JPS6055282A - Method for detecting position of object to be measured - Google Patents

Method for detecting position of object to be measured

Info

Publication number
JPS6055282A
JPS6055282A JP16440983A JP16440983A JPS6055282A JP S6055282 A JPS6055282 A JP S6055282A JP 16440983 A JP16440983 A JP 16440983A JP 16440983 A JP16440983 A JP 16440983A JP S6055282 A JPS6055282 A JP S6055282A
Authority
JP
Japan
Prior art keywords
reflected signal
hole
center position
measured
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16440983A
Other languages
Japanese (ja)
Inventor
Hisanori Otsuki
大槻 寿則
Teruo Maruyama
照雄 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP16440983A priority Critical patent/JPS6055282A/en
Publication of JPS6055282A publication Critical patent/JPS6055282A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications

Abstract

PURPOSE:To detect the center position of a hole rapidly and surely in spite of a small hole by detecting one axial direction center position from a reflected signal minimum value by ultrasonic scanning and determining a virtual center position from the relative position shift of an ultrasonic wave transmitting/receiving element and reflected signal intensity. CONSTITUTION:When a reflected signal is processed by a CPU or the like by executing ultrasonic wave scanning in the X axis direction, a scanned distance/ reflected signal intensity curve is determined and the X coordinate of a hole is calculated from the scanned distance corresponding to a reflected signal minimum value P1. Simultaneously, shift value corresponding to the minimum value P1 is calculated on the basis of a relative positional relation shift/reflected signal curve between an ultrasonic wave transducer and the hole which are previously stored in a memory, the Y coordinates of two pairs of virtual centers of the holes located on comparing positions are determined and one virtual center coodinate is selected from the scanning position. Thus, the center position can be detected rapidly and surely even if the diameter of the hole is small.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は超音波を利用した被測定物の位置検出方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for detecting the position of an object to be measured using ultrasonic waves.

従来例の構成とその問題点 従来の被測定物の形状検出方法としては超音波送元波素
子を被測定物に対して回転走査して得られた反射信号強
度から、被測定物の位置と姿勢を検出するものがある。
Configuration of the conventional example and its problems The conventional method for detecting the shape of the object to be measured is to detect the position of the object from the intensity of the reflected signal obtained by scanning the ultrasonic source wave element with respect to the object. There is something that detects posture.

以下その内容の概略を説明する。The outline of the contents will be explained below.

第1図は従来の装置の概略の構成を示すシステム図であ
る。第2図は従来の装置を用いた位置検出を示す斜視図
である。第1図において超音波送受波素子1に第3図に
示す高電圧パルス17を印加すると空気中に所定の周波
数の超音波パルスが発射される。この超音波パルスが第
2図の対象物体13で反射され、対象物体13の各辺1
4,15゜16からの反射信号が超音波送受波素子1に
到達し、受渡信号増巾器3で増幅された後、アナログ−
デジタル変換されてメモリ6に記憶される。第3図は、
メモリ6に記憶された超音波送受波素子1の動作波形を
示すもので、37.38.39はそれぞれ対象物体13
の各辺14,16.16からの反射信号を示す。メモリ
5に記憶された反射信号は小型電子計算機6に転送され
、第3図に示した反射信号37,38.39の伝播時間
40゜41.42及び反射信号強度43,44,415
を検出している。
FIG. 1 is a system diagram showing the general configuration of a conventional device. FIG. 2 is a perspective view showing position detection using a conventional device. In FIG. 1, when a high voltage pulse 17 shown in FIG. 3 is applied to the ultrasonic transceiver element 1, an ultrasonic pulse of a predetermined frequency is emitted into the air. This ultrasonic pulse is reflected by the target object 13 in FIG.
The reflected signal from 4,15°16 reaches the ultrasonic transceiver element 1, is amplified by the transfer signal amplifier 3, and then is converted into an analog signal.
It is digitally converted and stored in the memory 6. Figure 3 shows
It shows the operating waveforms of the ultrasonic transceiver element 1 stored in the memory 6, and 37, 38, and 39 represent the target object 13, respectively.
The reflected signals from each side 14, 16, and 16 are shown. The reflected signals stored in the memory 5 are transferred to a small electronic computer 6, and the propagation time of the reflected signals 37, 38, 39 shown in FIG.
is being detected.

