JPS606885A - Shape detector for body to be measured - Google Patents

Shape detector for body to be measured

Info

Publication number
JPS606885A
JPS606885A JP11452083A JP11452083A JPS606885A JP S606885 A JPS606885 A JP S606885A JP 11452083 A JP11452083 A JP 11452083A JP 11452083 A JP11452083 A JP 11452083A JP S606885 A JPS606885 A JP S606885A
Authority
JP
Japan
Prior art keywords
measured
shape
ultrasonic
reflected signal
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11452083A
Other languages
Japanese (ja)
Inventor
Hisanori Otsuki
大槻 寿則
Teruo Maruyama
照雄 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11452083A priority Critical patent/JPS606885A/en
Publication of JPS606885A publication Critical patent/JPS606885A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/539Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section

Abstract

PURPOSE:To detect the shape of a body to be measured with high precision by varying the relative position relation between an ultrasonic wave transmitting and receiving element and the body to be measured, and processing the intensity levels of reflected signals from the body to be measured succeeding to the 2nd signal intensity. CONSTITUTION:The operation of a manipulator 50 is controlled with a control signal from a data processing controller 51 through a manipulator controller 52, and consequently the relative position relation between the body to be measured and ultrasonic wave transducer 53 is varied. Reflected signals detected by the transducer 53 from the objective body are inputted to a memory 58 through a receive signal amplifier 56 and an A/D converter 57. The data processor 51 consists of an interface control unit 59, floppy-disk driving device 60, and CPU61, and the intensity levels of the reflected signals succeeding to the 2nd intensity are processed to detect the shape of the objective body.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は超音波を利用した被測定物の形状検出装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an apparatus for detecting the shape of an object to be measured using ultrasonic waves.

従来例の構成とその問題点 従来の被測定物の形状検出装置としては超音波送受波素
子を被測定物に対して回転走査して得られた反射信号強
度から、被測定物の位置と姿勢を検出するものがある。
Configuration of conventional example and its problems Conventional device for detecting the shape of a measured object detects the position and orientation of the measured object from the reflected signal strength obtained by rotating and scanning the ultrasonic transceiver element with respect to the measured object. There is something that detects

以下その内容の概略を説明する。The outline of the contents will be explained below.

第1図は従来の装置の概略の構成を示す/ステム図であ
る。第2図は従来の装置を用いた形状検出を示す斜視図
である。第1図において超音波送受波素子1に第3に示
す高電圧パルス17を印加すると空気中に所定の周波数
の超音波パルスが発射される。この超音波パルスが第2
図の対象物体13で反射され、対象物体13の各辺14
 、16゜16からの反射信号が超音波送受波素子1に
到達し、受波信号増巾器3で増幅された後、アナログ−
デジタル変換されてメモリ16に記憶される。
FIG. 1 is a stem diagram showing the general configuration of a conventional device. FIG. 2 is a perspective view showing shape detection using a conventional device. In FIG. 1, when a high voltage pulse 17 shown in the third figure is applied to the ultrasonic transceiver element 1, an ultrasonic pulse of a predetermined frequency is emitted into the air. This ultrasonic pulse is the second
It is reflected by the target object 13 in the figure, and each side 14 of the target object 13
, 16° 16 reaches the ultrasonic transceiver element 1, and after being amplified by the receiving signal amplifier 3, the analog-
It is digitally converted and stored in the memory 16.

第3図は、メモリ16に記憶された超音波送受波素子1
の動作波形を示すもので、37,38゜39はそれぞれ
対象物体13の各辺14,16゜16からの反射信号を
示す。メモリ16に記憶された反射信号は小型電子計算
機6に転送され、第3図に示した反射信号37,38.
39の伝播時間40,41.42及び反射信号強度43
,44゜46を検出している。
FIG. 3 shows the ultrasonic transceiver element 1 stored in the memory 16.
37 and 38 degrees 39 indicate the reflected signals from the respective sides 14 and 16 degrees 16 of the target object 13, respectively. The reflected signals stored in the memory 16 are transferred to the small electronic computer 6, and the reflected signals 37, 38 .
39 propagation time 40, 41.42 and reflected signal strength 43
, 44°46 are detected.

