
照雄 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP24023383A priority Critical patent/JPS60131414A/en
Publication of JPS60131414A publication Critical patent/JPS60131414A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B17/00Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations

Abstract

PURPOSE:To detect the position of a small-diameter hole at a high speed with high precision by detecting a center position in one axial direction from a reflected signal obtained by varying the relative position relation with an ultrasonic wave transmitting and receiving element and a center position in the other axial direction from plural ultrasonic transmitting and receiving elements. CONSTITUTION:While an ultrasonic wave transmitting and receiving element 53A sends an ultrasonic wave of specific frequency to an objective body 54, a reflected signal from the objective body 54 is stored in a memory 58. Then, it is transferred to a CPU61 through an interface control unit 59 to detect and store the level PA of the reflected signal 68 from the objective body 54. Further, ultrasonic wave transmitting and receiving elements 53B and 53C transmit an ultrasonic wave of specific frequency to the objective 54 and the levels PB and PC of reflected signals from the objective body 54 are stored. The center position of a hole 65 in an X-axial direction is detected on the basis of the level of the reflected signal 68 from the objective 54. Then the Y-axial center position of the hole 65 is detected on the basis of the levels P1, P2, and P3 of reflected signals from the hole 65.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は超音波を利用した被測定物の位置検出方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for detecting the position of an object to be measured using ultrasonic waves.

従来例の構成とその問題点 従来の被測定物の形状検出方法としては超音波送受波素
子を被測定物に対して回転走査して得られた反射信号強
度から、被測定物の位置と姿勢を検出するものがあ□る
。以下その内容の概略を説明する。
Conventional configuration and its problems The conventional method for detecting the shape of an object to be measured is to detect the position and orientation of the object from the reflected signal strength obtained by rotating and scanning an ultrasonic transceiver element with respect to the object. There are things that detect □. The outline of the contents will be explained below.

第1図は従来の装置の概略の構成を示すシステム図であ
る。第2図は従来の装置を用いた位置検出を示す斜視図
であ不。第1図において超音波送受波素子1に第3図に
示す高電圧パルス17を印加すると空気中に所定の周波
数の超音波パルスが発射される。この超音波共ルスが第
2図の対象物体13で反射され、対象物体13の各辺1
4,15゜16からの反射信号が超音波送受波素子1に
到達し、受波信号増巾器3で増幅された後、アナログ−
デジタル変換されてメモリ6に記憶される。第3図は、
メモリ5に記憶された超音波送受波素子1の動作波形を
示すもので、 それぞれ対象物体13の各辺14,15,16からの反
射信号を示す。メモリ5に記憶された反射信号は小型電
子計算機6に転送され、第3図に示した反射信号37.
38,390伝播時間40゜41.42及び反射信号強
度43,44.45を検出している。
FIG. 1 is a system diagram showing the general configuration of a conventional device. FIG. 2 is a perspective view showing position detection using a conventional device. In FIG. 1, when a high voltage pulse 17 shown in FIG. 3 is applied to the ultrasonic transceiver element 1, an ultrasonic pulse of a predetermined frequency is emitted into the air. This ultrasonic beam is reflected by the target object 13 in FIG.
The reflected signal from 4, 15° 16 reaches the ultrasonic transceiver element 1, is amplified by the receiving signal amplifier 3, and then is converted into an analog signal.
It is digitally converted and stored in the memory 6. Figure 3 shows
It shows the operating waveforms of the ultrasonic transceiver element 1 stored in the memory 5, and shows the reflected signals from each side 14, 15, 16 of the target object 13, respectively. The reflected signal stored in the memory 5 is transferred to a small electronic computer 6, and the reflected signal 37. shown in FIG.
38,390 propagation time 40°41.42 and reflected signal strength 43,44.45 are detected.

また、第2図において超音波送受波素子1は、小型電子
計算機6からの制御信号によりパルスモークドライバ1
1とパルスモータ1Oを介して矢印A、B方向に回転走
査する構成となっており、超音波送受波素子1を所定の
角度でヌテノグしながら前述の被測定物間で反射信号の
伝播時間及び強度の検出を行なっている。第4図は、超
音波送受波素子1を回転走査させた時の被測定物13か
らの反射信号強度を横軸に超音波送受波素子の回転角、
縦軸に反射信号強度をとってプロットしたものである。
In addition, in FIG.
1 and a pulse motor 1O in the directions of arrows A and B. While the ultrasonic transceiver element 1 is rotated at a predetermined angle, the propagation time of the reflected signal and the Detecting the intensity. FIG. 4 shows the rotation angle of the ultrasonic wave transmitting/receiving element, with the horizontal axis representing the intensity of the reflected signal from the object 13 when the ultrasonic wave transmitting/receiving element 1 is rotated and scanned.
The reflected signal intensity is plotted on the vertical axis.