また第2図において超音波送受波素子1は、小型電子計
算機6からの制御信号によりパルスモータドライバ11
とパルスモータ10を介して矢印A、B方向に回転走査
する構成となっており、超音波送受波素子1を所定の角
度でステップしながら前述の被測定物間で反射信号の伝
播時間及び強度の検出を行なっている。第4図は、超音
波送受波素子1を回転走査させた時の被測定物13から
の反射信号強度を横軸に超音波送受波素子の回転角、縦
軸に反射信号強度をとってプロットしたものである。4
6,47.48はそれぞれ被測定物13の各辺14,1
5.16からの反射信号を整理したものであり、それぞ
れの反射信号強度が最大となるときの超音波送受波素子
1の回転走査角度から被測定物13の各辺14,15.
16の方向を検出している。また前述の反射信号の伝播
時間から被測定物の各辺までの距離が得られるので被測
定物13の各辺14,15.16の座標をめることがで
き、被測定物13の位置を検出することができる。
In addition, in FIG.
The ultrasonic transceiver element 1 is rotated and scanned in the directions of arrows A and B via a pulse motor 10, and the propagation time and intensity of the reflected signal between the objects to be measured are measured while stepping the ultrasonic transceiver element 1 at a predetermined angle. is being detected. FIG. 4 is a plot of the reflected signal intensity from the object to be measured 13 when the ultrasonic transmitting/receiving element 1 is rotated and scanned, with the rotation angle of the ultrasonic transmitting/receiving element being plotted on the horizontal axis and the reflected signal intensity being plotted on the vertical axis. This is what I did. 4
6, 47 and 48 are the sides 14 and 1 of the object to be measured 13, respectively.
5.16 are organized, and each side 14, 15, .
16 directions are detected. Furthermore, since the distance to each side of the object to be measured can be obtained from the propagation time of the reflected signal mentioned above, the coordinates of each side 14, 15, 16 of the object to be measured 13 can be determined, and the position of the object to be measured 13 can be determined. can be detected.

しかしながら、従来の形状検出装置を穴の位置検出に適
用した場合、大径穴ではその位置検出が可能であるが、
小径穴では、穴の各辺からの反射信号が重畳されるので
、超音波送受波素子の減衰性を大幅に向上しないと、位
置検出ができないという問題点があった。さらに従来例
を用いて大径穴の位置検出を行なう場合に番づ2、超音
波送受波素子1を2軸方向に回転走査する必要があり大
径穴の高速位置検出をはかる上で大きな問題点になって
いた。
However, when a conventional shape detection device is applied to detect the position of a hole, it is possible to detect the position of a large diameter hole;
In a small diameter hole, reflected signals from each side of the hole are superimposed, so there is a problem that position detection cannot be performed unless the attenuation of the ultrasonic wave transmitting/receiving element is significantly improved. Furthermore, when detecting the position of a large-diameter hole using the conventional method, it is necessary to rotate and scan the ultrasonic transceiver element 1 in two axes, which is a big problem in high-speed position detection of a large-diameter hole. It was a dot.

発明の目的 本発明は、上述の欠点をなりシ、小径穴の位置を高速で
検出する位置検出方法を提供することを目的とする。
OBJECTS OF THE INVENTION It is an object of the present invention to overcome the above-mentioned drawbacks and provide a position detection method for detecting the position of a small diameter hole at high speed.