また第2図において超音波送受波素子1 (rjl、小
型電子計算機6からの制御信号によりパルスモータドラ
イバ11とパルスモータ10を介して矢印A、B方向に
回転走査する構成となっており、超音波送受波素子1を
所定の角度でステップしながら前述の被測定物間で反射
信号の伝播時間及び強度の検出を行なっている。第4図
は、超音波送受波素子1を回転走査させた時の被測定物
13からの反射信号強度を横軸に超音波送受波素子の回
転角、縦軸に反射信号強度をとってプロットしたもので
ある。46.47.48はそれぞれ被測定物13の各辺
14,15.16からの反射信号を整理したものであり
、それぞれの反射信号強度が最大となるときの超音波送
受波素子1の回転走査角度から被測定物13の各辺14
,15.16の方向を検出している。i7を前述の反射
信号の伝播時間から被測定物の各週までの距離が得られ
るので被測定物13の各辺13,14.15の座標をめ
ることかでき、被測定物13の位置と姿勢を検出するこ
とができる。
In addition, in FIG. 2, the ultrasonic transmitting/receiving element 1 (rjl) is configured to rotate and scan in the directions of arrows A and B via a pulse motor driver 11 and a pulse motor 10 according to a control signal from a small electronic computer 6. The propagation time and intensity of the reflected signal between the objects to be measured are detected while stepping the ultrasonic wave transmitting/receiving element 1 at a predetermined angle.Figure 4 shows the ultrasonic wave transmitting/receiving element 1 rotated and scanned. The intensity of the reflected signal from the object to be measured 13 is plotted with the rotation angle of the ultrasonic transceiver element on the horizontal axis and the intensity of the reflected signal on the vertical axis. The reflected signals from each side 14, 15, and 16 of the object to be measured 13 are arranged based on the rotational scanning angle of the ultrasonic wave transmitting/receiving element 1 when the respective reflected signal intensity is maximum.
, 15.16 directions are detected. Since the distance to each week of the object to be measured can be obtained from i7 from the propagation time of the reflected signal described above, the coordinates of each side 13, 14, 15 of the object to be measured 13 can be determined, and the position of the object to be measured 13 and Posture can be detected.

しかしながら、従来の位置姿勢検出装置を穴・溝の形状
検出に適用した場合、大径穴あるいId大巾溝ではその
形状検出が可能であるが、小径穴あるいは小中溝では、
穴・溝の各辺からの反射信号が重畳され、超音波送受波
素子の減衰性を大幅に向上しないと形状検出ができない
という問題点があった。
However, when a conventional position/orientation detection device is applied to detect the shape of a hole/groove, it is possible to detect the shape of a large diameter hole or Id wide groove, but it is not possible to detect the shape of a small diameter hole or small or medium groove.
There was a problem in that the reflected signals from each side of the hole/groove were superimposed, and the shape could not be detected unless the attenuation of the ultrasonic transceiver element was significantly improved.

発明の目的 本発明者らは、超音波送受波素子の大幅な減衰性向上な
しに」二連の小径穴・小幅溝の形状検出を行なう装置に
ついて鋭意検ML、前記超音波送受波素子を用いて被測
定物に超音波を送受波して得られた反射信号のなかで、
2番目以降の反射信号強度を信号処理する手段を用いる
ことにより、上記問題をすべて解決できることを見出し
本発明に至った・ すなわち本発明は、−ヒ述の欠点ケなくし、簡易な構成
で、小径穴・小幅溝の高精度な形状検出が出来る装置を
提供することを目的とする。
Purpose of the Invention The present inventors conducted extensive research on a device that detects the shape of two series of small-diameter holes and narrow-width grooves without significantly improving the attenuation of the ultrasonic wave transmitting/receiving element, using the ultrasonic wave transmitting/receiving element. Among the reflected signals obtained by transmitting and receiving ultrasonic waves to and from the measured object,
The present invention has been achieved by discovering that all of the above problems can be solved by using means for signal processing the second and subsequent reflected signal strengths.In other words, the present invention eliminates the drawbacks mentioned above, has a simple structure, and has a small diameter. The purpose of this invention is to provide a device that can detect the shape of holes and narrow grooves with high precision.

発明の構成 本発明は、被測定物に対して超音波送受波素子により超
音波を送受波する手段と、前記超音波送受波素子と前記
被測定物の相対位置関係を変化させる手段と、前記被測
定物からの反射信号強度のなかで2番目以降の反射信号
強度を信号処理する手段により、前記被測定物の形状検
出を行なう装置を得るものである。
Structure of the Invention The present invention provides means for transmitting and receiving ultrasonic waves to and from an object to be measured using an ultrasonic wave transmitting/receiving element, means for changing the relative positional relationship between the ultrasonic wave transmitting and receiving element and the object to be measured; The present invention provides an apparatus for detecting the shape of the object to be measured by means of signal processing the second and subsequent reflected signal intensities among the intensities of the reflected signals from the object to be measured.

実施例の説明 以下本発明の第1の実施例について、図面を参照しなが
ら説明する。
DESCRIPTION OF EMBODIMENTS A first embodiment of the present invention will be described below with reference to the drawings.

第6図は本発明の第1実施例における溝形状検出装置の
概略を示すシステム図である。′!!、た第6図は本発
明の第1実施例の形状検出装置を用いた形状検出の斜視
図、第7図は同平面図である。
FIG. 6 is a system diagram showing an outline of the groove shape detection device in the first embodiment of the present invention. ′! ! , FIG. 6 is a perspective view of shape detection using the shape detection device of the first embodiment of the present invention, and FIG. 7 is a plan view thereof.