46,47.48はそれぞれ被測定物13の各辺14.
 15.16からの反射信号を整理したものであシ、そ
れぞれの反射信号強度が最大となるときの超音波送受波
素子1の回転走査角度から被測定物13の各辺1411
6.16の方向を検出している。また前述の反射信号の
伝播時間から被測定物の各辺までの距離が得られるので
被測定物13の各辺13,14.15の座標をめること
ができ、被測定物13の位置を検出することができる。
46, 47, and 48 are each side 14 of the object to be measured 13, respectively.
15. The reflected signals from 16 are organized, and each side 1411 of the object to be measured 13 is calculated from the rotational scanning angle of the ultrasonic transceiver element 1 when the intensity of each reflected signal is maximum.
6.16 direction is detected. Furthermore, since the distance to each side of the object to be measured can be obtained from the propagation time of the reflected signal mentioned above, the coordinates of each side 13, 14, 15 of the object to be measured 13 can be determined, and the position of the object to be measured 13 can be determined. can be detected.

しかしながら、従来の位置検出装置を穴の位置検出に適
用した場合、大径穴ではその位置検出が可能であるが、
小径穴では、穴の各辺からの反射信号が重畳されるので
、超音波送受波素子の減衰性を大幅に向上しないと、位
置検出ができないという問題点があった。さらに従来例
を用いて大径穴の位置検出を行なう場合には、超音波送
受波素子1を2軸方向に回転走査する必要があシ大径穴
の高速位置検出をはかる上で大きな問題点になっていた
However, when a conventional position detection device is applied to detect the position of a hole, it is possible to detect the position of a large diameter hole;
In a small diameter hole, reflected signals from each side of the hole are superimposed, so there is a problem that position detection cannot be performed unless the attenuation of the ultrasonic wave transmitting/receiving element is significantly improved. Furthermore, when detecting the position of a large-diameter hole using the conventional example, it is necessary to rotate and scan the ultrasonic wave transmitting/receiving element 1 in two axes, which is a major problem in high-speed position detection of a large-diameter hole. It had become.

発明の目的 本発明は、上述の欠点をなくし、/J\径大の位置を高
速高精度で検出する位置検出方法を提供することを目的
とする。
OBJECTS OF THE INVENTION It is an object of the present invention to eliminate the above-mentioned drawbacks and to provide a position detection method for detecting a large diameter position at high speed and with high accuracy.

発明の構成 本発明は一方及びこれに直交する他方の軸方向に所定の
間隔を設けて配置した複数個の超音波送受波素子と被測
定物の相対位置関係を前記一方の軸方向に変化させて前
記超音波送受波素子により順次超音波を送受波して得ら
れた前記被測定物からの反射信号強度の複数個の極小値
から前記被測定物の一方の軸方向の中心位置を検出する
工程と、前記複数個の極小値の極小値から前記被測定物
の他方の軸方向の中心位置を検出する工程により、前記
被測定物の位置検出を高速、高精度で行なう方法を得る
ものである。
Structure of the Invention The present invention changes the relative positional relationship of a plurality of ultrasonic wave transmitting/receiving elements arranged at predetermined intervals in one axis direction and the other axis perpendicular thereto, and a measured object in the one axis direction. detecting the central position of the object to be measured in one axial direction from a plurality of minimum values of the reflected signal intensity from the object to be measured, which are obtained by sequentially transmitting and receiving ultrasonic waves using the ultrasonic wave transmitting/receiving element; and detecting the center position of the other axial direction of the object to be measured from the minimum value of the plurality of minimum values, thereby obtaining a method for detecting the position of the object to be measured at high speed and with high accuracy. be.