発明の構成 本発明は超音波送受波素子と被測定物の相対位置関係を
所定の範囲内で変化させて前記超音波送受波素子により
超音波を送受波して得られた反射信号強度の極小値を検
出して前記被測定物の一方の軸方向の中心位置を検出す
る工程とこの極小値と、予め記憶した前記被測定物の中
心位置からの反射信号強度を含む反射信号強度と照合し
て前記被測定物の他方の軸方向の仮想中心位置を検出す
る工程と、前記所定の範囲内にある仮想中心位置を前記
被測定物の他方の軸方向の中心位置として検出して前記
被測定物の中心位置を検出する工程により前記被測定物
の位置検出を高速で行なう方法を得るものである。
Structure of the Invention The present invention is directed to the minimum reflected signal intensity obtained by transmitting and receiving ultrasonic waves by the ultrasonic transmitting/receiving element by changing the relative positional relationship between the ultrasonic transmitting/receiving element and the object to be measured within a predetermined range. The step of detecting the center position of the object to be measured in one axial direction by detecting the value and comparing this minimum value with the reflected signal intensity including the intensity of the reflected signal from the center position of the object to be measured stored in advance. detecting a virtual center position of the other axial direction of the object to be measured using A method for detecting the position of the object to be measured at high speed is obtained by detecting the center position of the object.

実施例の説明 以下本発明の一実施例について、図面を参照しながら説
明する。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

第5図は本発明の一実施例における被測定物の位置検出
装置の概略を示すシステム図である。第5図において6
0は被測定物と超音波送受波素子63(以下超音波トラ
ンスデユーサという。)の相対位置関係を変化させる手
段(以下マニピュレータという)であり、マニピュレー
タ制御装置52を介して動作を制御している。また第6
図に示すように超音波トランスデユーサ53はマニピュ
レータ50上に設置されている。
FIG. 5 is a system diagram schematically showing a position detecting device for an object to be measured in an embodiment of the present invention. 6 in Figure 5
0 is a means (hereinafter referred to as a manipulator) for changing the relative positional relationship between the object to be measured and the ultrasonic wave transmitting/receiving element 63 (hereinafter referred to as the ultrasonic transducer), and the operation is controlled via the manipulator control device 52. There is. Also the 6th
As shown in the figure, the ultrasonic transducer 53 is installed on the manipulator 50.

超音波トランスデユーサ53は、発振器66により所定
の周波数の超音波を対象物体27に向けて送波し、また
その反射信号を受波している。超音波トランスデユーサ
53が出力する受波信号は受波信号増幅器6eを経て、
アナログ−デジタル変換器67(以下A/D変換器とい
う。)によってデジタル値に変換され、メモリ68に記
憶される。さらにデータ処理制御装置51が設けられる
が、このデータ処理制御装置51はインタフェイスコン
トロールユニット59(以下ICUという。)・フロッ
ピディスクドライブ装置60(以下FDDという。)お
よび小型電子計算機61(以下CPUという。)から構
成される。ICU39はFDDeOおよびCP TJ 
e 1に接続されるとともに、前述の発振器66とメモ
リ68に接続される。FDDeOは本位置検出装置を用
いて位置検出を行なうためのプログラム或は諸条件を入
力する。このデータ処理制御装置61においては、発振
器65を動作させるための制御信号の出力、マニピュレ
ータ6oの動作を制御するマニピュレータ制御装置52
への制御信号の出力を行なうとともにメモリ68から転
送された入力データの前処理を行ない、FDDeOから
予め入カスドアされたプログラムに従ってCPU51で
反射信号強度の検出、被測定物の位置の演算処理、マニ
ピュレータ60の移動量および被測定物の中心位置の演
算処理を行なう。
The ultrasonic transducer 53 transmits ultrasonic waves of a predetermined frequency toward the target object 27 using an oscillator 66, and receives a reflected signal thereof. The received signal output from the ultrasonic transducer 53 passes through the received signal amplifier 6e.
It is converted into a digital value by an analog-to-digital converter 67 (hereinafter referred to as an A/D converter) and stored in a memory 68. Furthermore, a data processing control device 51 is provided, which includes an interface control unit 59 (hereinafter referred to as ICU), a floppy disk drive device 60 (hereinafter referred to as FDD), and a small electronic computer 61 (hereinafter referred to as CPU). .). ICU39 is FDDeO and CP TJ
e 1 and is also connected to the aforementioned oscillator 66 and memory 68. FDDeO inputs a program or various conditions for performing position detection using this position detection device. In this data processing control device 61, a manipulator control device 52 outputs a control signal for operating an oscillator 65 and controls the operation of a manipulator 6o.
At the same time, the input data transferred from the memory 68 is preprocessed, and the CPU 51 detects the reflected signal intensity, performs arithmetic processing on the position of the object to be measured, and performs processing on the manipulator according to a program inputted in advance from the FDDeO. The amount of movement of 60 and the center position of the object to be measured are calculated.