第5図において60はロボットのマニピュレータであり
、データ処理制御装置51からの制御信号によりマニピ
ュレータ制御装置52を介して動作を制御している。ま
たマニピュレータ60上には、第6図に示すように送受
波兼用の超音波トランスデユーサ63が設置されている
In FIG. 5, reference numeral 60 denotes a manipulator of the robot, whose operation is controlled via a manipulator control device 52 in response to control signals from a data processing control device 51. Further, on the manipulator 60, as shown in FIG. 6, an ultrasonic transducer 63 for both transmitting and receiving waves is installed.

超音波トランスデユーサ53は、発振器56により所定
の周波数の超音波を対象物体54の溝66に向けて送波
し、またその反射信号を受波1−2でいる。超音波I・
ランンデーーーザ53が出力する受波信号は受波信号増
幅器66を経て、アナログ−デジタル変換器6了(す、
千’A/D変換器という。)によってデジタル値に変換
され、メモリ68に記憶される。さらにデータ処理制御
装置61が設けられるが、このデータ処理制御装置61
はインタフェイスコ/トロールユニ1,169(以下I
CUという。)・フロッピディスクドライブ装置60(
以下FDDという。)および小型電子B1算機61(以
下CPUという。)から構成される。ICUcs9はF
DDeoおよびCPU61に接続されるととも顛前述の
発振器65とメモリ58に接続される。FDDeOは本
形状検出装置を用いて形状検出を行なうだめのプログラ
ム或は諸条件を入力する。このデータ処理制御装置61
においては、発振器56を動作さぜるための制御信号の
出力、マニピュレータ50の動作を制御するマニピュレ
ータ制御装置62への制御信号の出力を行なうとともに
メモリ58から転送された大刀データの前処理を行ない
、FDDeoがら予め入カスドアされたプログラムに従
ってCPUelで反射信号強度の検出、対象物体の溝の
形状の演算処理、マニピュレータ50の移動量の演算処
理を行なう。
The ultrasonic transducer 53 uses an oscillator 56 to transmit ultrasonic waves of a predetermined frequency toward the groove 66 of the target object 54, and receives the reflected signals as waves 1-2. Ultrasonic I・
The received signal output from the run dazer 53 passes through the received signal amplifier 66 and then passes through the analog-to-digital converter 6.
It is called a 1,000' A/D converter. ) is converted into a digital value and stored in the memory 68. Furthermore, a data processing control device 61 is provided, and this data processing control device 61
is InterfaceCo/TrollUni 1,169 (hereinafter referred to as I
It's called CU. )・Floppy disk drive device 60 (
Hereinafter referred to as FDD. ) and a small electronic B1 calculator 61 (hereinafter referred to as CPU). ICUcs9 is F
It is connected to DDeo and the CPU 61, and also to the oscillator 65 and memory 58 mentioned above. FDDeO inputs a program or various conditions for performing shape detection using this shape detection device. This data processing control device 61
, outputs a control signal for operating the oscillator 56, outputs a control signal to the manipulator control device 62 for controlling the operation of the manipulator 50, and preprocesses the long sword data transferred from the memory 58. , FDDeo detects the reflected signal intensity, calculates the shape of the groove of the target object, and calculates the amount of movement of the manipulator 50 using the CPUel, according to a program installed in advance from the FDDeo.

次に上記のように構成した形状検出装置の動作を説明す
る。なお本実施例では、第6図に示す超音波トランスデ
ユーサ63の直径が36朝、対象物体54と超音波l・
ジンスデューサ53の距離が100mm、対象物体64
の溝660幅が5mm、深さ10聰で、超音波トランス
デユーサ53の送受波面は対象物体64に対向しており
、0.2mmのステップで矢印入方向へ走査した場合に
ついて説明する。
Next, the operation of the shape detection device configured as described above will be explained. In this embodiment, when the diameter of the ultrasonic transducer 63 shown in FIG.
The distance of the jinsducer 53 is 100 mm, the target object 64
A case will be described in which the width of the groove 660 is 5 mm and the depth is 10 mm, the wave transmitting/receiving surface of the ultrasonic transducer 53 faces the target object 64, and scanning is performed in the direction of the arrow in steps of 0.2 mm.