実施例の説明 以下本発明の一実施例について、図面を参照しながら説
明する。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

第5甲は本発明の一実施例における被測定物の位置検出
装置の概略を示すシヌテム図である。第5図において、
5Oは被測定物と超音波送受波素子53A、63.B、
53Cの相対位置関係を変化させる手段(以下マニピュ
レータという。)であり、データ処理制御装置51から
の制御信号によりマニピュレータ制御装置62を介して
動作を制御している。また超音波送受波素子53ム、5
3B。
5A is a synumatic diagram schematically showing a position detection device for an object to be measured in an embodiment of the present invention. In Figure 5,
5O indicates the object to be measured and the ultrasonic transceiver elements 53A, 63. B,
53C (hereinafter referred to as a manipulator), and its operation is controlled via a manipulator control device 62 in response to a control signal from the data processing control device 51. In addition, ultrasonic wave transmitting/receiving elements 53 and 5
3B.

53Gはマニピュレータ5○上に第6図に示すように設
置されている。
53G is installed on the manipulator 5○ as shown in FIG.

超音波送受波素子53A、53B、53Gは、発振器5
5により選択され、順次所定の周波数の超音波を対象物
体64に向けて送波し、またその反射信号を受波してい
る。超音波送受波素子53453B、5scが出力する
受波信号は受波信号増幅器56を経て、アナログ−デジ
タル変換器57(以下ム/D変換器という。)によって
デジタル値に変換され、メモリ58に記憶される。さら
にデータ処理制御装置51が設けられるが、このデータ
処理制御装置51はインクフェイスコントロー /L/
 j−ニット59 (以下X GUという。)・フロッ
ピディスクドライブ装置60(以下FDDという。)お
よび小型電子計算機61 (以下CPUという。)から
構成される。ICU39はFDD6○およびCPU61
に接続されるとともに、前述の発振器55とメモIJ5
qに接続される。FDD60は本位置検出装置を用いて
位置検出を行なうためのプログラム或いは諸条件を入力
する。このデータ処理制御装置61においては、超音波
送受波素子53 A、53 B、53 Ciを選択する
だめの制御信号の出力5発振器55を動作させるための
制御信号の出力、マニピュレータ50の動作を制御する
マニピュレータ制御装置52への制御信号の出力を行な
うとともにメモリ58から転送された入力データの前処
理を行ない、FDDeoから予め入カスドアされたプロ
グラムに従ってCPU61で反射信号強度の検出、被測
定物の位置の演算処理、マニピュレータ60の移動量の
演算処理を行なう。
The ultrasonic transceiver elements 53A, 53B, and 53G are the oscillator 5
5, the ultrasonic waves of predetermined frequencies are sequentially transmitted toward the target object 64, and the reflected signals thereof are received. The received signals output by the ultrasonic transmitting/receiving elements 53453B and 5sc pass through the received signal amplifier 56, are converted into digital values by the analog-to-digital converter 57 (hereinafter referred to as MU/D converter), and are stored in the memory 58. be done. Furthermore, a data processing control device 51 is provided, and this data processing control device 51 is an ink face control /L/
It consists of a J-nit 59 (hereinafter referred to as XGU), a floppy disk drive device 60 (hereinafter referred to as FDD), and a small electronic computer 61 (hereinafter referred to as CPU). ICU39 has FDD6○ and CPU61
is connected to the oscillator 55 and the memo IJ5.
Connected to q. The FDD 60 inputs a program or various conditions for performing position detection using this position detection device. This data processing control device 61 outputs a control signal for selecting the ultrasonic transceiver elements 53 A, 53 B, and 53 Ci, outputs a control signal for operating the oscillator 55, and controls the operation of the manipulator 50. At the same time, the input data transferred from the memory 58 is preprocessed, and the CPU 61 detects the intensity of the reflected signal and determines the position of the object to be measured according to the program input from FDDeo in advance. , and the amount of movement of the manipulator 60.

次に上記のように構成した位置検出装置の動作を藤明す
る。なお本実施例では、第6図に示す対象物体54と超
音波送受波素子53 A、53 B。
Next, Fujiaki will explain the operation of the position detection device configured as described above. In this embodiment, a target object 54 and ultrasonic wave transmitting/receiving elements 53A and 53B shown in FIG.

