JPS60131415A - Detecting method of shape of object to be measured - Google Patents

Detecting method of shape of object to be measured

Info

Publication number
JPS60131415A
JPS60131415A JP24023783A JP24023783A JPS60131415A JP S60131415 A JPS60131415 A JP S60131415A JP 24023783 A JP24023783 A JP 24023783A JP 24023783 A JP24023783 A JP 24023783A JP S60131415 A JPS60131415 A JP S60131415A
Authority
JP
Japan
Prior art keywords
reflected signal
measured
hole
ultrasonic
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24023783A
Other languages
Japanese (ja)
Inventor
Hisanori Otsuki
大槻 寿則
Teruo Maruyama
照雄 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP24023783A priority Critical patent/JPS60131415A/en
Publication of JPS60131415A publication Critical patent/JPS60131415A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B17/00Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations

Abstract

PURPOSE:To improve precision by comparing the coefficient of an approximate curve near the minimum value of the level of a reflected signal from a body to be measured with the coefficient of the approximate curve of every objective body which is stored previously in a storage device. CONSTITUTION:The minimum value of the level of the reflected signal obtained by making a parallel scan through the center position of a detection hole while slanting the wave transmission and reception surface of an ultrasonic wave transducer 73 at a specific angle to the objective body 81 in the scanning direction is detected. The coefficient (a) of a secondary curve obtained by carrying out interpolation using secondary recurrence as to the circumference of the minimum value. While the ultrasonic wave transducer 73 sends the ultrasonic wave of specific frequency to the body 81 to be measured, the reflected signal from the objective body 81 is stored in a memory 76 and its level P1 is detected. Then, the center position of a hole 82 to be detected is detected on the basis of the level of the reflected signal from the objective body 81 including the objective hole 82.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は超音波を利用した被測定物の形状検出方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for detecting the shape of an object to be measured using ultrasonic waves.

従来例の構成とその問題点 従来の被測定物の形状検出方法としては超音波送受波素
子を被測定物に対して回転走査して得られた反射信号強
度から・被測定物の位置と姿勢を検出するものがある。
Configuration of conventional example and its problems Conventional methods for detecting the shape of an object to be measured include the position and orientation of the object from the reflected signal intensity obtained by rotating and scanning an ultrasonic transceiver element with respect to the object to be measured. There is something that detects

以下その内容の概略を説明する。The outline of the contents will be explained below.

第1図は従来の装置の概略の構成を示すシステム図であ
る。第2図は従来の装置を用いた位置検出を示す斜視図
である□第1図において超音波送□受波素子1に第3図
に示す高□電圧パルス17を印加すると空気中に所定の
周波数の超音波パルスが発射される◎この超音波パルス
が第2図の対象物体13で反射され、対象物体13の各
辺14,15.16からの反射信号が超音波送受波素子
1に到達し、受波信号増巾器3で増幅された後、アナロ
グ−デジタル変換されてメモリ5に記憶される〇第3図
は・メモリ6に記憶された超音波送受波素子1の動作波
形を示すもので、、3.7. 38.39はそれぞれ対
象物体13の各辺14,15.16からの反射信号を示
す。メモリ6に記憶された反射信号は小型電子計算機6
に転送され、第3図に示した反射信号37.38.39
の伝播時間4゜、41.42及び反射信号強度43.4
4. 45を検出している〇 また、第2図において超音波送受波素子1は、小型電子
計算機6からの制御信号によりパルスモータドライバ1
1とパルスモータ10を介して矢印A、B方向に回転走
査する構成となっており。
FIG. 1 is a system diagram showing the general configuration of a conventional device. Figure 2 is a perspective view showing position detection using a conventional device. In Figure 1, when the high voltage pulse 17 shown in Figure 3 is applied to the ultrasonic transmitting and receiving element 1, a predetermined An ultrasonic pulse with a certain frequency is emitted.◎This ultrasonic pulse is reflected by the target object 13 in FIG. After being amplified by the received signal amplifier 3, it is analog-to-digital converted and stored in the memory 5. Figure 3 shows the operating waveform of the ultrasonic transceiver element 1 stored in the memory 6. 3.7. 38 and 39 indicate reflected signals from each side 14, 15 and 16 of the target object 13, respectively. The reflected signal stored in the memory 6 is transmitted to a small electronic computer 6.
reflected signals 37, 38, 39 shown in Figure 3.
propagation time of 4°, 41.42 and reflected signal strength of 43.4
4. 45 〇 Also, in FIG.
1 and a pulse motor 10 to rotate and scan in the directions of arrows A and B.