次に上記のように構成した位置検出装置の動作を説明す
る。第6図は本実施例の穴位置検出の側面図であり第6
図に示す対象物体64と超音波トランスデユーサ63の
距離が100 ms 、対象物体27上の被測定物65
(以下穴という。)の直径が4Nで、超音波トランスデ
ユーサ63の送受波面は対象物体27に対向しておシ、
超音波トランスデユーサ63を対象物体27に対して2
+Il+I+のステップで平行に矢印六方向へ走査し念
場合について説明する。
Next, the operation of the position detection device configured as described above will be explained. FIG. 6 is a side view of hole position detection in this embodiment.
The distance between the target object 64 and the ultrasonic transducer 63 shown in the figure is 100 ms, and the measured object 65 is on the target object 27.
(hereinafter referred to as a hole) has a diameter of 4N, and the wave transmitting/receiving surface of the ultrasonic transducer 63 faces the target object 27.
The ultrasonic transducer 63 is attached to the target object 27 at 2
A case will be described in which scanning is performed in parallel in the six directions of arrows at steps +Il+I+.

位置検出はFDDeOから予め入カスドアされた第7図
のフローチャートに示す位置検出プログラムの手順に従
って行なわれる。第7図のフローチャートにおいて、ま
ずステップ1でデータ処理制御装置61からの制御信号
によりマニピュレータ制御装置52を介してマニピュレ
ータ60を駆動して超音波トランスデユーサ63をセン
シング開始位置に移動する。第e図aにおいて62は超
音波トランスデユーサ63から送波される超音波ビーム
の中心位置を示す。また63はセンシング開始時の、ま
た66はセンシング完了時のまた66はセンシング完了
時の超音波ビームの中心位置と対象物体54の交点を示
し、X軸方向のセンシングは、この区間l工で行なわれ
る。なお本実施例ではX軸方向のセンシング区間は6I
IIII!である。
The position detection is carried out according to the procedure of the position detection program shown in the flowchart of FIG. 7, which is pre-introduced from FDDeO. In the flowchart of FIG. 7, first, in step 1, the manipulator 60 is driven via the manipulator control device 52 by a control signal from the data processing control device 61 to move the ultrasonic transducer 63 to the sensing start position. In FIG. e, 62 indicates the center position of the ultrasonic beam transmitted from the ultrasonic transducer 63. Further, 63 indicates the intersection point at the start of sensing, 66 at the completion of sensing, and 66 the intersection point between the center position of the ultrasonic beam and the target object 54 at the completion of sensing, and sensing in the X-axis direction is performed in this section. It will be done. In this example, the sensing section in the X-axis direction is 6I.
III! It is.

またY軸方向のセンシング対象区間は第4図すのlY(
本実例では6咽)である。
In addition, the sensing target section in the Y-axis direction is shown in Figure 4.
In this example, it is 6 pharynges).

次にステップ2でデータ処理制御装置61かもの制御信
号により発振器56を動作させ超音波トランスデー−サ
63で所定の周波数の超音波を被測定物27に向けて送
波すると同時に、A/D変換器67、メモリ68を動作
させて、対象物体54からの反射信号をメモリ68に記
憶する。第6図a、bにおいて62は超音波トランスデ
ユーサ63から送波された超音波ビームの中心位置を示
す・第8図にはメモリ68に記憶された反射信号を示す
。68は対象物体27からの反射信号を示す。
Next, in step 2, the oscillator 56 is operated by the control signal from the data processing control device 61, and the ultrasonic transducer 63 transmits ultrasonic waves of a predetermined frequency toward the object to be measured 27, and at the same time, the A/D The converter 67 and the memory 68 are operated to store the reflected signal from the target object 54 in the memory 68. In FIGS. 6a and 6b, 62 indicates the center position of the ultrasonic beam transmitted from the ultrasonic transducer 63. In FIG. 8, a reflected signal stored in the memory 68 is shown. Reference numeral 68 indicates a reflected signal from the target object 27.