53Cの距離が100語、対象物体54上の被測定物6
5(以下穴という)の直径が5uで、超音波送受波素子
63A、53B、53Gの送受波面は対象物体54に対
向しておシ、また超音波送受波素子53 A、53 B
、53 CのY軸方向の間隔は3Bで超音波送受波素子
53A、53B、53Gを対象物体54に対して2路の
ステップで平行に説明する。
53C distance is 100 words, measured object 6 on target object 54
5 (hereinafter referred to as a hole) has a diameter of 5u, and the wave transmitting/receiving surfaces of the ultrasonic wave transmitting/receiving elements 63A, 53B, 53G face the target object 54, and the ultrasonic wave transmitting/receiving elements 53A, 53B
, 53C in the Y-axis direction is 3B, and the ultrasonic wave transmitting/receiving elements 53A, 53B, 53G are explained in parallel to the target object 54 in two steps.

位置検出はFDD60から予め入カスドアされた第7図
のフローチャートに示す位置検出プログラムの手順に従
って行なわれる。第7図のフローチャ〜1・において、
まずステップ1でデータ処理制御装置51からの制御信
号によシマニピュレータ制御装置52を介してマニピュ
レータ5oを駆動して超音波送受波素子53ム、53B
、630をセンシング開始位置に移動する。
The position detection is carried out according to the procedure of the position detection program shown in the flowchart of FIG. 7, which is preloaded from the FDD 60. In flowchart ~1 in Figure 7,
First, in step 1, the manipulator 5o is driven by the control signal from the data processing control device 51 via the shim manipulator control device 52, and the ultrasonic wave transmitting/receiving elements 53 and 53B are
, 630 to the sensing start position.

第6図において62ム、62B、62Cij:それぞれ
超音波送受波素子53ム、53B、53Gから送波され
る超音波ビームの中心位置を示す。また6 3 A、6
3 B、63 Gはセンシング開始時の、また64人、
64B、64Gはセンシング完了時の超音波送受波素子
53人、53B、53Gから送波される超音波ビームの
中心位置と対象物体54の交点を示し、センシングはこ
の区間内で行なわれる。
In FIG. 6, 62mm, 62B, and 62Cij indicate the center positions of the ultrasonic beams transmitted from the ultrasonic wave transmitting/receiving elements 53mm, 53B, and 53G, respectively. Also 6 3 A, 6
3 B, 63 G are 64 people at the start of sensing,
64B and 64G indicate the intersection of the center position of the ultrasonic beam transmitted from the ultrasonic transmitting/receiving elements 53, 53B, and 53G and the target object 54 when sensing is completed, and sensing is performed within this section.

なお本実施例ではX軸方向のセンシング区間は1QwI
Lである。
In this embodiment, the sensing section in the X-axis direction is 1QwI.
It is L.

次にステップ2でデータ処理制御装置51からの制御信
号により発振器66を動作させ超音波送受波素子53A
で所定の周波数の超音波を対象物体54に向けて送波す
ると同時に、A/D変換器67、メモリ68を動作させ
て、対象物体64からの反射信号をメモリ58に記憶す
る。第8図にはメモリ58に記憶された反射信号を示す
。68は対象物体54からの反射信号を示す。
Next, in step 2, the oscillator 66 is operated by the control signal from the data processing control device 51, and the ultrasonic wave transmitting/receiving element 53A is operated.
At the same time, the A/D converter 67 and the memory 68 are operated to store the reflected signal from the target object 64 in the memory 58. FIG. 8 shows the reflected signal stored in the memory 58. Reference numeral 68 indicates a reflected signal from the target object 54.

次にメモリ68に記憶された反射信号をICU39を介
してCPU61に転送する。CPU61でi予めFDD
60から入カスドアされているプログラムに従って対象
物体64からの反射信号68の反射信号強度2人を検出
し記憶しておく。
Next, the reflected signal stored in the memory 68 is transferred to the CPU 61 via the ICU 39. FDD in advance with CPU61
In accordance with the program installed from 60, the reflected signal intensities of the reflected signal 68 from the target object 64 are detected and stored.

次にステップ3,4では上述のステップ2と同様にそれ
ぞれ超音波送受波素子53B、53Gで所定の周波数の
超音波を対象物体64に向けて送波し対象物体54から
の反射信号の反射信号強度PR+PCを記憶しておく。
Next, in steps 3 and 4, similarly to step 2 above, ultrasonic waves of a predetermined frequency are transmitted toward the target object 64 by the ultrasonic wave transmitting/receiving elements 53B and 53G, respectively, and a reflected signal of the reflected signal from the target object 54 is transmitted. Memorize the strength PR+PC.