超音波送受波素子1を所定の角度でステップしながら前
述の被測定物間で反射信号の伝播時間及び強度の検出を
行なっている0第4図は、超音波送受波素子1を回転走
査させた時の被測定物13からの反射信号強度を横軸に
超音波送受波素子の回転角、縦軸に反射信号強度をとっ
てプロットしたものである。46.47.48はそれぞ
れ被測定物13の各辺14,15.16からの反射信号
を整理したものであり、それ□ぞれの反射信号強度が最
大となるときの超音波送受波素子1の回転走査角度から
被測定物13の各辺14,15.16の方向を検出して
いる。また前述の反射信号の伝播時間から被測定物の各
辺までの距離が得られるので被測定物13の各辺13,
14,15の座標をめることができ、被測定物13の位
置を検出することができる。
Figure 4 shows the detection of the propagation time and intensity of the reflected signal between the objects to be measured while stepping the ultrasonic transceiver element 1 at a predetermined angle. The intensity of the reflected signal from the object to be measured 13 is plotted with the horizontal axis representing the rotation angle of the ultrasonic transceiver element and the vertical axis representing the reflected signal intensity. 46, 47, and 48 are organized reflection signals from each side 14, 15, and 16 of the object to be measured 13, respectively, and □ the ultrasonic wave transmitting/receiving element 1 when each reflected signal intensity is maximum. The direction of each side 14, 15, 16 of the object to be measured 13 is detected from the rotational scanning angle. Furthermore, since the distance to each side of the object to be measured can be obtained from the propagation time of the reflected signal described above, each side 13 of the object to be measured 13,
14 and 15 can be determined, and the position of the object to be measured 13 can be detected.

しかしながら、従来の位置検出装置を穴の位置検出に適
用した場合、大径穴ではその位置検出が可能であるが、
小径穴では、穴の各辺からの反射信号が重畳されるので
、超音波送受波素子の減衰性を大幅に向上しないと、位
置検出ができないという問題点かあ−た。
However, when a conventional position detection device is applied to detect the position of a hole, it is possible to detect the position of a large diameter hole;
In a small diameter hole, reflected signals from each side of the hole are superimposed, so there is a problem that position detection cannot be performed unless the attenuation of the ultrasonic wave transmitting/receiving element is significantly improved.

本発明者らは上記従来の問題点を解決するために、すで
に被測定物の形状検出装置を提案している。第6図はす
でに本発明者らによって提案した被測定物の形状検出装
置のシステム図である。また第6図は、本形状検出装置
を穴82の位置検出に適用した場合の斜視図である。第
7図は同平面図である。第6図において超音波送受波素
子了3は対象物体81に対してO1傾斜して対向する形
でマニピュレータ72に取付けられX軸方向に平行移動
する。
In order to solve the above-mentioned conventional problems, the present inventors have already proposed a shape detecting device for an object to be measured. FIG. 6 is a system diagram of an apparatus for detecting the shape of an object to be measured, which has already been proposed by the present inventors. Further, FIG. 6 is a perspective view when the present shape detection device is applied to detect the position of the hole 82. FIG. 7 is a plan view of the same. In FIG. 6, the ultrasonic transmitting/receiving element 3 is attached to the manipulator 72 so as to face the target object 81 with an O1 inclination, and is moved in parallel in the X-axis direction.