次にステ:ンプ3でメモリ68に記憶された反射信号I
CU69を介してCPU51に転送する。
Next, in step 3, the reflected signal I stored in the memory 68
It is transferred to the CPU 51 via the CU 69.

CPU61では予めFDDeOから入カスドアされてい
るプログラムに従って対象物体27からの反射信号68
の反射信号強度Pを検出して記憶しておく。
The CPU 61 processes the reflected signal 68 from the target object 27 according to a program input from FDDeO in advance.
The reflected signal strength P is detected and stored.

次にステップ4では所定のセンシング回数を完了してい
なければ前述の方法と同様にしてマニピュレータ60を
矢印六方向へ2+++m移動して上記ステップ2.ステ
ップ3を繰返す。所定のセンシング回数(本実施例では
3回)を完了すればステ・シブ6へ進む。
Next, in step 4, if the predetermined number of sensing has not been completed, the manipulator 60 is moved 2+++ m in the six directions of the arrows in the same manner as in the above-mentioned method, and the step 2. Repeat step 3. When the predetermined number of sensing operations (three times in this embodiment) is completed, the process proceeds to Step 6.

ステップ6では、上記ステップ2.ステップ3を繰返し
て得られた対象物体27からの反射信号68の反射信号
強度をもとにして穴28のX軸方向の中心位置を検出す
る。第9図は、超音波トランスデー−サ53を矢印A方
向に平行走査した時の対象物体27からの反射信号強度
を、横軸に超音波トランスデユーサ63の平行走査量、
縦軸に反射信号強度をとってプロットしたものであり、
CPU61では、FDDe□から予め入カスドアされた
プログラムに従って平行走査して得られた反射信号強度
について2次回帰を用いた補間処理を行ない反射信号強
度の極小値P1およびこの時の超音波トランスデユーサ
63の平行走査量を検出する。第9図において69は2
次回帰を用いた補間処理結果であり、曲線69の頂点か
ら反射信号強度の極小値P1は1100mV 、またこ
の時の超音波トランスデユーサ63の平行走査量は3・
8咽であった。穴28のX軸方向の中心位置は、前述の
超音波トランスデユーサ53のセンシング開始位置のX
座標に上記平行走査量3.8欄を加えることにより検出
できる。
In step 6, step 2. The center position of the hole 28 in the X-axis direction is detected based on the reflected signal intensity of the reflected signal 68 from the target object 27 obtained by repeating step 3. FIG. 9 shows the intensity of the reflected signal from the target object 27 when the ultrasonic transducer 53 is parallel scanned in the direction of arrow A, and the horizontal axis represents the amount of parallel scanning of the ultrasonic transducer 63.
The reflected signal strength is plotted on the vertical axis.
The CPU 61 performs interpolation processing using quadratic regression on the reflected signal intensity obtained by parallel scanning according to a program inputted in advance from FDDe□, and calculates the minimum value P1 of the reflected signal intensity and the ultrasonic transducer at this time. 63 parallel scanning amount is detected. In Figure 9, 69 is 2
This is the interpolation processing result using the following regression, and the minimum value P1 of the reflected signal intensity from the apex of the curve 69 is 1100 mV, and the parallel scanning amount of the ultrasonic transducer 63 at this time is 3.
It was 8 sore throat. The center position of the hole 28 in the X-axis direction is located at the sensing start position of the ultrasonic transducer 53 described above.
It can be detected by adding the parallel scanning amount column 3.8 to the coordinates.

またCPU61には、第10図に示すように対象物体2
70穴28に対して超音波トランスデユーサ63を穴2
8の中心位置を通る一軸方向に相対位置関係を変化した
時の変化量と反射信号強度の関係が曲線式でプログラム
化されておシ、この曲線に前述の極小値P1をあてはめ
て穴28のY・軸方向の仮想中心位置を検出している。
The CPU 61 also has a target object 2 as shown in FIG.
Place the ultrasonic transducer 63 in hole 2 for hole 28.
The relationship between the amount of change and the reflected signal strength when the relative positional relationship is changed in a uniaxial direction passing through the center position of hole 28 is programmed in a curved form, and the above-mentioned minimum value P1 is applied to this curve. The virtual center position in the Y-axis direction is detected.