次にステップ6では所定のセンシング回数を完了してい
なければマニピュレータ6oを矢印入方向へ2訳移動し
て、上記ステップ2.ステツプ3゜ステップ4を繰返す
。所定のセンシング回数(本実施例では5回)を完了す
ればステップ6へ進む。
Next, in step 6, if the predetermined number of sensing has not been completed, the manipulator 6o is moved in the direction of the arrow, and step 2. Step 3 - Repeat step 4. When the predetermined number of sensing operations (5 times in this embodiment) is completed, the process proceeds to step 6.

ステップ6では、上記ステップ2.ステップ3゜ステッ
プ4を繰返して得られた対象物体64からの反射信号6
8の反射信号強度をもとにして穴65のX軸方向の中心
位置を検出する。第9図は超音波送受波素子53Aを矢
印入方向に平行走査した時の対象物体64からの反射信
号強度を、横軸に超音波送受波素子53ムの平行走査量
、縦軸に反射信号強度をとってプロットしたものであシ
、CPU61では、FDD60から予め入力ヌトアされ
たプログラムに従って平行走査して得られた反射信号強
度について2次回帰を用いた補間処理を行ない反射信号
強度の極小値およびこの時の超音波送受波素子63Aの
平行走査量を検出する。
In step 6, step 2. Step 3゜Reflection signal 6 from target object 64 obtained by repeating step 4
The center position of the hole 65 in the X-axis direction is detected based on the reflected signal strength of 8. FIG. 9 shows the intensity of the reflected signal from the target object 64 when the ultrasonic transmitting/receiving element 53A is parallel scanned in the direction of the arrow, the horizontal axis is the amount of parallel scanning of the ultrasonic transmitting/receiving element 53A, and the vertical axis is the reflected signal. The CPU 61 performs an interpolation process using quadratic regression on the reflected signal intensity obtained by parallel scanning according to a program inputted in advance from the FDD 60, and calculates the minimum value of the reflected signal intensity. And the amount of parallel scanning of the ultrasonic wave transmitting/receiving element 63A at this time is detected.

第9図において69は2次回帰を用いた補間処理結果で
オシ曲線69の頂点から反射信号強度の極小値P1は2
1900mV、またこの時の超音波送受波素子53Aの
平行走査量は6Mとなる。穴65のX軸方向の中心位置
は、前述の超音波送受波素子53Aのセンシング開始位
置のX座標に上記平行走査量(6謬)を加えることによ
シ検出できる。
In FIG. 9, 69 is the result of interpolation processing using quadratic regression, and the minimum value P1 of the reflected signal intensity from the apex of the oscillator curve 69 is 2.
1900 mV, and the parallel scanning amount of the ultrasonic wave transmitting/receiving element 53A at this time is 6M. The center position of the hole 65 in the X-axis direction can be detected by adding the above-mentioned parallel scanning amount (6 points) to the X-coordinate of the sensing start position of the ultrasonic wave transmitting/receiving element 53A.

さらに同様にして超音波送受波素子53B、53Gを矢
印A方向に平行走査した時の対象物体54がらの反射信
号強度の極小値P2.P3、またこの時の超音波送受波
素子53B、53Gの平行走査量を検出する。本実施例
では極小値P2は7○O(mV)、P3は1,300(
mV)であった。また、平行走査量はそれぞれ6鶴であ
った。
Further, in the same manner, the minimum value P2 of the reflected signal intensity from the target object 54 when the ultrasonic wave transmitting/receiving elements 53B and 53G are scanned in parallel in the direction of arrow A. P3, and the amount of parallel scanning of the ultrasonic wave transmitting/receiving elements 53B and 53G at this time is also detected. In this example, the minimum value P2 is 7○O (mV), and P3 is 1,300 (
mV). Moreover, the parallel scanning amount was 6 cranes each.

つぎにステップ7では、前述のステップ6で得られた穴
65からの反射信号強度P1.P2.P5をもとにして
穴65のY軸方向の中心位置を検出する。
Next, in step 7, the intensity of the reflected signal from the hole 65 obtained in step 6 described above is P1. P2. The center position of the hole 65 in the Y-axis direction is detected based on P5.

第10図は、超音波送受波素子s 3 A、53 B。FIG. 10 shows ultrasonic wave transmitting/receiving elements s3A, 53B.