形状検出はFDDeoから予め入カスドアされた第8図
のフローチャートに示す形状検出プログラムの手順に従
って行なわれる。第8図のフローチャートにおいて、捷
ずステップ1でデータ処理制御装置61からの制御信号
によりマニピーV −夕制御装置62を介してマニピュ
レータ50を駆動して超音波トランスデユーサ63をセ
ンシング開始位置に移動する。第6図において62は超
音波トランスデユーサ53から送波される超音波ビーム
の中心位置を示す。また63けセンソング開始時の、捷
た64はセンノング完了時の、超音波ビームの中心位置
と対象物体64の交点を示し、センシングは、この区間
内で行なわれる。なお本実施例ではセンシング区間は4
0Mである。
Shape detection is performed in accordance with the procedure of the shape detection program shown in the flowchart of FIG. 8, which has been preinstalled from FDDeo. In the flowchart of FIG. 8, in step 1, the manipulator 50 is driven by the control signal from the data processing control device 61 via the manipulator control device 62 to move the ultrasonic transducer 63 to the sensing start position. do. In FIG. 6, 62 indicates the center position of the ultrasonic beam transmitted from the ultrasonic transducer 53. Furthermore, the 63-digit sensing section 64 at the start of sensing indicates the intersection of the center position of the ultrasonic beam and the target object 64 at the end of sensing, and sensing is performed within this section. In this example, the number of sensing intervals is 4.
It is 0M.

次にステップ2でデータ処理制御装置51からの制御信
号により発振器66を動作させ超音波トランスデユーサ
63で所定の周波数の超音波を被測定物6−4に向けて
送波すると同時に、A/D変換器67、メモリ68を動
作させて、対象物体64からの反射信号をメモリ68に
記憶する。第δ図にはメモリ58に記憶された反射、信
号を示す。
Next, in step 2, the oscillator 66 is operated by the control signal from the data processing control device 51, and the ultrasonic transducer 63 transmits ultrasonic waves of a predetermined frequency toward the object to be measured 6-4. The D converter 67 and memory 68 are operated to store the reflected signal from the target object 64 in the memory 68. FIG. δ shows the reflections and signals stored in the memory 58.

67は対象物体54の平面部分66からの1番目の反射
信号、68’、69はそれぞれ2番目の反射信号を示す
Reference numeral 67 indicates the first reflected signal from the planar portion 66 of the target object 54, and 68' and 69 indicate the second reflected signals, respectively.

次にステップ3でメモリ68に記憶された反射信号をI
CU69を介してCPtJeslに転送する。
Next, in step 3, the reflected signal stored in the memory 68 is
Transfer to CPtJesl via CU69.

CPU61ではFDD60から予め入カスドアされてい
るプログラムに従って、対象物体64の平面部分66か
らの反射信号67の反射信号強度P1〜P3を検出する
The CPU 61 detects the reflected signal intensities P1 to P3 of the reflected signal 67 from the planar portion 66 of the target object 64 according to a program inputted in advance from the FDD 60.

次にステップ4ではマニピュレータ50&矢印八方向へ
0.2+nm移動して一ト記ステップ1.ステップ2を
繰返して所定のセンシング回数(本実施例では200回
)を完了すればステップ5へ進む。
Next, in step 4, move the manipulator 50 by 0.2+nm in the eight directions of the arrows and repeat step 1. After repeating step 2 and completing a predetermined number of sensing operations (200 times in this embodiment), the process proceeds to step 5.

ステップ5では、上記ステ、プ2、ステップ3で得られ
た検出対象溝65を含む対象物体54からの反射信号強
度をもとにして検出対象溝65の中心位置・幅を検出す
る。第10図は、超音波トランスデユーサ63を矢印入
方向に走査した時の対象物体54の平面部分66からの
反射信号強度を、横軸に超音波トランスデユーサ63の
走査量。
In Step 5, the center position and width of the detection target groove 65 are detected based on the intensity of the reflected signal from the target object 54 including the detection target groove 65 obtained in Steps 2 and 3 above. FIG. 10 shows the reflected signal intensity from the flat portion 66 of the target object 54 when the ultrasonic transducer 63 is scanned in the direction of the arrow, and the horizontal axis represents the scanning amount of the ultrasonic transducer 63.

縦軸に反射信号強度をとって6点おきにプロットしたも
のであシCPu61では、FDD60から予め入カスド
アされたプログラムに従って反射信号強度の極小値を検
出して溝66の中心位置を検出している。第10図にお
いてBは第、9図に示すように超音波トランスデユーサ
53から送波された超音波が対象物体54間で多重反射
した結果生じる反射信号強度P1を整理したもの、また
C1Dはそれぞれ反射信号強度P2.P3を整理したも
のである。第11図において溝検出感度51d−0,7
dB、S2は−2−dB、S3は−2,8dBであった
。溝65の中心位置の検出を行なうために必要な溝検出
感度Sは検出結果の信頼性を考慮すると−1,5dB以
上が必要であり、1番目の反射信号強度S1を信号処理
しても溝65の中心位置検出は難しく、2番目、3番目
の反射信号強度S2.S3を信号処理することにより始
めて溝65の中心位置検出が可能であり、反射信号強度
P2゜P3の極小値から溝66の中心位置を検出した結
果それぞれ0.2■の位置精度を得た。
The reflected signal intensity is plotted every 6 points on the vertical axis.The CPU 61 detects the minimum value of the reflected signal intensity according to a program input from the FDD 60 in advance to detect the center position of the groove 66. There is. In FIG. 10, B is an arrangement of reflected signal intensities P1 generated as a result of multiple reflections of the ultrasonic waves transmitted from the ultrasonic transducer 53 between the target objects 54 as shown in FIG. 9, and C1D is The reflected signal strength P2. This is an arrangement of P3. In Fig. 11, groove detection sensitivity 51d-0,7
dB, S2 was -2-dB, and S3 was -2.8 dB. The groove detection sensitivity S required to detect the center position of the groove 65 needs to be -1.5 dB or more considering the reliability of the detection result, and even if the first reflected signal strength S1 is processed, the groove detection sensitivity S is required to detect the center position of the groove 65. 65 is difficult to detect, and the second and third reflected signal intensities S2. It is possible to detect the center position of the groove 65 only by signal processing S3, and as a result of detecting the center position of the groove 66 from the minimum values of the reflected signal intensities P2 and P3, a position accuracy of 0.2 square meters was obtained for each.