本実施例では前述の平行走査により得た反射信号強度の
極小値P1は1,100mVであり、これを第10図に
あてはめると穴28と超音波トランスデユーサ63の相
対位置関係ズレは+3.2朝と−3,2咽であることが
わかる。すなわち第11図に示すように穴28の中心位
置はX座標が上述した穴28のX軸方向の中心位置、Y
座標は上述した超音波トランスデユーサ53のセンシン
グ開始位置のY座標に対して+3.2欄の位置01また
は−3,2mmの位置o2のどちらかであることがわか
る。70は穴28のX軸方向の中心位置を示す。
In this embodiment, the minimum value P1 of the reflected signal intensity obtained by the above-mentioned parallel scanning is 1,100 mV, and when this is applied to FIG. 10, the relative positional deviation between the hole 28 and the ultrasonic transducer 63 is +3. It can be seen that it is 2nd morning and -3.2nd throat. That is, as shown in FIG. 11, the center position of the hole 28 is such that the X coordinate is the center position of the hole 28 in the X-axis direction and the Y
It can be seen that the coordinates are either position 01 in the +3.2 column or position o2 at -3.2 mm with respect to the Y coordinate of the sensing start position of the ultrasonic transducer 53 mentioned above. 70 indicates the center position of the hole 28 in the X-axis direction.

つぎにステップ6では、前記ステップ6で得た穴28の
Y軸方向の仮想中心位置o1,02のなかで真の穴28
のY軸方向の仮想中心位置を検出する。前述したように
超音波トランスデユーサ63のX軸方向センシング位置
とセンシング対象区間(x、y軸)の関係は第11図の
位置関係にあることからCPU61を用いた演算処理に
より穴28の中心位置は01であることが容易に検出で
きた。
Next, in step 6, the true hole 28 is located among the virtual center positions o1, 02 of the hole 28 in the Y-axis direction obtained in step 6.
The virtual center position in the Y-axis direction is detected. As mentioned above, the relationship between the sensing position of the ultrasonic transducer 63 in the X-axis direction and the sensing target section (x, y axes) is as shown in FIG. It was easily detected that the position was 01.

なお本実施例では超音波トランスデユーサ63を穴28
のセンシング対象区間のY軸方向の限界位置にそってX
軸方向にスキャンして穴28の中心位置を検出したが、
X軸方向スキャン時のY軸位置は前記センシング対象区
間外に設定しても、本実施例の方法を用いて穴28の中
心位置を検出できる。
In this embodiment, the ultrasonic transducer 63 is inserted into the hole 28.
X along the limit position in the Y-axis direction of the sensing target section of
The center position of the hole 28 was detected by scanning in the axial direction, but
Even if the Y-axis position during scanning in the X-axis direction is set outside the sensing target section, the center position of the hole 28 can be detected using the method of this embodiment.

以上のように本実施例によれば、穴28を有するワーク
2了に超音波を送受波すると同時に、ワーク27に対し
て超音波トランスデユーサ63を平行に走査することに
より得られる反射信号強度について補間処理を行ない極
小値P1を検出して穴28のX軸方向の中心位置を検出
し、さらに予めめておいたワーク270穴28に対して
超音波トランスデー−サ53を一軸方向に相対位置関係
を変化させたときの反射信号強度と極小値P1を比較し
て穴28のY軸方向の2点の仮想中心位置01.o2を
検出し、さらにこれがセンシング対象区間内に存在する
か否かを判断することで穴28の中心位置を検出するこ
とができ本実施例では0.2郷の位置精度が得られた・ さらにセンシング区間(x、y軸共に6端)に対して穴
28の位置を検出するためのセンシング回数は3回と従
来例に比して大巾に低減され高速で穴位置検出を行なう
ことができた。
As described above, according to this embodiment, the reflected signal intensity is obtained by transmitting and receiving ultrasonic waves to and from the workpiece 27 having the hole 28, and simultaneously scanning the ultrasonic transducer 63 in parallel to the workpiece 27. The center position of the hole 28 in the X-axis direction is detected by performing interpolation processing to detect the minimum value P1, and then move the ultrasonic transducer 53 relative to the hole 28 of the workpiece 270 in the uniaxial direction. By comparing the reflected signal intensity and the minimum value P1 when changing the positional relationship, the virtual center position 01. of the two points in the Y-axis direction of the hole 28 is determined. By detecting o2 and further determining whether or not it exists within the sensing target section, the center position of the hole 28 can be detected, and in this example, a position accuracy of 0.2 degrees was obtained. The number of times of sensing to detect the position of the hole 28 in the sensing section (6 ends for both x and y axes) is 3 times, which is significantly reduced compared to the conventional example, and the hole position can be detected at high speed. Ta.