SaCを矢印A方向に平行走査した時の穴65を含む対
象物体64からの反射信号強度を、横軸に、超音波送受
波素子63 A、53 B、53 Cの平行走査時のY
軸位置、縦軸に反射信号強度の極小値をとってプロット
したものである。
The horizontal axis represents the reflected signal intensity from the target object 64 including the hole 65 when the SaC is scanned in parallel in the direction of arrow A, and Y when the ultrasonic transceiver elements 63 A, 53 B, and 53 C are scanned in parallel.
The axis position is plotted with the minimum value of the reflected signal intensity taken on the vertical axis.

CPU61ではFDD60から予め入カスドアされたプ
ログラムに従って反射信号強度の極小値Pj + P2
 r P5について2次回帰を用いた補間処理を行ない
反射信号強度の極小値P4を検出する。
The CPU 61 calculates the minimum value Pj + P2 of the reflected signal strength according to the program input from the FDD 60 in advance.
An interpolation process using quadratic regression is performed on rP5 to detect the minimum value P4 of the reflected signal strength.

第10図において76は補間結果であ多曲線75の頂点
から反射信号強度の極小値P4はs o o mV、ま
たこの時の超音波送受波素子63ムの平行走査時のY軸
位置は4跋であることを検出した。穴65のY軸方向の
中心位置は前述の超音波送受波素子53Aのセンシング
開始位置のX座標に上記Y軸位置を加えることによυ検
出できた。
In FIG. 10, 76 is the interpolation result, and the minimum value P4 of the reflected signal intensity from the apex of the polygonal curve 75 is s o o mV, and the Y-axis position of the ultrasonic transceiver element 63 during parallel scanning at this time is 4. It was detected that the virus was infected. The center position of the hole 65 in the Y-axis direction could be detected by adding the Y-axis position to the X coordinate of the sensing start position of the ultrasonic wave transmitting/receiving element 53A.

また穴65のX軸方向の中心位置は、超音波送受波素子
53A、53B、53Gのセンシングで得たそれぞれの
反射信号強度が極小値を示す時の超音波送受波素子53
Aの平行走査量の平均値(本実施例では6鮪)に前述の
超音波送受波素子53Aのセンシング開始位置のX座標
に上記平行走査量の平均値を加えることにより検出でき
、第11図に示す穴65の中心位置0.を検出すること
ができた。
Further, the center position of the hole 65 in the X-axis direction is the position of the ultrasonic wave transmitting/receiving element 53 when the intensity of each reflected signal obtained by sensing the ultrasonic wave transmitting/receiving elements 53A, 53B, and 53G shows a minimum value.
It can be detected by adding the average value of the parallel scan amount of A (6 tuna in this example) to the X coordinate of the sensing start position of the ultrasonic wave transmitting/receiving element 53A, as shown in FIG. The center position of the hole 65 shown in 0. was able to be detected.

以上のように本実施例によれば、穴66を有する対象物
体64に超音波送受波素子63A、63B。
As described above, according to this embodiment, the ultrasonic wave transmitting/receiving elements 63A and 63B are attached to the target object 64 having the hole 66.

53Ciを用いて超音波を送受波して走査することによ
シ得られる反射信号強度について補間処理を行ない極小
値P1r P2 p P3を検出してさらにこれらの極
小値P4から穴65のY軸方向の中心位置を検出し、ま
た、それぞれの平行走査において、反射信号強度が極小
値を示すときの超音波送受波素子63の平行走査量の平
均値を検出することで穴65の中心位置○1を検出する
ことができ、本実施例ではそれぞれ0.05mの高い位
置精度が3.5にられた。
53Ci is used to transmit and receive ultrasonic waves for scanning, interpolation processing is performed on the reflected signal intensity to detect the minimum values P1r, P2, p, and P3, and further, from these minimum values P4, the Y-axis direction of the hole 65 is determined. By detecting the center position of the hole 65 and also detecting the average value of the parallel scanning amount of the ultrasonic wave transmitting/receiving element 63 when the reflected signal intensity shows the minimum value in each parallel scan, the center position of the hole 65 ○1 can be detected, and in this example, a high positional accuracy of 0.05 m was achieved at 3.5.