さらに閾値強度を設定し、閾値強度が前記反射信号強度
とクロスする区間に該当する超片波トランスデュ〜す6
3の平行走査量Wを検出することにより検出対象溝65
の幅を検出している。溝66の幅検出についても上述の
中心位置検出と同様に溝検出感度Sは−1,5dB以上
が必要であシ、2番目、3番目の反射信号強度S2.S
3ヲ信号処理することにより始めて溝650幅検出が可
能であり、設定した閾値強度70.71がそれぞれの反
射信号強度を整理したCDとクロスする区間に設定する
超音波トランスデユーサ63の平行走査量W2.W3を
検出した結果0.2個の位置精度を得た。
Further, a threshold intensity is set, and the ultra-single wave transducer 6 corresponding to the section where the threshold intensity crosses the reflected signal intensity is set.
By detecting the parallel scanning amount W of 3, the detection target groove 65
The width of is being detected. Regarding the width detection of the groove 66, the groove detection sensitivity S needs to be -1.5 dB or more as in the above-mentioned center position detection, and the second and third reflected signal strengths S2. S
3) The groove 650 width can be detected only by signal processing, and parallel scanning of the ultrasonic transducer 63 is set in the section where the set threshold intensity 70.71 crosses the CD in which the respective reflected signal intensities are arranged. Amount W2. As a result of detecting W3, a position accuracy of 0.2 was obtained.

以上のように本実施例によれば、溝65を有する対象物
体54に対して超音波トランスデユーサ63を用いて超
音波を送受波すると同時にマニピュレータ60を動作さ
せて対象物体54に対して超音波トランスデユーサ53
を走査することにより得られる対象物体54の溝65か
らの反射信号強度のなかで、2番目以降の反射信号強度
P2.P3を信号処理することにより、高い溝検出感度
を得ることができ、これによ゛り高精度の溝の中心位置
・幅検出結果を得た。
As described above, according to this embodiment, the ultrasonic transducer 63 is used to transmit and receive ultrasonic waves to the target object 54 having the groove 65, and at the same time, the manipulator 60 is operated to transmit the ultrasonic wave to the target object 54. Sound wave transducer 53
Among the reflected signal intensities from the groove 65 of the target object 54 obtained by scanning, the second and subsequent reflected signal intensities P2. By signal processing P3, it was possible to obtain high groove detection sensitivity, thereby obtaining highly accurate groove center position and width detection results.

なお上述したように対象物体54からの多重反射信号の
なかで1番目よりも2番目が溝検出感度Sが高くなるこ
とを述べたが、この現象は以下のように説明できる。
As described above, among the multiple reflection signals from the target object 54, the groove detection sensitivity S is higher for the second signal than for the first signal, but this phenomenon can be explained as follows.

本実施例においては超音波トランスデユーサ63を溝6
5の中心位置に配置したときの第1番目の反射信号強度
は、溝66の存在しない平面部分66に配置したときの
反射信号強度に比して約10係低下するが、多重反射の
場合、これが振動源となって超音波トランスデユーサ6
3から超音波が送波され、超音波トランスデユーサ53
を溝66の中心位置に対向して配置したときの第2番目
の反射信号強度は相乗効果により、溝66が存在しない
平面部分66(C対向して配置したときに比して約20
%低下する。従って溝検出感度が低下するのである。な
お2番目の反射信号強度P2と3番目の反射信号強度と
の関係も上記と同様である。
In this embodiment, the ultrasonic transducer 63 is
The intensity of the first reflected signal when placed at the center of the groove 66 is approximately 10 times lower than the intensity of the reflected signal when placed at the flat portion 66 where the groove 66 is not present. However, in the case of multiple reflections, This becomes a vibration source and the ultrasonic transducer 6
Ultrasonic waves are transmitted from the ultrasonic transducer 53
Due to the synergistic effect, the intensity of the second reflected signal when C is placed opposite the center position of the groove 66 is approximately 20
%descend. Therefore, groove detection sensitivity is reduced. Note that the relationship between the second reflected signal strength P2 and the third reflected signal strength is also the same as above.