第6図において83は超音波送受波素子73から送波さ
れる超音波ビームの中心位置を示しており超音波送受波
素子73は走査開始位置84から走査終了位置86の間
を一定距離間隔で送受波しながら移動する。第8図は超
音波送受波素子73をX軸方向に平行走査したときの対
象物体81からの反射信号強度を、横軸に超音波送受波
素子73の平行走査量、縦軸に反射信号強度をとってプ
ロットしたものである。ここで反射信号強度が極小値を
とる時の超音波送受波素子73の平行走査量を検出し・
超音波送受波素子73の走査開始位置84の座標に前記
平行走査量を加えることによりX軸上における穴82の
中心位置を検出することができる。ま7m Y軸上にお
ける穴82の中心位置も同様に検出できる。
In FIG. 6, 83 indicates the center position of the ultrasonic beam transmitted from the ultrasonic transceiver element 73, and the ultrasonic transceiver element 73 moves from the scanning start position 84 to the scanning end position 86 at regular distance intervals. Moves while transmitting and receiving waves. FIG. 8 shows the reflected signal intensity from the target object 81 when the ultrasonic transceiver element 73 is scanned in parallel in the X-axis direction, the horizontal axis is the amount of parallel scanning of the ultrasonic transceiver element 73, and the vertical axis is the reflected signal intensity. is plotted. Here, the amount of parallel scanning of the ultrasonic wave transmitting/receiving element 73 when the reflected signal intensity takes the minimum value is detected.
By adding the parallel scanning amount to the coordinates of the scanning start position 84 of the ultrasonic wave transmitting/receiving element 73, the center position of the hole 82 on the X-axis can be detected. The center position of the hole 82 on the Y-axis can also be detected in the same way.

一方、上記の構成の形状検出装置を用いて穴の形状検出
を行なう場合には穴の直径情報を検出する機能の実現が
望捷れでいる。
On the other hand, when detecting the shape of a hole using the shape detection device configured as described above, it is difficult to realize the function of detecting the diameter information of the hole.

発明の目的 不発明は上述の超音波送受波素子による被測定物の形状
検出における上記問題点をなくし・被測定物の直径情報
を検出する方法を提供することを目的とする。
OBJECTS OF THE INVENTION An object of the invention is to eliminate the above-mentioned problems in detecting the shape of an object to be measured using the ultrasonic transceiver element and to provide a method for detecting diameter information of an object to be measured.

発明の構成 本発明は超音波送受波素子と被測定物の相対位置関係を
変化させて前記超音波送受波素子により超音波を送受波
して得られた前記被測定物からの反射信号強度の極小値
近傍の近似曲線の係数を検出する工程と、あらかじめ記
憶装置内部に保管されている前記被測定物ごとの近似曲
線の係数を比較して前記被測定物の形状を検出する工程
からなり被測定物の直径情報を検出する方法を得るもの
であるー 実施例の説明 以下本発明の第1の実施例について図面を参照しながら
説明する。
Structure of the Invention The present invention provides a method for changing the relative positional relationship between the ultrasonic transceiver element and the object to be measured, and transmitting and receiving ultrasonic waves by the ultrasonic transceiver element to obtain an intensity of a reflected signal from the object to be measured. The process of detecting the approximate curve coefficients near the minimum value and the process of detecting the shape of the object by comparing the coefficients of the approximate curve for each object stored in advance in a storage device. DESCRIPTION OF THE PREFERRED EMBODIMENTS A method for detecting diameter information of an object to be measured - Description of Embodiments A first embodiment of the present invention will be described below with reference to the drawings.

本発明の第1実施例における穴の形状検出装置の概略の
システム図は前述の第5図と同様でありその構成につい
て説明する。
The schematic system diagram of the hole shape detection device according to the first embodiment of the present invention is the same as that shown in FIG. 5 described above, and its configuration will be described below.

第5図において72は被測定物と超音波送受波素子(以
下超音波トランスデユーサという)の相対位置関係を変
化させる手段(以下マニピュレータといううであり、デ
ータ処理制御装置7Oからの制御信号によりマニピュレ
ータ制御装置71を介して動作を制御している。またマ
ニピュレータ72上には、送受波兼用の超音波トランス
デユーサ73が設置されている。
In FIG. 5, 72 is a means (hereinafter referred to as a manipulator) for changing the relative positional relationship between the object to be measured and an ultrasonic wave transmitting/receiving element (hereinafter referred to as an ultrasonic transducer), and is controlled by a control signal from the data processing control device 7O. The operation is controlled via a manipulator control device 71. Further, an ultrasonic transducer 73 for transmitting and receiving waves is installed on the manipulator 72.

超音波トランスデユーサ73は、発振器8Oにより所定
の周波数の超音波を対象物体に向けて送波し・またその
反射信号を受波している。超音波トランスデユーサ73
が出力する受渡信号は受波信号増幅器74を経て、アナ
ログ−デジタル変換器−r5(%下A/D変換器という
。)によ−てデジタル値に変換され、メモリ76に記憶
される。
The ultrasonic transducer 73 uses an oscillator 8O to transmit ultrasonic waves of a predetermined frequency toward a target object, and receives a reflected signal thereof. Ultrasonic transducer 73
The transfer signal outputted by the converter passes through a received signal amplifier 74, is converted into a digital value by an analog-to-digital converter-r5 (referred to as a %A/D converter), and is stored in a memory 76.