さらにセンシング区間(x、y軸共に±5m)に対して
穴65の位簡を検出するだめのセンシング回数は15回
と従来例に比して大巾に低減され高速で穴位置検出を行
なうことができた。
Furthermore, the number of sensing times required to detect the position of the hole 65 in the sensing section (±5 m for both x and y axes) is 15 times, which is significantly reduced compared to the conventional example, and the hole position can be detected at high speed. was completed.

なお本実施例では超音波送受波素子53人。In this example, there are 53 ultrasonic wave transmitting and receiving elements.

53B、53Gのスキャン開始位置のX座標は同一とし
たが、本実施例よシもさらに小径穴を検出する場合に超
音波送受波素子の配置が困難であれば差異を生じてもよ
く、検出した中心位置にセンシング開始位置を加えるこ
とによシ、穴の中心位置を検出できる。
Although the X coordinates of the scan start positions of 53B and 53G are the same, in this embodiment as well, if it is difficult to arrange the ultrasonic transmitting/receiving element when detecting a small diameter hole, a difference may occur. By adding the sensing start position to the calculated center position, the center position of the hole can be detected.

発明の効果 以上のように本発明は、被測定物に対して超音波を送受
波すると同様に超音波送受波素子と被測定物の相対位置
関係を変化して得られた反射信号強度の極小値から前記
被測定物の一方の軸方向の中心位置を検出し、さらに複
数個の超音波送受波素子と前記被測定物の相対位置関係
を変化して得られた反射信号強度の複数個の極小値の極
小値を検出して前記被測定物の他方の軸方向の中心位置
を検出して前記被測定物の中心位置を検出するので高速
高精度の小径穴位置検出方法をうろことができ、その実
用的効果は大々るものがある。
Effects of the Invention As described above, the present invention can reduce the minimum reflected signal intensity obtained by changing the relative positional relationship between the ultrasonic wave transmitting/receiving element and the object to be measured, as well as transmitting and receiving ultrasonic waves to and from the object to be measured. The central position of one of the axial directions of the object to be measured is detected from the value, and the relative positional relationship between the plurality of ultrasonic wave transmitting/receiving elements and the object to be measured is changed. Since the center position of the object to be measured is detected by detecting the minimum value of the minimum value and detecting the center position of the other axial direction of the object to be measured, the method of detecting the position of a small diameter hole with high speed and high accuracy can be performed. , its practical effects are enormous.

【図面の簡単な説明】 第1図は従来の被測定物の形状検出装置の概略の構成を
示すシステム図、第2図は従来の装置の斜視図、第3図
は従来の装置の動作波形を示す図、第4図は従来の装置
の動作波形を整理した図、第5図は本発明の一実施例に
おける被測定物の位置検出装置の概略の構成を示すシス
テム図、第6図は同装置の斜視図、第7図は穴位置検出
のためのプログラムの一例を示すフローチャート図、第
8図は穴位置検出装置の動作波形を示す図、第9図は動
作波形及び補間処理結果を示す図、第10図は穴に対し
超音波送受波素子をY軸方向に相対位置関係を変化した
時の変化量と反射信号強度の極小値の関係を示す図、第
11図は穴のY軸方向の中心位置検出方法の説明図であ
る。 53A、53B、53G・・・・・・超音波送受波素子
、65・・・・・穴、6o・・・・・・マニピュレータ
。 代理人の氏名 弁理士 中 尾 敏 男 ほか1基筒 
1 図 第3図 第 4 図 #船夾討凌#3稽転麦査向(釦 第5図 第6図 第7図 扼 8 図 第9図 しi哩η〉ンjう〉ステl−すの平オj鱈き禰iff(
mlガ]第10図 第11図
[Brief Description of the Drawings] Fig. 1 is a system diagram showing the general configuration of a conventional device for detecting the shape of an object to be measured, Fig. 2 is a perspective view of the conventional device, and Fig. 3 is an operating waveform of the conventional device. FIG. 4 is a diagram illustrating the operating waveforms of a conventional device, FIG. 5 is a system diagram showing a schematic configuration of a position detection device for an object to be measured in an embodiment of the present invention, and FIG. A perspective view of the device, FIG. 7 is a flowchart showing an example of a program for hole position detection, FIG. 8 is a diagram showing operating waveforms of the hole position detecting device, and FIG. 9 is a diagram showing operating waveforms and interpolation processing results. Figure 10 is a diagram showing the relationship between the amount of change and the minimum value of reflected signal intensity when the relative position of the ultrasonic transceiver element to the hole is changed in the Y-axis direction, and Figure 11 is a diagram showing the relationship between the minimum value of the reflected signal intensity and the Y axis of the hole. FIG. 3 is an explanatory diagram of a method for detecting the center position in the axial direction. 53A, 53B, 53G... Ultrasonic wave transmitting/receiving element, 65... Hole, 6o... Manipulator. Name of agent: Patent attorney Toshio Nakao and 1 other person
1 Figure 3 Figure 4 Figure #3 Ship investigation (Button 5 Figure 6 Figure 7) 8 Figure 9 No Taira Oj Cod Nene iff (
ml] Figure 10 Figure 11