発明の効果 以上のように本発明は、被測定物に対して超音波を送受
波すると同時に超音波送受波手段と被測定物の相対位置
関係を所定の範囲内で変化して得られた反射信号強度の
極小値から前記被測定物の一方の軸方向の中心位置を検
出し、さらにこれを予め記憶した前記被測定物と前記超
音波送受波素子の相対位置関係の変化した時の反射信号
強度を照合して前記被測定物の他方の軸方向の仮想中心
位置を検出し、さらに前記所定の範囲内にある仮想中心
位置を前記ねし穴の他方の軸方向の中心位置として検出
してねじ大の中心位置を検出する方法を得るのでその実
用的効果は大なるものがある。
Effects of the Invention As described above, the present invention transmits and receives ultrasonic waves to and from an object to be measured, and at the same time changes the relative positional relationship between the ultrasonic wave transmitting/receiving means and the object to be measured within a predetermined range. A reflected signal when the relative positional relationship between the object to be measured and the ultrasonic wave transmitting/receiving element is changed by detecting the center position of the object to be measured in one axial direction from the minimum value of the signal intensity and storing this in advance. The virtual center position of the other axial direction of the object to be measured is detected by comparing the intensities, and further the virtual center position within the predetermined range is detected as the center position of the other axial direction of the tapped hole. Since a method for detecting the center position of a large screw is obtained, its practical effects are great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の被測定物の形状検出装置の概略の構成を
示すシステム図、第2図は従来の装置の斜視図、第3図
は従来の装置の動作波形を示す図、第4図は従来の装置
の動作波形を整理した図、第は同装置の側面図、第7図
は穴位置検出のためのプログラムの一例を示すフローチ
ャート図、第8図は穴位置検出装置の動作波形を示す図
、第9図は動作波形及び補間処理結果を示す図、第10
図は穴に対し超音波送受波素子を一軸方向に相対位置関
係を変化した時の変化量と反射信号強度の関係を示す図
、第11図は穴のY軸方向の中心位置検出方法の説明図
である。 63・・・・・・超音波トランスデー−サ、28・・・
・・・穴、50・・・・・・マニピュレータ。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名@1
図 第 3 図 第4図 、Il!¥音)声(K受甥1歌壬の旧挿云り蚤倉(贋)
第5図 第6図 第7図 第8図 R 第9図 走β管う皮Yランスデ;−゛す゛り乎行走Jbttm町
第10図 第11図
Fig. 1 is a system diagram showing the general configuration of a conventional object shape detection device, Fig. 2 is a perspective view of the conventional device, Fig. 3 is a diagram showing operating waveforms of the conventional device, and Fig. 4 1 is a diagram arranging the operating waveforms of a conventional device, 1 is a side view of the same device, 7 is a flowchart showing an example of a program for hole position detection, and 8 is a diagram illustrating the operating waveforms of a hole position detecting device. Figure 9 is a diagram showing operation waveforms and interpolation processing results, Figure 10 is a diagram showing operation waveforms and interpolation processing results.
The figure shows the relationship between the amount of change and the reflected signal intensity when the relative position of the ultrasonic transceiver element to the hole is changed in one axis direction. Figure 11 is an explanation of the method for detecting the center position of the hole in the Y-axis direction. It is a diagram. 63... Ultrasonic transducer, 28...
...hole, 50...manipulator. Name of agent: Patent attorney Toshio Nakao and 1 other person @1
Figure 3 Figure 4, Il! ¥ Sound) Voice (K Uke Nephew 1 Utami's Old Insertion Warehouse (Fake)
Fig. 5 Fig. 6 Fig. 7 Fig. 8 R Fig. 9 Beta tube erosion