さらにデータ処理制御装置7oが設けられるが。Furthermore, a data processing control device 7o is provided.

このデータ処理制御装置7oはインタフエイスコントロ
ールユニート77(以下ICUという。)フロ・ンピデ
メスクドライブ装置78(以下FDDという。)および
小型電子計算機79(以下CPUという。)から構成さ
れる。ICU77はFDI)7BおよびCPU79に接
続されるとともに・前述の発振器8Oとメモリ76に接
続される0FDD78は本位置検出装置を用いて位置検
出を行なう卜めのプログラム或は諸条件を入力する。こ
のデータ処理制御装置70においては・発振器80を動
作させるための制御信号の出力、マニピュレータ72の
動作を制御するマニピュレータ制御装置了1への制御信
号の出力を行なうとともにメモリ76から転送されに人
力データの前処理を行ない・FDD78から予め入カス
ドアさnfCプログラムに従ってCPU79で反射信号
強度の検出、対象物体の穴の位置の演算処理、マニピュ
レータ72の移動量の演算処理を行なう。
This data processing control device 7o is composed of an interface control unit 77 (hereinafter referred to as ICU), a front desk drive device 78 (hereinafter referred to as FDD), and a small electronic computer 79 (hereinafter referred to as CPU). The ICU 77 is connected to the FDI 7B and the CPU 79, and the 0FDD 78, which is connected to the oscillator 8O and the memory 76, inputs a program or various conditions for performing position detection using this position detection device. This data processing control device 70 outputs control signals for operating the oscillator 80 and outputs control signals to the manipulator control device 1 for controlling the operation of the manipulator 72, and also transfers human power data from the memory 76. The CPU 79 detects the reflected signal intensity, calculates the position of the hole in the target object, and calculates the amount of movement of the manipulator 72 according to the nfC program input in advance from the FDD 78.

次に上記のように構成した形状検出装置の動作全説明す
る0なお本実施例では・第6図及び第7図に示す超音波
トランスデユーサ73の直径が36肺、対象物体81と
超音波トランスデユーサ73の距離が75mn一対象物
体81の穴82の直径が6111+I+で、超音波トラ
ンスデユーサ73の送受波面は対象物体81のX軸又[
Y軸に対して所定の角度61 (本実施例でIfh’+
O・)傾斜するよう配置されており、1Tmのステワプ
X軸又はX軸方向へ、対象物体81と一定の距離を保っ
て平行走 1査した場合について説明する。
Next, we will explain the entire operation of the shape detection device configured as above.In this embodiment, the diameter of the ultrasonic transducer 73 shown in FIGS. 6 and 7 is 36 lungs, and the target object 81 and the ultrasonic The distance between the transducer 73 is 75 mm and the diameter of the hole 82 in the target object 81 is 6111+I+, and the transmitting and receiving wave surface of the ultrasonic transducer 73 is aligned with the X axis of the target object 81 or [
A predetermined angle 61 with respect to the Y axis (Ifh'+ in this example)
O.) A case will be described in which the scanner is arranged so as to be inclined, and one parallel scan is performed in the stepwise X-axis or X-axis direction of 1Tm while maintaining a constant distance from the target object 81.