つぎに本発明の第2の実施例について図面を参照しなが
ら説明する。
Next, a second embodiment of the present invention will be described with reference to the drawings.

第11図は本発明の第2の実施例における穴の形状検出
装置の概略を示すシステム図である。第11図において
マニピュレータ制御装置91はマニピュレータ72をX
−Y軸の直交2軸で動作可能な構成になっている。これ
以外のシステム構成は前述の第1実施例と同様である。
FIG. 11 is a system diagram schematically showing a hole shape detection device according to a second embodiment of the present invention. In FIG. 11, the manipulator control device 91 moves the manipulator 72 to
- It has a configuration that allows it to operate on two orthogonal axes, the Y-axis. The system configuration other than this is the same as that of the first embodiment described above.

第12図は本実施例の形状検出装置による穴形状検出を
示す斜視図である。
FIG. 12 is a perspective view showing hole shape detection by the shape detection device of this embodiment.

次に上記のように構成した形状検出装置の動作を説明す
る。なお本実施例では、第12図に示す超音波トランス
デユーサ73の直径が36−2対象物体81と超音波ト
ランスデユーサ73の距離が100mm、対象物体81
の穴82の直径が6胴で、超音波トランスデユーサ73
の送受波面は対象物体81に対向しており、超音波トラ
ンスデユーサ73を対象物体81に対して0.2mmの
ステップでX−Y軸に走査した場合について説明する・
形状検出はFDD78から予め入カスドアされた第13
図のフローチャートに示す形状検出プログラムの手順に
従って行なわれる。第13図のフローチャートにおいて
、ステップ1で前記第1実施例と同様に超音波トランス
デユーサ73をX軸のセンシング開始位置へ移動する。
Next, the operation of the shape detection device configured as described above will be explained. In this embodiment, the diameter of the ultrasonic transducer 73 shown in FIG. 12 is 36-2, the distance between the target object 81 and the ultrasonic transducer 73 is 100 mm, and
The diameter of the hole 82 is 6 cylinders, and the ultrasonic transducer 73
The transmitting/receiving wave surface faces the target object 81, and the case where the ultrasonic transducer 73 scans the target object 81 in the X-Y axis in steps of 0.2 mm will be explained.
Shape detection is performed using the 13th
This is carried out according to the procedure of the shape detection program shown in the flowchart of the figure. In the flowchart of FIG. 13, in step 1, the ultrasonic transducer 73 is moved to the X-axis sensing start position, as in the first embodiment.

第11図において83は超音波トランスデユーサ73か
ら送波される超音波ビームの中心位置を示す。寸た84
はX軸方向のセンシング開始時の、85はX軸方向のセ
ンシング完了時の、また86はY軸方向のセンシング開
始時の、87[Y軸方向のセンシング完了時の超音波ビ
ームの中心位置と対象物体81の交点を示し、X軸・Y
軸のセンシングは、それぞれこの区間(本実施例では各
40馴)内で行なわれる。
In FIG. 11, 83 indicates the center position of the ultrasonic beam transmitted from the ultrasonic transducer 73. Dimensions 84
is when sensing starts in the X-axis direction, 85 is when sensing is completed in the X-axis direction, 86 is when sensing is started in the Y-axis direction, and 87 is the center position of the ultrasonic beam when sensing is completed in the Y-axis direction. Indicates the intersection of the target object 81, and
The sensing of the axis is performed within each of these intervals (each 40 degrees in this example).

次にステップ2,3.4では前記第1実施例と同様にマ
ニピュレータ72を動作させ、超音波トランスデユーサ
73をX軸方向へ平行走査して得られた検出対象穴82
を含む対象物体81からの2番目の反射信号強度をもと
にして検出対象穴82のX軸方向の中心位置を検出する
Next, in steps 2 and 3.4, the manipulator 72 is operated in the same manner as in the first embodiment, and the ultrasonic transducer 73 is scanned in parallel in the X-axis direction to detect the detection target hole 82.
The center position of the detection target hole 82 in the X-axis direction is detected based on the intensity of the second reflected signal from the target object 81 including .

次にステップ5ではY軸方向のセンシングをすべくマニ
ピュレータ72を動作させ超音波トランスデューサ73
をY軸のセンシング開始位置へ移動する。この時の超音
波ビームの中心位置と対象物体81の交点のX座標は上
述のX軸方向のセンシングで検出した穴の中心位置座標
と同一に設定している。
Next, in step 5, the manipulator 72 is operated to sense the ultrasonic transducer 73 in the Y-axis direction.
Move to the sensing start position on the Y axis. At this time, the X coordinate of the intersection between the center position of the ultrasonic beam and the target object 81 is set to be the same as the center position coordinate of the hole detected by sensing in the X-axis direction described above.