Claims (1)

【特許請求の範囲】[Claims] 一方及びこれに直交する他方の軸方向に所定の間隔を設
けて配置した複数個の超音波送受波素子と被測定物の相
対位置関係を前記一方の軸方向に変化させて前記超音波
送受波素子により順次超音波を送受波して得られた前記
被測定物からの反射信号強度の複数個の極小値か・ら前
記被測定物の一方の軸方向の中心位置を検出する工程と
、前記複数個の極小値の極小値から前記被測定物の他方
C軸方向の中心位置を検出する工程からなる被測定物の
位置検出方法。
A plurality of ultrasonic wave transmitting/receiving elements arranged at predetermined intervals in one axis direction and the other axis perpendicular thereto, and the relative positional relationship of the object to be measured is changed in the one axis direction to transmit and receive the ultrasonic waves. detecting the central position of one of the axial directions of the object to be measured from a plurality of minimum values of the reflected signal intensity from the object to be measured obtained by sequentially transmitting and receiving ultrasonic waves by the element; A method for detecting the position of an object to be measured, comprising the step of detecting the center position of the object to be measured in the other C-axis direction from a minimum value of a plurality of minimum values.
JP24023383A 1983-12-20 1983-12-20 Detecting method of position of object to be measured Pending JPS60131414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24023383A JPS60131414A (en) 1983-12-20 1983-12-20 Detecting method of position of object to be measured

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24023383A JPS60131414A (en) 1983-12-20 1983-12-20 Detecting method of position of object to be measured

Publications (1)

Publication Number Publication Date
JPS60131414A true JPS60131414A (en) 1985-07-13

Family

ID=17056427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24023383A Pending JPS60131414A (en) 1983-12-20 1983-12-20 Detecting method of position of object to be measured

Country Status (1)

Country Link
JP (1) JPS60131414A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2771502A1 (en) * 1997-11-24 1999-05-28 Intercontrole Sa Determination of the separation between two immersed objects

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2771502A1 (en) * 1997-11-24 1999-05-28 Intercontrole Sa Determination of the separation between two immersed objects

Similar Documents

Publication Publication Date Title
EP1311869A2 (en) Method for creating multiplanar ultrasonic images of a three dimensional object
US20210113196A1 (en) Acoustic wave diagnostic apparatus and method of controlling acoustic wave diagnostic apparatus
JPS6070381A (en) Ultrasonic imaging apparatus
JPS60131414A (en) Detecting method of position of object to be measured
JP2656355B2 (en) Ultrasonic flaw detection method and apparatus
JP2720077B2 (en) Ultrasonic flaw detector
US4627291A (en) Position sensing apparatus for an object to be measured
JPS6055282A (en) Method for detecting position of object to be measured
JPS6050468A (en) Method for detecting position of object to be measured
JPH0249675B2 (en) HISOKUTEIBUTSUNOICHIKENSHUTSUHOHO
JPH069562B2 (en) Ultrasonic diagnostic equipment
JPH0148996B2 (en)
JPS6091205A (en) Shape detecting method of material to be measured
JPS60108704A (en) Position detecting device of material to be measured
JPS606885A (en) Shape detector for body to be measured
JPH0148997B2 (en)
JPH0334596B2 (en)
JPS606884A (en) Shape detector for body to be measured
JP2859659B2 (en) Ultrasonic flaw detector
JPH0257278B2 (en)
JPS6162808A (en) Apparatus for detecting position of object to be measured
JPS60131415A (en) Detecting method of shape of object to be measured
JPS61120011A (en) Position detection device
JPS59147286A (en) Detection of position
WO2022196095A1 (en) Ultrasonic diagnosis device and method for controlling ultrasonic diagnosis device