形状検出i F D D 78から予め入カスドアされ
た第9図のフローチャートに示す形状検出プログラムの
手順に従って行なわれる〇 第9図のフローチャートにおいて、まず、ステップ1で
記憶装置(以下CP[T79という)内部に各検出穴径
について近似曲線の係数を記憶しておく。本実施例では
上述の超音波トランスデユーサ73の送受波面を対象物
体81に対して走査方向に所定の角度θ(本実施例では
1o0)傾斜しテ超音波ビームのセンタが75間の距離
にある検出穴の中心位置を通−て平行走査して得られた
反射信号強度について極小値を検出後、極小値近傍につ
いて2次回帰を用いた補間処理を行な−で得られた2次
曲線(y=ax + bx+c ) +7) 2次式の
係数aを記憶しており、検出穴82の直径が5間の場合
、a=152.直径が41+I+I+の場合a−96直
径が3−の場合a−47である一 つぎにステップ2でデータ処理制御装置70からの制御
によりマンビュレータ制御装置71を介してマンビュV
−夕72を駆動して超音波トランスデユーサ73をセン
シング開始位置84に移動する。この時超音波トランス
デユーサ73の送受波面は対象物体81に対してX軸方
向に100fp斜している。第6図において83は超音
波トランスデユーサ73から送波される超音波ビームの
中心位置を示す−まfB4Triセンシング開始時の、
−jfc85はセンシング完了時の、超音波ビームの中
心位置と対象物体81の交点を示し、X軸方向のセンシ
ングは、この区間内で行なわれる。なお実施例ではセン
シング区間は10咽である。
The shape detection program is carried out according to the procedure of the shape detection program shown in the flowchart of FIG. 9, which is pre-introduced from the shape detection i FDD 78. In the flowchart of FIG. The approximate curve coefficients for each detection hole diameter are stored internally. In this embodiment, the transmitting/receiving surface of the ultrasonic transducer 73 is tilted at a predetermined angle θ (1o0 in this embodiment) in the scanning direction with respect to the target object 81, so that the center of the ultrasonic beam is at a distance between 75 and 75. After detecting the minimum value of the reflected signal intensity obtained by parallel scanning through the center position of a certain detection hole, interpolation processing using quadratic regression is performed on the vicinity of the minimum value, resulting in a quadratic curve. (y=ax+bx+c)+7) The coefficient a of the quadratic equation is memorized, and when the diameter of the detection hole 82 is between 5 and 5, a=152. If the diameter is 41+I+I+, it is a-96. If the diameter is 3-, it is a-47. Next, in step 2, the data processing control device 70 controls the manbulator control device 71 to
- move the ultrasonic transducer 73 to the sensing start position 84 by driving the transducer 72; At this time, the wave transmitting/receiving surface of the ultrasonic transducer 73 is inclined by 100 fp in the X-axis direction with respect to the target object 81. In FIG. 6, 83 indicates the center position of the ultrasonic beam transmitted from the ultrasonic transducer 73.
-jfc85 indicates the intersection of the center position of the ultrasonic beam and the target object 81 when sensing is completed, and sensing in the X-axis direction is performed within this section. In the embodiment, the sensing interval is 10 times.

次にステップ3でデータ処理制御装置7Oからの制御信
号により発振器80を動作させ超音波トランスデユーサ
73で所定の周波数の超音波を被測定物81に向けて送
波すると同時に・A / D変換器76・メモIJ 7
6を動作させて、対象物体81からの反射信号をメモリ
76に記憶する。第10図にはメモリ76に記憶さ江り
反射信号強度す・90は対象物体81からの反射信号を
示す。
Next, in step 3, the oscillator 80 is operated by the control signal from the data processing control device 7O, and the ultrasonic transducer 73 transmits ultrasonic waves of a predetermined frequency toward the object to be measured 81. At the same time, A/D conversion is performed. Vessel 76/Memo IJ 7
6 is operated to store the reflected signal from the target object 81 in the memory 76. In FIG. 10, the reflected signal intensity stored in the memory 76 90 indicates the reflected signal from the target object 81. In FIG.

次にステップ4でメモリ76に記憶さ九次反射信号1I
CU77を介してCPU79に転送jるCPU79では
FDD78から予め入カスドアされているプログラムに
従って対象物体81からの反射信号9oの反射信号強度
Plを検出する。
Next, in step 4, the ninth-order reflected signal 1I is stored in the memory 76.
The signal is transferred to the CPU 79 via the CU 77, and the CPU 79 detects the reflected signal intensity Pl of the reflected signal 9o from the target object 81 according to a program preloaded from the FDD 78.

次にステップ6ではマニピュレータ72’iX軸方向へ
1fi移動して上記ステップ2・ステ9プ3を繰返して
所定のセンシング回数(本実施例では10回)を完了す
ればステップ6へ進む−スフ−ツブ6では上記ステップ
2・ステップ3で得られた検出対象穴82を含む対象物
体81からの反射信号強度をもとてして検出対象穴82
の中心位置を検出する。第11図は直径が3611II
++の超音波トランスデユーサ73を対象物体に対して
Next, in step 6, the manipulator 72'i is moved 1fi in the X-axis direction, and the steps 2 and 9 are repeated to complete the predetermined number of sensing operations (10 times in this embodiment), and then the process proceeds to step 6. In the tube 6, the detection target hole 82 is detected based on the intensity of the reflected signal from the target object 81 including the detection target hole 82 obtained in steps 2 and 3 above.
Detect the center position of In Figure 11, the diameter is 3611II.
++ ultrasonic transducer 73 to the target object.