次にステップ2.3.4では、前記第1実施例と同様に
マニピュレータ72を動作させ、超音波トランスデユー
サ73をY軸方向へ平行走査して得られた検出対象穴8
2を含む対象物体81からの2番目反射信号強度をもと
にして穴82のY軸方向の中心位置を検出する。これに
より穴82の中心位置の座標が検出できる。さらに前記
第1実施例と同様にして検出対象穴82の直径を検出し
ている。本実施例では穴82検出感度はX−Y軸方向共
に一2dBを得、さらにこれから穴82の中心位置、直
径を検出した結果、それぞれ0.2脳の位置精度を得た
Next, in step 2.3.4, the manipulator 72 is operated in the same manner as in the first embodiment, and the ultrasonic transducer 73 is scanned in parallel in the Y-axis direction to obtain the detection target hole 8.
The center position of the hole 82 in the Y-axis direction is detected based on the intensity of the second reflected signal from the target object 81 including the hole 82. This allows the coordinates of the center position of the hole 82 to be detected. Furthermore, the diameter of the detection target hole 82 is detected in the same manner as in the first embodiment. In this example, the detection sensitivity of the hole 82 was 12 dB in both the X and Y axes directions, and the center position and diameter of the hole 82 were detected from this, and as a result, a position accuracy of 0.2 brains was obtained for each.

なお本実施例では、直径361M1の超音波トランスデ
ユーサ73を用いて直径が6rMlの穴82を検出した
例についぞ述べたが、穴82の直径がさらに小さなもの
でも検出できる。第14図は、本実施例と同様の構成で
小径の穴を検出した時の穴の検出感度を示したものであ
り、対象物体からの反射信号の中で2番目の反射信号強
度を信号処理することにより3聰の直径まで−1,5d
B以上の穴検出感度が得られその穴の中心位置、直径を
検出することができ、それぞれ0.2mmの位置精度を
得た。
In this embodiment, an example has been described in which a hole 82 with a diameter of 6 rMl is detected using the ultrasonic transducer 73 with a diameter of 361M1, but a hole 82 with a smaller diameter can also be detected. Figure 14 shows the hole detection sensitivity when detecting a small diameter hole with the same configuration as this example. By doing this, the diameter of 3-meters is up to -1,5d.
Hole detection sensitivity of B or higher was obtained, and the center position and diameter of the hole could be detected, with a positional accuracy of 0.2 mm for each.

発明の効果 以上のように本発明は、被測定物に対して超音波送受波
素子により超音波を送受波すると同時に、前記超音波送
受波素子を前記被測定物に対して走査して得られた反射
信号のなかで2番目以降の反射信号強度を信号処理して
、被測定物の形状を検出するので簡易な構成で、高精度
の形状検出装置を得ることができ、その実用的効果は犬
なるものがある。
Effects of the Invention As described above, the present invention can be obtained by transmitting and receiving ultrasonic waves to and from an object to be measured using an ultrasonic wave transmitting and receiving element, and at the same time scanning the ultrasonic wave transmitting and receiving element to the object to be measured. Since the shape of the object to be measured is detected by signal processing the second and subsequent reflected signal intensities among the reflected signals, it is possible to obtain a highly accurate shape detection device with a simple configuration, and its practical effects are as follows. There is something called a dog.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の超音波形状検出装置の概略の構成を示す
システム図、第2図は従来の装置を用いた形状検出の斜
視図、第3図は従来の装置の動作波形を示す図、第4図
は従来の装置の動作波形を整理した図、第6図は本発明
の第1実施例における装置の概略の構成を示すシステム
図、第6図は本発明の第1実施例における溝形状検出の
斜視図、第7図は同断面図、第8図は本発明の第1実施
例における溝形状検出のだめのプログラムの1例を示す
フローチャート図、第9図は本発明の第1実施例におけ
る形状検出装置の動作波形を示す図、第10図は本発明
の第1実施例における装置の動作波形を整理した図、第
11図は本発明の第2の実施例における装置の概略の構
成を示すシステム図、第12図は本発明の第2実施例に
おける穴形状検出の斜視図、第13図は本発明の第2実
施例における穴形状検出のだめのプログラムの1例を示
すフローチャート図、第14図は、本発明の第2実施例
における穴検出感度を示す図である。 50.72°゛°“・マニピュレータ、53.73・・
・・・・超音波トランスデユーサ−161・・・・CP
U。 66・・・・・溝、82・・・・・穴。 第1図 第3図 第4図 第 5 図 月1腎プ皮i+%ii)の同和おし登山 
(崖)第7図 5 第8図 89図 18開 第10図 R’t:AJ−ランス;i−fivLtLmm+第11
図 第12図 第13図
FIG. 1 is a system diagram showing the general configuration of a conventional ultrasonic shape detection device, FIG. 2 is a perspective view of shape detection using the conventional device, and FIG. 3 is a diagram showing operating waveforms of the conventional device. FIG. 4 is a diagram arranging the operating waveforms of the conventional device, FIG. 6 is a system diagram showing the schematic configuration of the device in the first embodiment of the present invention, and FIG. FIG. 7 is a perspective view of shape detection, FIG. 7 is a cross-sectional view of the same, FIG. 8 is a flowchart showing an example of a program for groove shape detection in the first embodiment of the present invention, and FIG. 9 is a diagram of the first embodiment of the present invention. FIG. 10 is a diagram illustrating the operating waveforms of the shape detection device in the first embodiment of the present invention, and FIG. 11 is a schematic diagram of the device in the second embodiment of the present invention. A system diagram showing the configuration, FIG. 12 is a perspective view of hole shape detection in the second embodiment of the present invention, and FIG. 13 is a flow chart diagram showing an example of a program for hole shape detection in the second embodiment of the present invention. , FIG. 14 is a diagram showing the hole detection sensitivity in the second embodiment of the present invention. 50.72°゛°“・Manipulator, 53.73・・
...Ultrasonic transducer-161...CP
U. 66...groove, 82...hole. Fig. 1 Fig. 3 Fig. 4 Fig. 5 Dowa Oshi Climb of Month 1 Kidney Pipe i+%ii)
(Cliff) Fig. 7 5 Fig. 8 89 Fig. 18 Open Fig. 10 R't: AJ-Lance; i-fivLtLmm + 11th
Figure 12 Figure 13