Claims (1)

【特許請求の範囲】[Claims] 超音波送受波素子と被測定物の相対位置関係を変化させ
たときの前記被測定物の中心位置からの反射信号強度を
含む反射信号強度を予め記憶する第1工程と、前記被測
定物の検出対象範囲の限界位置もしくは検出対象範囲外
に前記超音波送受波素子のビームセンタを合致させて前
記超音波送受波素子により超音波を送受波して得られた
前記被測定物からの反射信号強度の極度の極小値を検出
して前記被測定物の一方の軸方向の中心位置を検出する
第2工程と、前記第1工程の反射信号強度と前記第2工
程の反射信号強度の極小値を照合して前記被測定物の他
方の軸方向の仮想中心位置を検出する第3工程と、この
第3工程の仮想中心位置のなかで前記所定の範囲内にあ
る仮想中位室から前記被測定物の他方の軸方向の中心位
置を検出する第4工程からなる被測定物の位置検出方法
a first step of storing in advance reflected signal intensities including reflected signal intensities from the center position of the object to be measured when the relative positional relationship between the ultrasonic transceiver and the object to be measured is changed; A reflected signal from the object to be measured obtained by transmitting and receiving ultrasonic waves by the ultrasonic wave transmitting and receiving element with the beam center of the ultrasonic wave transmitting and receiving element aligned with the limit position of the detection target range or outside the detection target range. a second step of detecting the center position of the object to be measured in one axial direction by detecting an extreme minimum value of intensity; and a minimum value of the reflected signal intensity of the first step and the reflected signal intensity of the second step. a third step of detecting the virtual center position of the other axial direction of the object to be measured by comparing the two; and a third step of detecting the virtual center position of the object in the other axial direction; A method for detecting the position of an object to be measured, comprising a fourth step of detecting the center position of the other axial direction of the object to be measured.
JP16440983A 1983-09-06 1983-09-06 Method for detecting position of object to be measured Pending JPS6055282A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16440983A JPS6055282A (en) 1983-09-06 1983-09-06 Method for detecting position of object to be measured

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16440983A JPS6055282A (en) 1983-09-06 1983-09-06 Method for detecting position of object to be measured

Publications (1)

Publication Number Publication Date
JPS6055282A true JPS6055282A (en) 1985-03-30

Family

ID=15792588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16440983A Pending JPS6055282A (en) 1983-09-06 1983-09-06 Method for detecting position of object to be measured

Country Status (1)

Country Link
JP (1) JPS6055282A (en)

Similar Documents

Publication Publication Date Title
JPS60249076A (en) Detection of obstruction
US6321139B1 (en) Operation line searching method and robot/sensor system having operation line searching function
JP2720077B2 (en) Ultrasonic flaw detector
JPS6055282A (en) Method for detecting position of object to be measured
US4627291A (en) Position sensing apparatus for an object to be measured
JPS6050467A (en) Method for detecting position of object to be measured
JPS60131414A (en) Detecting method of position of object to be measured
JPH0148997B2 (en)
JPS606885A (en) Shape detector for body to be measured
JPS6050468A (en) Method for detecting position of object to be measured
JPS6091205A (en) Shape detecting method of material to be measured
JPH0148996B2 (en)
JPS60108704A (en) Position detecting device of material to be measured
JPH0334596B2 (en)
JP2760407B2 (en) Welding line detector
JPS606884A (en) Shape detector for body to be measured
JP3025614B2 (en) Ultrasound inspection method for the subject
JPS61162709A (en) Detection of position
JPS6162808A (en) Apparatus for detecting position of object to be measured
JPS61120011A (en) Position detection device
JPS59147288A (en) Detection of attitude and position
JPS59147286A (en) Detection of position
JPS6029253A (en) Numeric control screw fastener
JPH03142356A (en) Ultrasonic flaw detector
Gunnarsson et al. Ultrasonic sensors in robotic seam tracking