01−100傾斜してX軸方向に平行走査したときの対
象物体81からの反射信号強度を、横軸に超音波トラン
スデユーサ73の平行走査量、縦軸に反射信号強度をと
−で10点おきにプロ9卜したものであり、CPU79
では、FDD78から予め入カスドアされたプログラム
に従って反射信号強度の極小値全検出して穴82のX軸
方向の中心−位置を検出しているー 次にステップ7ではY軸方向のセンシングをすべくマニ
ピュレータ72を動作させ超音波トランスデユーサ73
をY軸のセンシング開始位置へ移動する。この時の超音
波ビームの中心位置と対象物体81の交点のX座標は上
述のX軸方向のセンシングで検出した穴82の中心位置
座標と同一に設定している。また、超音波トランスデユ
ーサ73の送受波面は対象物体81に対してY軸方向へ
1○0傾斜している。第6図において86は一センシン
グ開始時の、また87はセンシング完了時の超音波ビー
ムの中心位置と対象物体21の交点を示し、Y軸方向の
センシングは、この区間内で行なわれる。なお本実施例
ではセンシング区間は10Mである。
01-100 The reflected signal intensity from the target object 81 when tilted and parallel scanned in the X-axis direction, the horizontal axis is the parallel scanning amount of the ultrasonic transducer 73, and the vertical axis is the reflected signal intensity. Every point is a pro 9.
Then, according to the program inputted in advance from the FDD 78, all the minimum values of the reflected signal intensity are detected to detect the center position of the hole 82 in the X-axis direction.Next, in step 7, the manipulator is used to sense the Y-axis direction. 72 to operate the ultrasonic transducer 73
Move to the sensing start position on the Y axis. At this time, the X coordinate of the intersection between the center position of the ultrasonic beam and the target object 81 is set to be the same as the center position coordinate of the hole 82 detected by sensing in the X-axis direction described above. Further, the wave transmitting/receiving surface of the ultrasonic transducer 73 is inclined by 100 in the Y-axis direction with respect to the target object 81. In FIG. 6, 86 indicates the intersection of the center position of the ultrasonic beam and the target object 21 at the start of one sensing, and 87 indicates the intersection of the center position of the ultrasonic beam and the target object 21 at the end of sensing, and sensing in the Y-axis direction is performed within this section. Note that in this embodiment, the sensing section is 10M.

次にステップ3.4. 5.6では、上述のX軸方向セ
ンシングと同様にして超音波トランスデユーサ73をY
軸方向へ平行走査して得らflた反射信号強度をもとに
して穴82のY軸方向の中心位置を検出する。
Next step 3.4. 5.6, the ultrasonic transducer 73 is
The center position of the hole 82 in the Y-axis direction is detected based on the intensity of the reflected signal obtained by parallel scanning in the axial direction.

次にステップ8では上述のY軸方向センシングで得られ
た対象物体81の穴82の中心位置からの反射信号を含
む反射信号強度をもとにして穴82の直径情報を検出す
る。第12図は、超音波トランスデユーサ7 S f 
Y軸方向に平行走査した時の対象物体81からの反射信
号強度を、横軸に超音波トランスデユーサ73のY軸平
行走査量、縦軸に反射信号強度をと−てプロットしたも
のでありCPH10では、FDD60から予め入カスド
アされたプログラムに依って平行走査して得られた反射
信号強度について、極小値を検出後・極小値を示す点を
含む3点のデータについて2次回帰を用いた補間処理を
行ない2次曲線(y=ax +bx+c )の2次式の
係数aを検出する。
Next, in step 8, diameter information of the hole 82 is detected based on the reflected signal intensity including the reflected signal from the center position of the hole 82 of the target object 81 obtained by the above-described sensing in the Y-axis direction. FIG. 12 shows the ultrasonic transducer 7 S f
The reflected signal intensity from the target object 81 when parallel scanned in the Y-axis direction is plotted with the Y-axis parallel scanning amount of the ultrasonic transducer 73 on the horizontal axis and the reflected signal intensity on the vertical axis. In CPH10, after detecting the minimum value of the reflected signal intensity obtained by parallel scanning according to the program installed in advance from FDD60, quadratic regression was used for data at three points including the point showing the minimum value. Interpolation processing is performed to detect the coefficient a of the quadratic equation of the quadratic curve (y=ax+bx+c).