Claims (2)

【特許請求の範囲】[Claims] (1)超音波送受波素子を用いて被測定物に超音波を送
受波する手段と、前記超音波送受波素子と前記被測定物
の相対位置関係を変化させる手段と、前記被測定物から
の反射信号強度のなかで2番目以降の反射信号強度を信
号処理して前記被測定物の形状を検出する信号処理手段
からなる被測定物の形状検出装置。
(1) means for transmitting and receiving ultrasonic waves to and from the object to be measured using an ultrasonic wave transmitting and receiving element; means for changing the relative positional relationship between the ultrasonic wave transmitting and receiving element and the object to be measured; An apparatus for detecting the shape of an object to be measured, comprising a signal processing means for detecting the shape of the object by signal processing the second and subsequent reflected signal intensities among the reflected signal intensities of the object.
(2)前記被測定物は穴もしくはスリットである特許請
求の範囲第1項記載の被測定物の形状検出装置0
(2) The shape detection device 0 of the object to be measured according to claim 1, wherein the object to be measured is a hole or a slit.
JP11452083A 1983-06-24 1983-06-24 Shape detector for body to be measured Pending JPS606885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11452083A JPS606885A (en) 1983-06-24 1983-06-24 Shape detector for body to be measured

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11452083A JPS606885A (en) 1983-06-24 1983-06-24 Shape detector for body to be measured

Publications (1)

Publication Number Publication Date
JPS606885A true JPS606885A (en) 1985-01-14

Family

ID=14639802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11452083A Pending JPS606885A (en) 1983-06-24 1983-06-24 Shape detector for body to be measured

Country Status (1)

Country Link
JP (1) JPS606885A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5335547A (en) * 1989-08-21 1994-08-09 Hitachi Construction Machinery Co., Ltd. Ultrasonic flaw detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5335547A (en) * 1989-08-21 1994-08-09 Hitachi Construction Machinery Co., Ltd. Ultrasonic flaw detector

Similar Documents

Publication Publication Date Title
JPH07306042A (en) Method and device for forming peripheral map in cellular structure
JP2720077B2 (en) Ultrasonic flaw detector
JPS606885A (en) Shape detector for body to be measured
US4627291A (en) Position sensing apparatus for an object to be measured
Korba Variable aperture sonar for mobile robots
JPH0148996B2 (en)
JPS6148948B2 (en)
JPH0249675B2 (en) HISOKUTEIBUTSUNOICHIKENSHUTSUHOHO
JPH0148997B2 (en)
JPS606884A (en) Shape detector for body to be measured
JPH0334596B2 (en)
JPS6055282A (en) Method for detecting position of object to be measured
JPH0319954B2 (en)
JPS59147288A (en) Detection of attitude and position
JPS6091205A (en) Shape detecting method of material to be measured
JPS60131414A (en) Detecting method of position of object to be measured
JPS60102509A (en) Position detecting apparatus for material to be measured
JPS59147286A (en) Detection of position
JPS6162808A (en) Apparatus for detecting position of object to be measured
JPS59111076A (en) Distance measuring apparatus
JPS6050468A (en) Method for detecting position of object to be measured
Kreczmer Ultrasonic range finder for support of human gestures recognition
JPS61162709A (en) Detection of position
JPS6144310A (en) Position detector of unmanned running vehicle
JPS61120011A (en) Position detection device