第12図において91は2次回帰を用いた補間処理結果
であり2次式の係数a=162であった。
In FIG. 12, 91 is the result of interpolation processing using quadratic regression, and the coefficient a of the quadratic equation is 162.

これをステップ1で予め記憶した2次式の係数aと比較
して、対象物体81の穴82の直径は61+Imである
ことを検出できた〇 なお、本実施例では・対象物体81の穴82の、痺径が
6面の場合について述べたが、穴82の直径が4mm+
3+10++の場合について、第9図のフローチャート
に示す形状検出プログラムの手順に従って形状検出を実
施したところ、2次式の係数はそ九ぞf′L& = 9
6 、a = 47となり、穴82の直径が検出できた
By comparing this with the coefficient a of the quadratic equation stored in advance in step 1, it was possible to detect that the diameter of the hole 82 in the target object 81 was 61+Im. In this example, the hole 82 in the target object 81 The case where the diameter of the hole is 6 has been described, but if the diameter of the hole 82 is 4 mm +
In the case of 3+10++, when shape detection was performed according to the procedure of the shape detection program shown in the flowchart of Fig. 9, the coefficient of the quadratic equation was found to be f'L & = 9.
6, a = 47, and the diameter of the hole 82 could be detected.

また本実施例では対象物体81の穴82の直径が5酎*
 4mm、 3mmの場合について述べたが、ステップ
1で2次式の係数ai各種穴径について記憶すれば、こ
れ以外の穴の直径についても検出できることは言うまで
もない。
Further, in this embodiment, the diameter of the hole 82 of the target object 81 is 5 mm*
Although the cases of 4 mm and 3 mm have been described, it goes without saying that if the coefficient ai of the quadratic equation is memorized for various hole diameters in step 1, hole diameters other than these can also be detected.

発明の効果 以上のように本発明は、超音波送受波素子と被測″宝物
の相対位置関係を変化させて前記超音波送受波素子によ
り超音波を送受波して得られた前記被測定物からの反射
信号強度の極小値近傍の近似曲線の係数を検出し・これ
をあらかじめ記憶装置内部に保接されている前記被測定
物ごとの近似曲線の係数を比較して、前起破測定物の形
状を検出するので高精度の形状検出方法をうることがで
き″すの実用的効果は大なるものがある。
Effects of the Invention As described above, the present invention provides an object to be measured that is obtained by transmitting and receiving ultrasonic waves by changing the relative positional relationship between the ultrasonic transmitting and receiving element and the treasure to be measured. The coefficients of the approximation curve near the minimum value of the reflected signal intensity from Since the shape of the object is detected, a highly accurate shape detection method can be obtained, which has a great practical effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(1従来の超音波形状検出装置の概略の構成を示
すシステム図、第2図は従来の装置を用いた形状検出の
斜視図、第3図は従来の装置の動作波形を示す図、第4
図は従来の装置の動作波形を整理した図、第6図は被測
定物の形状検出装置の概略の構成を示すシステム図、第
6図は同穴位置検出装置の斜視図、第7図は同萌面図、
第8図は動作波形の説明図、第9図は本発明の第1笑施
例における穴位置検出のためのプログラムの1例を示す
フローチャート図、第10図は本発明の第1実施例にお
ける装置の動作波形を示す図、第11図、第12図は、
動作波形の説明図である〇72“・・・・・マンビュレ
ータ、73・・・・・・超音e)ランスデューサ、79
・・・・・・CPU、B2・・・・・・穴。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名。 第 1 図 第 2 図 第3図 第4図 弱音シ夾釜Q青シ゛面紅走査角〔曳) 第5図 6 面 第7図 1/2 11/ 第9図 第111iia M令1外うンヌデj〜すのXM票行走イト1Fとm割筒
12図
Figure 1 (1) is a system diagram showing the general configuration of a conventional ultrasonic shape detection device, Figure 2 is a perspective view of shape detection using the conventional device, and Figure 3 is a diagram showing operating waveforms of the conventional device. , 4th
Figure 6 is a diagram arranging the operating waveforms of the conventional device, Figure 6 is a system diagram showing the general configuration of the device for detecting the shape of the object to be measured, Figure 6 is a perspective view of the hole position detector, and Figure 7 is The same Moe drawing,
FIG. 8 is an explanatory diagram of operation waveforms, FIG. 9 is a flowchart showing an example of a program for hole position detection in the first embodiment of the present invention, and FIG. Figures 11 and 12 showing the operating waveforms of the device are as follows:
It is an explanatory diagram of the operation waveform.〇72"...Manbulator, 73...Ultrasonic e) Transducer, 79
...CPU, B2...hole. Name of agent: Patent attorney Toshio Nakao and one other person. Fig. 1 Fig. 2 Fig. 3 Fig. 4 Weak sound filter Q blue screen red scanning angle [pulling] Fig. 5 Fig. 6 Fig. 7 1/2 11/ Fig. 9 j~su's

Claims (1)

【特許請求の範囲】[Claims] 超音波送受波素子と被測定物の相対位置関係を変化させ
て前記超音波送受波素子により超音波を送受波して得ら
れた前記被測定物からの反射信号強度の極小値近傍の近
似曲線の係数を検出する工程と、あらかじめ記憶装置内
部に保持されている前記被測定物ごとの近似曲線の係数
を比較して前記被測定物の形状を検出する工程からなる
被測定物の形状検出方法。
An approximate curve near the minimum value of the reflected signal intensity from the object to be measured obtained by transmitting and receiving ultrasonic waves by the ultrasonic wave transmitting and receiving element while changing the relative positional relationship between the ultrasonic wave transmitting and receiving element and the object to be measured. A method for detecting the shape of an object to be measured, comprising the steps of: detecting the coefficients of the object to be measured; and detecting the shape of the object by comparing the coefficients of an approximate curve for each object stored in advance in a storage device. .
JP24023783A 1983-12-20 1983-12-20 Detecting method of shape of object to be measured Pending JPS60131415A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24023783A JPS60131415A (en) 1983-12-20 1983-12-20 Detecting method of shape of object to be measured

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24023783A JPS60131415A (en) 1983-12-20 1983-12-20 Detecting method of shape of object to be measured

Publications (1)

Publication Number Publication Date
JPS60131415A true JPS60131415A (en) 1985-07-13

Family

ID=17056488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24023783A Pending JPS60131415A (en) 1983-12-20 1983-12-20 Detecting method of shape of object to be measured

Country Status (1)

Country Link
JP (1) JPS60131415A (en)

Similar Documents

Publication Publication Date Title
US6443896B1 (en) Method for creating multiplanar ultrasonic images of a three dimensional object
EP0528622A1 (en) Nuclear reactor vessel inspection system and method with remote transducer positioning
JPH03500454A (en) Ultrasonic reflection transmission imaging method and device excluding artificial structures
JPS6070381A (en) Ultrasonic imaging apparatus
JP6853372B2 (en) Control method of ultrasonic diagnostic equipment and ultrasonic diagnostic equipment
JPH03136636A (en) Position detecting device of medical capsule
JPS60131415A (en) Detecting method of shape of object to be measured
US20190307429A1 (en) Ultrasound diagnostic apparatus and control method of ultrasound diagnostic apparatus
KR880000894B1 (en) Acoustic emission locator of defect in a closed structure
JP3038256B2 (en) Ultrasonic signal processor
EP0105966A1 (en) Ultrasonic testing apparatus
JPH04200539A (en) Ultrasonic wave probe and blood flow measuring instrument
JP2633565B2 (en) Ultrasound diagnostic equipment
WO2022196095A1 (en) Ultrasonic diagnosis device and method for controlling ultrasonic diagnosis device
JPS606884A (en) Shape detector for body to be measured
JPH0249675B2 (en) HISOKUTEIBUTSUNOICHIKENSHUTSUHOHO
JPS6162808A (en) Apparatus for detecting position of object to be measured
JPS6091205A (en) Shape detecting method of material to be measured
JPS60131414A (en) Detecting method of position of object to be measured
JPS61162709A (en) Detection of position
JPH0244394B2 (en)
JPH0148996B2 (en)
JPS61120011A (en) Position detection device
JPH0292344A (en) Ultrasonic probe and ultrasonic diagnostic apparatus equipped with same probe
JPS59111076A (en) Distance measuring apparatus